xref: /linux/drivers/accel/habanalabs/common/command_buffer.c (revision 8c994eff8fcfe8ecb1f1dbebed25b4d7bb75be12)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 
11 #include <linux/mm.h>
12 #include <linux/slab.h>
13 #include <linux/uaccess.h>
14 
15 #define CB_VA_POOL_SIZE		(4UL * SZ_1G)
16 
17 static int cb_map_mem(struct hl_ctx *ctx, struct hl_cb *cb)
18 {
19 	struct hl_device *hdev = ctx->hdev;
20 	struct asic_fixed_properties *prop = &hdev->asic_prop;
21 	u32 page_size = prop->pmmu.page_size;
22 	int rc;
23 
24 	if (!hdev->supports_cb_mapping) {
25 		dev_err_ratelimited(hdev->dev,
26 				"Mapping a CB to the device's MMU is not supported\n");
27 		return -EINVAL;
28 	}
29 
30 	if (cb->is_mmu_mapped)
31 		return 0;
32 
33 	cb->roundup_size = roundup(cb->size, page_size);
34 
35 	cb->virtual_addr = (u64) gen_pool_alloc(ctx->cb_va_pool, cb->roundup_size);
36 	if (!cb->virtual_addr) {
37 		dev_err(hdev->dev, "Failed to allocate device virtual address for CB\n");
38 		return -ENOMEM;
39 	}
40 
41 	mutex_lock(&hdev->mmu_lock);
42 
43 	rc = hl_mmu_map_contiguous(ctx, cb->virtual_addr, cb->bus_address, cb->roundup_size);
44 	if (rc) {
45 		dev_err(hdev->dev, "Failed to map VA %#llx to CB\n", cb->virtual_addr);
46 		goto err_va_pool_free;
47 	}
48 
49 	rc = hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV);
50 	if (rc)
51 		goto err_mmu_unmap;
52 
53 	mutex_unlock(&hdev->mmu_lock);
54 
55 	cb->is_mmu_mapped = true;
56 
57 	return 0;
58 
59 err_mmu_unmap:
60 	hl_mmu_unmap_contiguous(ctx, cb->virtual_addr, cb->roundup_size);
61 err_va_pool_free:
62 	mutex_unlock(&hdev->mmu_lock);
63 	gen_pool_free(ctx->cb_va_pool, cb->virtual_addr, cb->roundup_size);
64 
65 	return rc;
66 }
67 
68 static void cb_unmap_mem(struct hl_ctx *ctx, struct hl_cb *cb)
69 {
70 	struct hl_device *hdev = ctx->hdev;
71 
72 	mutex_lock(&hdev->mmu_lock);
73 	hl_mmu_unmap_contiguous(ctx, cb->virtual_addr, cb->roundup_size);
74 	hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
75 	mutex_unlock(&hdev->mmu_lock);
76 
77 	gen_pool_free(ctx->cb_va_pool, cb->virtual_addr, cb->roundup_size);
78 }
79 
80 static void cb_fini(struct hl_device *hdev, struct hl_cb *cb)
81 {
82 	if (cb->is_internal)
83 		gen_pool_free(hdev->internal_cb_pool,
84 				(uintptr_t)cb->kernel_address, cb->size);
85 	else
86 		hl_asic_dma_free_coherent(hdev, cb->size, cb->kernel_address, cb->bus_address);
87 
88 	kfree(cb);
89 }
90 
91 static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb)
92 {
93 	if (cb->is_pool) {
94 		atomic_set(&cb->is_handle_destroyed, 0);
95 		spin_lock(&hdev->cb_pool_lock);
96 		list_add(&cb->pool_list, &hdev->cb_pool);
97 		spin_unlock(&hdev->cb_pool_lock);
98 	} else {
99 		cb_fini(hdev, cb);
100 	}
101 }
102 
103 static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size,
104 					int ctx_id, bool internal_cb)
105 {
106 	struct hl_cb *cb = NULL;
107 	u32 cb_offset;
108 	void *p;
109 
110 	/*
111 	 * We use of GFP_ATOMIC here because this function can be called from
112 	 * the latency-sensitive code path for command submission. Due to H/W
113 	 * limitations in some of the ASICs, the kernel must copy the user CB
114 	 * that is designated for an external queue and actually enqueue
115 	 * the kernel's copy. Hence, we must never sleep in this code section
116 	 * and must use GFP_ATOMIC for all memory allocations.
