xref: /linux/drivers/accel/habanalabs/common/command_buffer.c (revision 8a922b7728a93d837954315c98b84f6b78de0c4f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 
11 #include <linux/mm.h>
12 #include <linux/slab.h>
13 #include <linux/uaccess.h>
14 
15 #define CB_VA_POOL_SIZE		(4UL * SZ_1G)
16 
17 static int cb_map_mem(struct hl_ctx *ctx, struct hl_cb *cb)
18 {
19 	struct hl_device *hdev = ctx->hdev;
20 	struct asic_fixed_properties *prop = &hdev->asic_prop;
21 	u32 page_size = prop->pmmu.page_size;
22 	int rc;
23 
24 	if (!hdev->supports_cb_mapping) {
25 		dev_err_ratelimited(hdev->dev,
26 				"Mapping a CB to the device's MMU is not supported\n");
27 		return -EINVAL;
28 	}
29 
30 	if (!hdev->mmu_enable) {
31 		dev_err_ratelimited(hdev->dev,
32 				"Cannot map CB because MMU is disabled\n");
33 		return -EINVAL;
34 	}
35 
36 	if (cb->is_mmu_mapped)
37 		return 0;
38 
39 	cb->roundup_size = roundup(cb->size, page_size);
40 
41 	cb->virtual_addr = (u64) gen_pool_alloc(ctx->cb_va_pool, cb->roundup_size);
42 	if (!cb->virtual_addr) {
43 		dev_err(hdev->dev, "Failed to allocate device virtual address for CB\n");
44 		return -ENOMEM;
45 	}
46 
47 	mutex_lock(&hdev->mmu_lock);
48 	rc = hl_mmu_map_contiguous(ctx, cb->virtual_addr, cb->bus_address, cb->roundup_size);
49 	if (rc) {
50 		dev_err(hdev->dev, "Failed to map VA %#llx to CB\n", cb->virtual_addr);
51 		goto err_va_umap;
52 	}
53 	rc = hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV);
54 	mutex_unlock(&hdev->mmu_lock);
55 
56 	cb->is_mmu_mapped = true;
57 	return rc;
58 
59 err_va_umap:
60 	mutex_unlock(&hdev->mmu_lock);
61 	gen_pool_free(ctx->cb_va_pool, cb->virtual_addr, cb->roundup_size);
62 	return rc;
63 }
64 
65 static void cb_unmap_mem(struct hl_ctx *ctx, struct hl_cb *cb)
66 {
67 	struct hl_device *hdev = ctx->hdev;
68 
69 	mutex_lock(&hdev->mmu_lock);
70 	hl_mmu_unmap_contiguous(ctx, cb->virtual_addr, cb->roundup_size);
71 	hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
72 	mutex_unlock(&hdev->mmu_lock);
73 
74 	gen_pool_free(ctx->cb_va_pool, cb->virtual_addr, cb->roundup_size);
75 }
76 
77 static void cb_fini(struct hl_device *hdev, struct hl_cb *cb)
78 {
79 	if (cb->is_internal)
80 		gen_pool_free(hdev->internal_cb_pool,
81 				(uintptr_t)cb->kernel_address, cb->size);
82 	else
83 		hl_asic_dma_free_coherent(hdev, cb->size, cb->kernel_address, cb->bus_address);
84 
85 	kfree(cb);
86 }
87 
88 static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb)
89 {
90 	if (cb->is_pool) {
91 		atomic_set(&cb->is_handle_destroyed, 0);
92 		spin_lock(&hdev->cb_pool_lock);
93 		list_add(&cb->pool_list, &hdev->cb_pool);
94 		spin_unlock(&hdev->cb_pool_lock);
95 	} else {
96 		cb_fini(hdev, cb);
97 	}
98 }
99 
100 static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size,
101 					int ctx_id, bool internal_cb)
102 {
103 	struct hl_cb *cb = NULL;
104 	u32 cb_offset;
105 	void *p;
106 
107 	/*
108 	 * We use of GFP_ATOMIC here because this function can be called from
109 	 * the latency-sensitive code path for command submission. Due to H/W
110 	 * limitations in some of the ASICs, the kernel must copy the user CB
111 	 * that is designated for an external queue and actually enqueue
112 	 * the kernel's copy. Hence, we must never sleep in this code section
113 	 * and must use GFP_ATOMIC for all memory allocations.
