xref: /linux/crypto/xcbc.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C)2006 USAGI/WIDE Project
4  *
5  * Author:
6  * 	Kazunori Miyazawa <miyazawa@linux-ipv6.org>
7  */
8 
9 #include <crypto/internal/cipher.h>
10 #include <crypto/internal/hash.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 
15 static u_int32_t ks[12] = {0x01010101, 0x01010101, 0x01010101, 0x01010101,
16 			   0x02020202, 0x02020202, 0x02020202, 0x02020202,
17 			   0x03030303, 0x03030303, 0x03030303, 0x03030303};
18 
19 /*
20  * +------------------------
21  * | <parent tfm>
22  * +------------------------
23  * | xcbc_tfm_ctx
24  * +------------------------
25  * | consts (block size * 2)
26  * +------------------------
27  */
28 struct xcbc_tfm_ctx {
29 	struct crypto_cipher *child;
30 	u8 consts[];
31 };
32 
33 /*
34  * +------------------------
35  * | <shash desc>
36  * +------------------------
37  * | xcbc_desc_ctx
38  * +------------------------
39  * | odds (block size)
40  * +------------------------
41  * | prev (block size)
42  * +------------------------
43  */
44 struct xcbc_desc_ctx {
45 	unsigned int len;
46 	u8 odds[];
47 };
48 
49 #define XCBC_BLOCKSIZE	16
50 
51 static int crypto_xcbc_digest_setkey(struct crypto_shash *parent,
52 				     const u8 *inkey, unsigned int keylen)
53 {
54 	struct xcbc_tfm_ctx *ctx = crypto_shash_ctx(parent);
55 	u8 *consts = ctx->consts;
56 	int err = 0;
57 	u8 key1[XCBC_BLOCKSIZE];
58 	int bs = sizeof(key1);
59 
60 	if ((err = crypto_cipher_setkey(ctx->child, inkey, keylen)))
61 		return err;
62 
63 	crypto_cipher_encrypt_one(ctx->child, consts, (u8 *)ks + bs);
64 	crypto_cipher_encrypt_one(ctx->child, consts + bs, (u8 *)ks + bs * 2);
65 	crypto_cipher_encrypt_one(ctx->child, key1, (u8 *)ks);
66 
67 	return crypto_cipher_setkey(ctx->child, key1, bs);
68 
69 }
70 
71 static int crypto_xcbc_digest_init(struct shash_desc *pdesc)
72 {
73 	struct xcbc_desc_ctx *ctx = shash_desc_ctx(pdesc);
74 	int bs = crypto_shash_blocksize(pdesc->tfm);
75 	u8 *prev = &ctx->odds[bs];
76 
77 	ctx->len = 0;
78 	memset(prev, 0, bs);
79 
80 	return 0;
81 }
82 
83 static int crypto_xcbc_digest_update(struct shash_desc *pdesc, const u8 *p,
84 				     unsigned int len)
85 {
86 	struct crypto_shash *parent = pdesc->tfm;
87 	struct xcbc_tfm_ctx *tctx = crypto_shash_ctx(parent);
88 	struct xcbc_desc_ctx *ctx = shash_desc_ctx(pdesc);
89 	struct crypto_cipher *tfm = tctx->child;
90 	int bs = crypto_shash_blocksize(parent);
91 	u8 *odds = ctx->odds;
92 	u8 *prev = odds + bs;
93 
94 	/* checking the data can fill the block */
95 	if ((ctx->len + len) <= bs) {
96 		memcpy(odds + ctx->len, p, len);
97 		ctx->len += len;
98 		return 0;
99 	}
100 
101 	/* filling odds with new data and encrypting it */
102 	memcpy(odds + ctx->len, p, bs - ctx->len);
103 	len -= bs - ctx->len;
104 	p += bs - ctx->len;
105 
106 	crypto_xor(prev, odds, bs);
107 	crypto_cipher_encrypt_one(tfm, prev, prev);
108 
109 	/* clearing the length */
110 	ctx->len = 0;
111 
112 	/* encrypting the rest of data */
113 	while (len > bs) {
114 		crypto_xor(prev, p, bs);
115 		crypto_cipher_encrypt_one(tfm, prev, prev);
116 		p += bs;
117 		len -= bs;
118 	}
119 
120 	/* keeping the surplus of blocksize */
121 	if (len) {
122 		memcpy(odds, p, len);
123 		ctx->len = len;
124 	}
125 
126 	return 0;
127 }
128 
129 static int crypto_xcbc_digest_final(struct shash_desc *pdesc, u8 *out)
130 {
131 	struct crypto_shash *parent = pdesc->tfm;
132 	struct xcbc_tfm_ctx *tctx = crypto_shash_ctx(parent);
133 	struct xcbc_desc_ctx *ctx = shash_desc_ctx(pdesc);