117 	 */
118 	if (ctx_id == HL_KERNEL_ASID_ID && !hdev->disabled)
119 		cb = kzalloc(sizeof(*cb), GFP_ATOMIC);
120 
121 	if (!cb)
122 		cb = kzalloc(sizeof(*cb), GFP_KERNEL);
123 
124 	if (!cb)
125 		return NULL;
126 
127 	if (internal_cb) {
128 		p = (void *) gen_pool_alloc(hdev->internal_cb_pool, cb_size);
129 		if (!p) {
130 			kfree(cb);
131 			return NULL;
132 		}
133 
134 		cb_offset = p - hdev->internal_cb_pool_virt_addr;
135 		cb->is_internal = true;
136 		cb->bus_address =  hdev->internal_cb_va_base + cb_offset;
137 	} else if (ctx_id == HL_KERNEL_ASID_ID) {
138 		p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_ATOMIC);
139 		if (!p)
140 			p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_KERNEL);
141 	} else {
142 		p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address,
143 						GFP_USER | __GFP_ZERO);
144 	}
145 
146 	if (!p) {
147 		dev_err(hdev->dev,
148 			"failed to allocate %d of dma memory for CB\n",
149 			cb_size);
150 		kfree(cb);
151 		return NULL;
152 	}
153 
154 	cb->kernel_address = p;
155 	cb->size = cb_size;
156 
157 	return cb;
158 }
159 
160 struct hl_cb_mmap_mem_alloc_args {
161 	struct hl_device *hdev;
162 	struct hl_ctx *ctx;
163 	u32 cb_size;
164 	bool internal_cb;
165 	bool map_cb;
166 };
167 
168 static void hl_cb_mmap_mem_release(struct hl_mmap_mem_buf *buf)
169 {
170 	struct hl_cb *cb = buf->private;
171 
172 	hl_debugfs_remove_cb(cb);
173 
174 	if (cb->is_mmu_mapped)
175 		cb_unmap_mem(cb->ctx, cb);
176 
177 	hl_ctx_put(cb->ctx);
178 
179 	cb_do_release(cb->hdev, cb);
180 }
181 
182 static int hl_cb_mmap_mem_alloc(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
183 {
184 	struct hl_cb_mmap_mem_alloc_args *cb_args = args;
185 	struct hl_cb *cb;
186 	int rc, ctx_id = cb_args->ctx->asid;
187 	bool alloc_new_cb = true;
188 
189 	if (!cb_args->internal_cb) {
190 		/* Minimum allocation must be PAGE SIZE */
191 		if (cb_args->cb_size < PAGE_SIZE)
192 			cb_args->cb_size = PAGE_SIZE;
193 
194 		if (ctx_id == HL_KERNEL_ASID_ID &&
195 				cb_args->cb_size <= cb_args->hdev->asic_prop.cb_pool_cb_size) {
196 
197 			spin_lock(&cb_args->hdev->cb_pool_lock);
198 			if (!list_empty(&cb_args->hdev->cb_pool)) {
199 				cb = list_first_entry(&cb_args->hdev->cb_pool,
200 						typeof(*cb), pool_list);
201 				list_del(&cb->pool_list);
202 				spin_unlock(&cb_args->hdev->cb_pool_lock);
203 				alloc_new_cb = false;
204 			} else {
205 				spin_unlock(&cb_args->hdev->cb_pool_lock);
206 				dev_dbg(cb_args->hdev->dev, "CB pool is empty\n");
207 			}
208 		}
209 	}
210 
211 	if (alloc_new_cb) {
212 		cb = hl_cb_alloc(cb_args->hdev, cb_args->cb_size, ctx_id, cb_args->internal_cb);
213 		if (!cb)
214 			return -ENOMEM;
215 	}
216 
217 	cb->hdev = cb_args->hdev;
218 	cb->ctx = cb_args->ctx;
219 	cb->buf = buf;
220 	cb->buf->mappable_size = cb->size;