114 	 */
115 	if (ctx_id == HL_KERNEL_ASID_ID && !hdev->disabled)
116 		cb = kzalloc(sizeof(*cb), GFP_ATOMIC);
117 
118 	if (!cb)
119 		cb = kzalloc(sizeof(*cb), GFP_KERNEL);
120 
121 	if (!cb)
122 		return NULL;
123 
124 	if (internal_cb) {
125 		p = (void *) gen_pool_alloc(hdev->internal_cb_pool, cb_size);
126 		if (!p) {
127 			kfree(cb);
128 			return NULL;
129 		}
130 
131 		cb_offset = p - hdev->internal_cb_pool_virt_addr;
132 		cb->is_internal = true;
133 		cb->bus_address =  hdev->internal_cb_va_base + cb_offset;
134 	} else if (ctx_id == HL_KERNEL_ASID_ID) {
135 		p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_ATOMIC);
136 		if (!p)
137 			p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_KERNEL);
138 	} else {
139 		p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address,
140 						GFP_USER | __GFP_ZERO);
141 	}
142 
143 	if (!p) {
144 		dev_err(hdev->dev,
145 			"failed to allocate %d of dma memory for CB\n",
146 			cb_size);
147 		kfree(cb);
148 		return NULL;
149 	}
150 
151 	cb->kernel_address = p;
152 	cb->size = cb_size;
153 
154 	return cb;
155 }
156 
157 struct hl_cb_mmap_mem_alloc_args {
158 	struct hl_device *hdev;
159 	struct hl_ctx *ctx;
160 	u32 cb_size;
161 	bool internal_cb;
162 	bool map_cb;
163 };
164 
165 static void hl_cb_mmap_mem_release(struct hl_mmap_mem_buf *buf)
166 {
167 	struct hl_cb *cb = buf->private;
168 
169 	hl_debugfs_remove_cb(cb);
170 
171 	if (cb->is_mmu_mapped)
172 		cb_unmap_mem(cb->ctx, cb);
173 
174 	hl_ctx_put(cb->ctx);
175 
176 	cb_do_release(cb->hdev, cb);
177 }
178 
179 static int hl_cb_mmap_mem_alloc(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
180 {
181 	struct hl_cb_mmap_mem_alloc_args *cb_args = args;
182 	struct hl_cb *cb;
183 	int rc, ctx_id = cb_args->ctx->asid;
184 	bool alloc_new_cb = true;
185 
186 	if (!cb_args->internal_cb) {
187 		/* Minimum allocation must be PAGE SIZE */
188 		if (cb_args->cb_size < PAGE_SIZE)
189 			cb_args->cb_size = PAGE_SIZE;
190 
191 		if (ctx_id == HL_KERNEL_ASID_ID &&
192 				cb_args->cb_size <= cb_args->hdev->asic_prop.cb_pool_cb_size) {
193 
194 			spin_lock(&cb_args->hdev->cb_pool_lock);
195 			if (!list_empty(&cb_args->hdev->cb_pool)) {
196 				cb = list_first_entry(&cb_args->hdev->cb_pool,
197 						typeof(*cb), pool_list);
198 				list_del(&cb->pool_list);
199 				spin_unlock(&cb_args->hdev->cb_pool_lock);
200 				alloc_new_cb = false;
201 			} else {
202 				spin_unlock(&cb_args->hdev->cb_pool_lock);
203 				dev_dbg(cb_args->hdev->dev, "CB pool is empty\n");
204 			}
205 		}
206 	}
207 
208 	if (alloc_new_cb) {
209 		cb = hl_cb_alloc(cb_args->hdev, cb_args->cb_size, ctx_id, cb_args->internal_cb);
210 		if (!cb)
211 			return -ENOMEM;
212 	}
213 
214 	cb->hdev = cb_args->hdev;
215 	cb->ctx = cb_args->ctx;
216 	cb->buf = buf;
217 	cb->buf->mappable_size = cb->size;