134 	struct crypto_cipher *tfm = tctx->child;
135 	int bs = crypto_shash_blocksize(parent);
136 	u8 *odds = ctx->odds;
137 	u8 *prev = odds + bs;
138 	unsigned int offset = 0;
139 
140 	if (ctx->len != bs) {
141 		unsigned int rlen;
142 		u8 *p = odds + ctx->len;
143 
144 		*p = 0x80;
145 		p++;
146 
147 		rlen = bs - ctx->len -1;
148 		if (rlen)
149 			memset(p, 0, rlen);
150 
151 		offset += bs;
152 	}
153 
154 	crypto_xor(prev, odds, bs);
155 	crypto_xor(prev, &tctx->consts[offset], bs);
156 
157 	crypto_cipher_encrypt_one(tfm, out, prev);
158 
159 	return 0;
160 }
161 
162 static int xcbc_init_tfm(struct crypto_tfm *tfm)
163 {
164 	struct crypto_cipher *cipher;
165 	struct crypto_instance *inst = (void *)tfm->__crt_alg;
166 	struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
167 	struct xcbc_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
168 
169 	cipher = crypto_spawn_cipher(spawn);
170 	if (IS_ERR(cipher))
171 		return PTR_ERR(cipher);
172 
173 	ctx->child = cipher;
174 
175 	return 0;
176 };
177 
178 static void xcbc_exit_tfm(struct crypto_tfm *tfm)
179 {
180 	struct xcbc_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
181 	crypto_free_cipher(ctx->child);
182 }
183 
184 static int xcbc_create(struct crypto_template *tmpl, struct rtattr **tb)
185 {
186 	struct shash_instance *inst;
187 	struct crypto_cipher_spawn *spawn;
188 	struct crypto_alg *alg;
189 	u32 mask;
190 	int err;
191 
192 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
193 	if (err)
194 		return err;
195 
196 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
197 	if (!inst)
198 		return -ENOMEM;
199 	spawn = shash_instance_ctx(inst);
200 
201 	err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
202 				 crypto_attr_alg_name(tb[1]), 0, mask);
203 	if (err)
204 		goto err_free_inst;
205 	alg = crypto_spawn_cipher_alg(spawn);
206 
207 	err = -EINVAL;
208 	if (alg->cra_blocksize != XCBC_BLOCKSIZE)
209 		goto err_free_inst;
210 
211 	err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
212 	if (err)
213 		goto err_free_inst;
214 
215 	inst->alg.base.cra_priority = alg->cra_priority;
216 	inst->alg.base.cra_blocksize = alg->cra_blocksize;
217 	inst->alg.base.cra_ctxsize = sizeof(struct xcbc_tfm_ctx) +
218 				     alg->cra_blocksize * 2;
219 
220 	inst->alg.digestsize = alg->cra_blocksize;
221 	inst->alg.descsize = sizeof(struct xcbc_desc_ctx) +
222 			     alg->cra_blocksize * 2;
223 
224 	inst->alg.base.cra_init = xcbc_init_tfm;
225 	inst->alg.base.cra_exit = xcbc_exit_tfm;
226 
227 	inst->alg.init = crypto_xcbc_digest_init;
228 	inst->alg.update = crypto_xcbc_digest_update;
229 	inst->alg.final = crypto_xcbc_digest_final;
230 	inst->alg.setkey = crypto_xcbc_digest_setkey;
231 
232 	inst->free = shash_free_singlespawn_instance;
233 
234 	err = shash_register_instance(tmpl, inst);
235 	if (err) {
236 err_free_inst:
237 		shash_free_singlespawn_instance(inst);
238 	}
239 	return err;
240 }
241 
242 static struct crypto_template crypto_xcbc_tmpl = {
243 	.name = "xcbc",
244 	.create = xcbc_create,
245 	.module = THIS_MODULE,
246 };
247 
248 static int __init crypto_xcbc_module_init(void)
249 {
250 	return crypto_register_template(&crypto_xcbc_tmpl);
251 }
252 
253 static void __exit crypto_xcbc_module_exit(void)
254 {
255 	crypto_unregister_template(&crypto_xcbc_tmpl);
256 }
257 
258 subsys_initcall(crypto_xcbc_module_init);
259 module_exit(crypto_xcbc_module_exit);
260 
261 MODULE_LICENSE("GPL");
262 MODULE_DESCRIPTION("XCBC keyed hash algorithm");
263 MODULE_ALIAS_CRYPTO("xcbc");
264 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
265