221 	cb->buf->private = cb;
222 
223 	hl_ctx_get(cb->ctx);
224 
225 	if (cb_args->map_cb) {
226 		if (ctx_id == HL_KERNEL_ASID_ID) {
227 			dev_err(cb_args->hdev->dev,
228 				"CB mapping is not supported for kernel context\n");
229 			rc = -EINVAL;
230 			goto release_cb;
231 		}
232 
233 		rc = cb_map_mem(cb_args->ctx, cb);
234 		if (rc)
235 			goto release_cb;
236 	}
237 
238 	hl_debugfs_add_cb(cb);
239 
240 	return 0;
241 
242 release_cb:
243 	hl_ctx_put(cb->ctx);
244 	cb_do_release(cb_args->hdev, cb);
245 
246 	return rc;
247 }
248 
249 static int hl_cb_mmap(struct hl_mmap_mem_buf *buf,
250 				      struct vm_area_struct *vma, void *args)
251 {
252 	struct hl_cb *cb = buf->private;
253 
254 	return cb->hdev->asic_funcs->mmap(cb->hdev, vma, cb->kernel_address,
255 					cb->bus_address, cb->size);
256 }
257 
258 static struct hl_mmap_mem_buf_behavior cb_behavior = {
259 	.topic = "CB",
260 	.mem_id = HL_MMAP_TYPE_CB,
261 	.alloc = hl_cb_mmap_mem_alloc,
262 	.release = hl_cb_mmap_mem_release,
263 	.mmap = hl_cb_mmap,
264 };
265 
266 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
267 			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
268 			bool map_cb, u64 *handle)
269 {
270 	struct hl_cb_mmap_mem_alloc_args args = {
271 		.hdev = hdev,
272 		.ctx = ctx,
273 		.cb_size = cb_size,
274 		.internal_cb = internal_cb,
275 		.map_cb = map_cb,
276 	};
277 	struct hl_mmap_mem_buf *buf;
278 	int ctx_id = ctx->asid;
279 
280 	if ((hdev->disabled) || (hdev->reset_info.in_reset && (ctx_id != HL_KERNEL_ASID_ID))) {
281 		dev_warn_ratelimited(hdev->dev,
282 			"Device is disabled or in reset. Can't create new CBs\n");
283 		return -EBUSY;
284 	}
285 
286 	if (cb_size > SZ_2M) {
287 		dev_err(hdev->dev, "CB size %d must be less than %d\n",
288 			cb_size, SZ_2M);
289 		return -EINVAL;
290 	}
291 
292 	buf = hl_mmap_mem_buf_alloc(
293 		mmg, &cb_behavior,
294 		ctx_id == HL_KERNEL_ASID_ID ? GFP_ATOMIC : GFP_KERNEL, &args);
295 	if (!buf)
296 		return -ENOMEM;
297 
298 	*handle = buf->handle;
299 
300 	return 0;
301 }
302 
303 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle)
304 {
305 	struct hl_cb *cb;
306 	int rc;
307 
308 	cb = hl_cb_get(mmg, cb_handle);
309 	if (!cb) {
310 		dev_dbg(mmg->dev, "CB destroy failed, no CB was found for handle %#llx\n",
311 			cb_handle);
312 		return -EINVAL;
313 	}
314 
315 	/* Make sure that CB handle isn't destroyed more than once */
316 	rc = atomic_cmpxchg(&cb->is_handle_destroyed, 0, 1);
317 	hl_cb_put(cb);
318 	if (rc) {
319 		dev_dbg(mmg->dev, "CB destroy failed, handle %#llx was already destroyed\n",
320 			cb_handle);
321 		return -EINVAL;
322 	}
323 
324 	rc = hl_mmap_mem_buf_put_handle(mmg, cb_handle);
325 	if (rc < 0)
326 		return rc; /* Invalid handle */
327 
328 	if (rc == 0)
329 		dev_dbg(mmg->dev, "CB 0x%llx is destroyed while still in use\n", cb_handle);