218 	cb->buf->private = cb;
219 
220 	hl_ctx_get(cb->ctx);
221 
222 	if (cb_args->map_cb) {
223 		if (ctx_id == HL_KERNEL_ASID_ID) {
224 			dev_err(cb_args->hdev->dev,
225 				"CB mapping is not supported for kernel context\n");
226 			rc = -EINVAL;
227 			goto release_cb;
228 		}
229 
230 		rc = cb_map_mem(cb_args->ctx, cb);
231 		if (rc)
232 			goto release_cb;
233 	}
234 
235 	hl_debugfs_add_cb(cb);
236 
237 	return 0;
238 
239 release_cb:
240 	hl_ctx_put(cb->ctx);
241 	cb_do_release(cb_args->hdev, cb);
242 
243 	return rc;
244 }
245 
246 static int hl_cb_mmap(struct hl_mmap_mem_buf *buf,
247 				      struct vm_area_struct *vma, void *args)
248 {
249 	struct hl_cb *cb = buf->private;
250 
251 	return cb->hdev->asic_funcs->mmap(cb->hdev, vma, cb->kernel_address,
252 					cb->bus_address, cb->size);
253 }
254 
255 static struct hl_mmap_mem_buf_behavior cb_behavior = {
256 	.topic = "CB",
257 	.mem_id = HL_MMAP_TYPE_CB,
258 	.alloc = hl_cb_mmap_mem_alloc,
259 	.release = hl_cb_mmap_mem_release,
260 	.mmap = hl_cb_mmap,
261 };
262 
263 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
264 			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
265 			bool map_cb, u64 *handle)
266 {
267 	struct hl_cb_mmap_mem_alloc_args args = {
268 		.hdev = hdev,
269 		.ctx = ctx,
270 		.cb_size = cb_size,
271 		.internal_cb = internal_cb,
272 		.map_cb = map_cb,
273 	};
274 	struct hl_mmap_mem_buf *buf;
275 	int ctx_id = ctx->asid;
276 
277 	if ((hdev->disabled) || (hdev->reset_info.in_reset && (ctx_id != HL_KERNEL_ASID_ID))) {
278 		dev_warn_ratelimited(hdev->dev,
279 			"Device is disabled or in reset. Can't create new CBs\n");
280 		return -EBUSY;
281 	}
282 
283 	if (cb_size > SZ_2M) {
284 		dev_err(hdev->dev, "CB size %d must be less than %d\n",
285 			cb_size, SZ_2M);
286 		return -EINVAL;
287 	}
288 
289 	buf = hl_mmap_mem_buf_alloc(
290 		mmg, &cb_behavior,
291 		ctx_id == HL_KERNEL_ASID_ID ? GFP_ATOMIC : GFP_KERNEL, &args);
292 	if (!buf)
293 		return -ENOMEM;
294 
295 	*handle = buf->handle;
296 
297 	return 0;
298 }
299 
300 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle)
301 {
302 	struct hl_cb *cb;
303 	int rc;
304 
305 	cb = hl_cb_get(mmg, cb_handle);
306 	if (!cb) {
307 		dev_dbg(mmg->dev, "CB destroy failed, no CB was found for handle %#llx\n",
308 			cb_handle);
309 		return -EINVAL;
310 	}
311 
312 	/* Make sure that CB handle isn't destroyed more than once */
313 	rc = atomic_cmpxchg(&cb->is_handle_destroyed, 0, 1);
314 	hl_cb_put(cb);
315 	if (rc) {
316 		dev_dbg(mmg->dev, "CB destroy failed, handle %#llx was already destroyed\n",
317 			cb_handle);
318 		return -EINVAL;
319 	}
320 
321 	rc = hl_mmap_mem_buf_put_handle(mmg, cb_handle);
322 	if (rc < 0)
323 		return rc; /* Invalid handle */
324 
325 	if (rc == 0)
326 		dev_dbg(mmg->dev, "CB 0x%llx is destroyed while still in use\n", cb_handle);
327 
328 	return 0;
329 }
330 
331 static int hl_cb_info(struct hl_mem_mgr *mmg,
332 			u64 handle, u32 flags, u32 *usage_cnt, u64 *device_va)
333 {
334 	struct hl_cb *cb;
335 	int rc = 0;
336 
337 	cb = hl_cb_get(mmg, handle);
338 	if (!cb) {
339 		dev_err(mmg->dev,
340 			"CB info failed, no match to handle 0x%llx\n", handle);
341 		return -EINVAL;
342 	}
343 
344 	if (flags & HL_CB_FLAGS_GET_DEVICE_VA) {
345 		if (cb->is_mmu_mapped) {
346 			*device_va = cb->virtual_addr;
347 		} else {
348 			dev_err(mmg->dev, "CB is not mapped to the device's MMU\n");
349 			rc = -EINVAL;
350 			goto out;
351 		}
352 	} else {
353 		*usage_cnt = atomic_read(&cb->cs_cnt);
354 	}
355 
356 out:
357 	hl_cb_put(cb);
358 	return rc;
359 }
360 
361 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data)
362 {
363 	union hl_cb_args *args = data;
364 	struct hl_device *hdev = hpriv->hdev;
365 	u64 handle = 0, device_va = 0;
366 	enum hl_device_status status;
367 	u32 usage_cnt = 0;
368 	int rc;
369 
370 	if (!hl_device_operational(hdev, &status)) {
371 		dev_dbg_ratelimited(hdev->dev,
372 			"Device is %s. Can't execute CB IOCTL\n",
373 			hdev->status[status]);
374 		return -EBUSY;
375 	}
376 
377 	switch (args->in.op) {
378 	case HL_CB_OP_CREATE:
379 		if (args->in.cb_size > HL_MAX_CB_SIZE) {
380 			dev_err(hdev->dev,
381 				"User requested CB size %d must be less than %d\n",
382 				args->in.cb_size, HL_MAX_CB_SIZE);
383 			rc = -EINVAL;
384 		} else {
385 			rc = hl_cb_create(hdev, &hpriv->mem_mgr, hpriv->ctx,
386 					args->in.cb_size, false,
387 					!!(args->in.flags & HL_CB_FLAGS_MAP),
388 					&handle);
389 		}
390 
391 		memset(args, 0, sizeof(*args));
392 		args->out.cb_handle = handle;
393 		break;
394 
395 	case HL_CB_OP_DESTROY:
396 		rc = hl_cb_destroy(&hpriv->mem_mgr,
397 					args->in.cb_handle);
398 		break;
399 
400 	case HL_CB_OP_INFO:
401 		rc = hl_cb_info(&hpriv->mem_mgr, args->in.cb_handle,
402 				args->in.flags,
403 				&usage_cnt,
404 				&device_va);
405 		if (rc)
406 			break;
407 
408 		memset(&args->out, 0, sizeof(args->out));
409 
410 		if (args->in.flags & HL_CB_FLAGS_GET_DEVICE_VA)
411 			args->out.device_va = device_va;
412 		else
413 			args->out.usage_cnt = usage_cnt;
414 		break;
415 
416 	default:
417 		rc = -EINVAL;
418 		break;
419 	}
420 
421 	return rc;
422 }
423 
424 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle)
425 {
426 	struct hl_mmap_mem_buf *buf;
427 
428 	buf = hl_mmap_mem_buf_get(mmg, handle);
429 	if (!buf)
430 		return NULL;
431 	return buf->private;
432 
433 }
434 
435 void hl_cb_put(struct hl_cb *cb)
436 {
437 	hl_mmap_mem_buf_put(cb->buf);
438 }
439 
440 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
441 					bool internal_cb)
442 {
443 	u64 cb_handle;
444 	struct hl_cb *cb;
445 	int rc;