330 
331 	return 0;
332 }
333 
334 static int hl_cb_info(struct hl_mem_mgr *mmg,
335 			u64 handle, u32 flags, u32 *usage_cnt, u64 *device_va)
336 {
337 	struct hl_cb *cb;
338 	int rc = 0;
339 
340 	cb = hl_cb_get(mmg, handle);
341 	if (!cb) {
342 		dev_err(mmg->dev,
343 			"CB info failed, no match to handle 0x%llx\n", handle);
344 		return -EINVAL;
345 	}
346 
347 	if (flags & HL_CB_FLAGS_GET_DEVICE_VA) {
348 		if (cb->is_mmu_mapped) {
349 			*device_va = cb->virtual_addr;
350 		} else {
351 			dev_err(mmg->dev, "CB is not mapped to the device's MMU\n");
352 			rc = -EINVAL;
353 			goto out;
354 		}
355 	} else {
356 		*usage_cnt = atomic_read(&cb->cs_cnt);
357 	}
358 
359 out:
360 	hl_cb_put(cb);
361 	return rc;
362 }
363 
364 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data)
365 {
366 	union hl_cb_args *args = data;
367 	struct hl_device *hdev = hpriv->hdev;
368 	u64 handle = 0, device_va = 0;
369 	enum hl_device_status status;
370 	u32 usage_cnt = 0;
371 	int rc;
372 
373 	if (!hl_device_operational(hdev, &status)) {
374 		dev_dbg_ratelimited(hdev->dev,
375 			"Device is %s. Can't execute CB IOCTL\n",
376 			hdev->status[status]);
377 		return -EBUSY;
378 	}
379 
380 	switch (args->in.op) {
381 	case HL_CB_OP_CREATE:
382 		if (args->in.cb_size > HL_MAX_CB_SIZE) {
383 			dev_err(hdev->dev,
384 				"User requested CB size %d must be less than %d\n",
385 				args->in.cb_size, HL_MAX_CB_SIZE);
386 			rc = -EINVAL;
387 		} else {
388 			rc = hl_cb_create(hdev, &hpriv->mem_mgr, hpriv->ctx,
389 					args->in.cb_size, false,
390 					!!(args->in.flags & HL_CB_FLAGS_MAP),
391 					&handle);
392 		}
393 
394 		memset(args, 0, sizeof(*args));
395 		args->out.cb_handle = handle;
396 		break;
397 
398 	case HL_CB_OP_DESTROY:
399 		rc = hl_cb_destroy(&hpriv->mem_mgr,
400 					args->in.cb_handle);
401 		break;
402 
403 	case HL_CB_OP_INFO:
404 		rc = hl_cb_info(&hpriv->mem_mgr, args->in.cb_handle,
405 				args->in.flags,
406 				&usage_cnt,
407 				&device_va);
408 		if (rc)
409 			break;
410 
411 		memset(&args->out, 0, sizeof(args->out));
412 
413 		if (args->in.flags & HL_CB_FLAGS_GET_DEVICE_VA)
414 			args->out.device_va = device_va;
415 		else
416 			args->out.usage_cnt = usage_cnt;
417 		break;
418 
419 	default:
420 		rc = -EINVAL;
421 		break;
422 	}
423 
424 	return rc;
425 }
426 
427 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle)
428 {
429 	struct hl_mmap_mem_buf *buf;
430 
431 	buf = hl_mmap_mem_buf_get(mmg, handle);
432 	if (!buf)
433 		return NULL;
434 	return buf->private;
435 
436 }
437 
438 void hl_cb_put(struct hl_cb *cb)
439 {
440 	hl_mmap_mem_buf_put(cb->buf);
441 }
442 
443 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
444 					bool internal_cb)
445 {
446 	u64 cb_handle;
447 	struct hl_cb *cb;
448 	int rc;