446 
447 	rc = hl_cb_create(hdev, &hdev->kernel_mem_mgr, hdev->kernel_ctx, cb_size,
448 				internal_cb, false, &cb_handle);
449 	if (rc) {
450 		dev_err(hdev->dev,
451 			"Failed to allocate CB for the kernel driver %d\n", rc);
452 		return NULL;
453 	}
454 
455 	cb = hl_cb_get(&hdev->kernel_mem_mgr, cb_handle);
456 	/* hl_cb_get should never fail here */
457 	if (!cb) {
458 		dev_crit(hdev->dev, "Kernel CB handle invalid 0x%x\n",
459 				(u32) cb_handle);
460 		goto destroy_cb;
461 	}
462 
463 	return cb;
464 
465 destroy_cb:
466 	hl_cb_destroy(&hdev->kernel_mem_mgr, cb_handle);
467 
468 	return NULL;
469 }
470 
471 int hl_cb_pool_init(struct hl_device *hdev)
472 {
473 	struct hl_cb *cb;
474 	int i;
475 
476 	INIT_LIST_HEAD(&hdev->cb_pool);
477 	spin_lock_init(&hdev->cb_pool_lock);
478 
479 	for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) {
480 		cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size,
481 				HL_KERNEL_ASID_ID, false);
482 		if (cb) {
483 			cb->is_pool = true;
484 			list_add(&cb->pool_list, &hdev->cb_pool);
485 		} else {
486 			hl_cb_pool_fini(hdev);
487 			return -ENOMEM;
488 		}
489 	}
490 
491 	return 0;
492 }
493 
494 int hl_cb_pool_fini(struct hl_device *hdev)
495 {
496 	struct hl_cb *cb, *tmp;
497 
498 	list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) {
499 		list_del(&cb->pool_list);
500 		cb_fini(hdev, cb);
501 	}
502 
503 	return 0;
504 }
505 
506 int hl_cb_va_pool_init(struct hl_ctx *ctx)
507 {
508 	struct hl_device *hdev = ctx->hdev;
509 	struct asic_fixed_properties *prop = &hdev->asic_prop;
510 	int rc;
511 
512 	if (!hdev->supports_cb_mapping)
513 		return 0;
514 
515 	ctx->cb_va_pool = gen_pool_create(__ffs(prop->pmmu.page_size), -1);
516 	if (!ctx->cb_va_pool) {
517 		dev_err(hdev->dev,
518 			"Failed to create VA gen pool for CB mapping\n");
519 		return -ENOMEM;
520 	}
521 
522 	ctx->cb_va_pool_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST,
523 					CB_VA_POOL_SIZE, HL_MMU_VA_ALIGNMENT_NOT_NEEDED);
524 	if (!ctx->cb_va_pool_base) {
525 		rc = -ENOMEM;
526 		goto err_pool_destroy;
527 	}
528 	rc = gen_pool_add(ctx->cb_va_pool, ctx->cb_va_pool_base, CB_VA_POOL_SIZE, -1);
529 	if (rc) {
530 		dev_err(hdev->dev,
531 			"Failed to add memory to VA gen pool for CB mapping\n");
532 		goto err_unreserve_va_block;
533 	}
534 
535 	return 0;
536 
537 err_unreserve_va_block:
538 	hl_unreserve_va_block(hdev, ctx, ctx->cb_va_pool_base, CB_VA_POOL_SIZE);
539 err_pool_destroy:
540 	gen_pool_destroy(ctx->cb_va_pool);
541 
542 	return rc;
543 }
544 
545 void hl_cb_va_pool_fini(struct hl_ctx *ctx)
546 {
547 	struct hl_device *hdev = ctx->hdev;
548 
549 	if (!hdev->supports_cb_mapping)
550 		return;
551 
552 	gen_pool_destroy(ctx->cb_va_pool);
553 	hl_unreserve_va_block(hdev, ctx, ctx->cb_va_pool_base, CB_VA_POOL_SIZE);
554 }
555