449 
450 	rc = hl_cb_create(hdev, &hdev->kernel_mem_mgr, hdev->kernel_ctx, cb_size,
451 				internal_cb, false, &cb_handle);
452 	if (rc) {
453 		dev_err(hdev->dev,
454 			"Failed to allocate CB for the kernel driver %d\n", rc);
455 		return NULL;
456 	}
457 
458 	cb = hl_cb_get(&hdev->kernel_mem_mgr, cb_handle);
459 	/* hl_cb_get should never fail here */
460 	if (!cb) {
461 		dev_crit(hdev->dev, "Kernel CB handle invalid 0x%x\n",
462 				(u32) cb_handle);
463 		goto destroy_cb;
464 	}
465 
466 	return cb;
467 
468 destroy_cb:
469 	hl_cb_destroy(&hdev->kernel_mem_mgr, cb_handle);
470 
471 	return NULL;
472 }
473 
474 int hl_cb_pool_init(struct hl_device *hdev)
475 {
476 	struct hl_cb *cb;
477 	int i;
478 
479 	INIT_LIST_HEAD(&hdev->cb_pool);
480 	spin_lock_init(&hdev->cb_pool_lock);
481 
482 	for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) {
483 		cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size,
484 				HL_KERNEL_ASID_ID, false);
485 		if (cb) {
486 			cb->is_pool = true;
487 			list_add(&cb->pool_list, &hdev->cb_pool);
488 		} else {
489 			hl_cb_pool_fini(hdev);
490 			return -ENOMEM;
491 		}
492 	}
493 
494 	return 0;
495 }
496 
497 int hl_cb_pool_fini(struct hl_device *hdev)
498 {
499 	struct hl_cb *cb, *tmp;
500 
501 	list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) {
502 		list_del(&cb->pool_list);
503 		cb_fini(hdev, cb);
504 	}
505 
506 	return 0;
507 }
508 
509 int hl_cb_va_pool_init(struct hl_ctx *ctx)
510 {
511 	struct hl_device *hdev = ctx->hdev;
512 	struct asic_fixed_properties *prop = &hdev->asic_prop;
513 	int rc;
514 
515 	if (!hdev->supports_cb_mapping)
516 		return 0;
517 
518 	ctx->cb_va_pool = gen_pool_create(__ffs(prop->pmmu.page_size), -1);
519 	if (!ctx->cb_va_pool) {
520 		dev_err(hdev->dev,
521 			"Failed to create VA gen pool for CB mapping\n");
522 		return -ENOMEM;
523 	}
524 
525 	ctx->cb_va_pool_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST,
526 					CB_VA_POOL_SIZE, HL_MMU_VA_ALIGNMENT_NOT_NEEDED);
527 	if (!ctx->cb_va_pool_base) {
528 		rc = -ENOMEM;
529 		goto err_pool_destroy;
530 	}
531 	rc = gen_pool_add(ctx->cb_va_pool, ctx->cb_va_pool_base, CB_VA_POOL_SIZE, -1);
532 	if (rc) {
533 		dev_err(hdev->dev,
534 			"Failed to add memory to VA gen pool for CB mapping\n");
535 		goto err_unreserve_va_block;
536 	}
537 
538 	return 0;
539 
540 err_unreserve_va_block:
541 	hl_unreserve_va_block(hdev, ctx, ctx->cb_va_pool_base, CB_VA_POOL_SIZE);
542 err_pool_destroy:
543 	gen_pool_destroy(ctx->cb_va_pool);
544 
545 	return rc;
546 }
547 
548 void hl_cb_va_pool_fini(struct hl_ctx *ctx)
549 {
550 	struct hl_device *hdev = ctx->hdev;
551 
552 	if (!hdev->supports_cb_mapping)
553 		return;
554 
555 	gen_pool_destroy(ctx->cb_va_pool);
556 	hl_unreserve_va_block(hdev, ctx, ctx->cb_va_pool_base, CB_VA_POOL_SIZE);
557 }
558