xref: /linux/crypto/twofish_common.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Common Twofish algorithm parts shared between the c and assembler
3  * implementations
4  *
5  * Originally Twofish for GPG
6  * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
7  * 256-bit key length added March 20, 1999
8  * Some modifications to reduce the text size by Werner Koch, April, 1998
9  * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
10  * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
11  *
12  * The original author has disclaimed all copyright interest in this
13  * code and thus put it in the public domain. The subsequent authors
14  * have put this under the GNU General Public License.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24  * GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program; if not, write to the Free Software
28  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
29  * USA
30  *
31  * This code is a "clean room" implementation, written from the paper
32  * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
33  * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
34  * through http://www.counterpane.com/twofish.html
35  *
36  * For background information on multiplication in finite fields, used for
37  * the matrix operations in the key schedule, see the book _Contemporary
38  * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
39  * Third Edition.
40  */
41 
42 #include <crypto/twofish.h>
43 #include <linux/bitops.h>
44 #include <linux/crypto.h>
45 #include <linux/errno.h>
46 #include <linux/init.h>
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 
51 
52 /* The large precomputed tables for the Twofish cipher (twofish.c)
53  * Taken from the same source as twofish.c
54  * Marc Mutz <Marc@Mutz.com>
55  */
56 
57 /* These two tables are the q0 and q1 permutations, exactly as described in
58  * the Twofish paper. */
59 
60 static const u8 q0[256] = {
61 	0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
62 	0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
63 	0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
64 	0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
65 	0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
66 	0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
67 	0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
68 	0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
69 	0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
70 	0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
71 	0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
72 	0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
73 	0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
74 	0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
75 	0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
76 	0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
77 	0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
78 	0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
79 	0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
80 	0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
81 	0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
82 	0x4A, 0x5E, 0xC1, 0xE0
83 };
84 
85 static const u8 q1[256] = {
86 	0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
87 	0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
88 	0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
89 	0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
90 	0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
91 	0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
92 	0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
93 	0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
94 	0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
95 	0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
96 	0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
97 	0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
98 	0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
99 	0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
100 	0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
101 	0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
102 	0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
103 	0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
104 	0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
105 	0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
106 	0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
107 	0x55, 0x09, 0xBE, 0x91
108 };
109 
110 /* These MDS tables are actually tables of MDS composed with q0 and q1,
111  * because it is only ever used that way and we can save some time by
112  * precomputing.  Of course the main saving comes from precomputing the
113  * GF(2^8) multiplication involved in the MDS matrix multiply; by looking
114  * things up in these tables we reduce the matrix multiply to four lookups
115  * and three XORs.  Semi-formally, the definition of these tables is:
116  * mds[0][i] = MDS (q1[i] 0 0 0)^T  mds[1][i] = MDS (0 q0[i] 0 0)^T
117  * mds[2][i] = MDS (0 0 q1[i] 0)^T  mds[3][i] = MDS (0 0 0 q0[i])^T
118  * where ^T means "transpose", the matrix multiply is performed in GF(2^8)
119  * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
120  * by Schneier et al, and I'm casually glossing over the byte/word
121  * conversion issues. */
122 
123 static const u32 mds[4][256] = {
124 	{
125 	0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
126 	0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
127 	0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
128 	0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
129 	0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
130 	0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
131 	0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
132 	0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
133 	0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
134 	0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
135 	0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
136 	0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
137 	0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
138 	0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
139 	0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
140 	0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
141 	0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
142 	0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
143 	0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
144 	0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
145 	0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
146 	0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
147 	0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
148 	0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
149 	0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
150 	0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
151 	0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
152 	0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
153 	0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
154 	0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
155 	0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
156 	0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
157 	0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
158 	0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
159 	0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
160 	0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
161 	0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
162 	0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
163 	0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
164 	0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
165 	0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
166 	0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
167 	0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
168 
169 	{
170 	0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
171 	0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
172 	0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
173 	0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
174 	0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
175 	0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
176 	0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
177 	0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
178 	0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
179 	0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
180 	0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
181 	0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
182 	0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
183 	0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
184 	0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
185 	0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
186 	0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
187 	0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
188 	0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
189 	0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
190 	0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
191 	0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
192 	0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
193 	0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
194 	0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
195 	0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
196 	0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
197 	0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
198 	0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
199 	0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
200 	0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
201 	0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
202 	0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
203 	0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
204 	0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
205 	0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
206 	0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
207 	0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
208 	0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
209 	0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
210 	0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
211 	0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
212 	0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
213 
214 	{
215 	0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
216 	0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
217 	0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
218 	0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
219 	0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
220 	0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
221 	0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
222 	0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
223 	0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
224 	0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
225 	0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
226 	0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
227 	0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
228 	0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
229 	0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
230 	0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
231 	0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
232 	0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
233 	0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
234 	0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
235 	0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
236 	0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
237 	0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
238 	0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
239 	0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
240 	0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
241 	0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
242 	0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
243 	0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
244 	0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
245 	0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
246 	0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
247 	0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
248 	0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
249 	0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
250 	0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
251 	0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
252 	0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
253 	0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
254 	0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
255 	0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
256 	0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
257 	0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
258 
259 	{
260 	0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
261 	0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
262 	0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
263 	0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
264 	0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
265 	0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
266 	0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
267 	0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
268 	0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
269 	0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
270 	0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
271 	0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
272 	0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
273 	0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
274 	0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
275 	0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
276 	0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
277 	0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
278 	0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
279 	0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
280 	0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
281 	0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
282 	0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
283 	0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
284 	0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
285 	0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
286 	0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
287 	0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
288 	0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
289 	0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
290 	0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
291 	0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
292 	0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
293 	0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
294 	0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
295 	0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
296 	0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
297 	0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
298 	0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
299 	0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
300 	0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
301 	0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
302 	0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
303 };
304 
305 /* The exp_to_poly and poly_to_exp tables are used to perform efficient
306  * operations in GF(2^8) represented as GF(2)[x]/w(x) where
307  * w(x)=x^8+x^6+x^3+x^2+1.  We care about doing that because it's part of the
308  * definition of the RS matrix in the key schedule.  Elements of that field
309  * are polynomials of degree not greater than 7 and all coefficients 0 or 1,
310  * which can be represented naturally by bytes (just substitute x=2).  In that
311  * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
312  * multiplication is inefficient without hardware support.  To multiply
313  * faster, I make use of the fact x is a generator for the nonzero elements,
314  * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
315  * some n in 0..254.  Note that that caret is exponentiation in GF(2^8),
316  * *not* polynomial notation.  So if I want to compute pq where p and q are
317  * in GF(2^8), I can just say:
318  *    1. if p=0 or q=0 then pq=0
319  *    2. otherwise, find m and n such that p=x^m and q=x^n
320  *    3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
321  * The translations in steps 2 and 3 are looked up in the tables
322  * poly_to_exp (for step 2) and exp_to_poly (for step 3).  To see this
323  * in action, look at the CALC_S macro.  As additional wrinkles, note that
324  * one of my operands is always a constant, so the poly_to_exp lookup on it
325  * is done in advance; I included the original values in the comments so
326  * readers can have some chance of recognizing that this *is* the RS matrix
327  * from the Twofish paper.  I've only included the table entries I actually
328  * need; I never do a lookup on a variable input of zero and the biggest
329  * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
330  * never sum to more than 491.	I'm repeating part of the exp_to_poly table
331  * so that I don't have to do mod-255 reduction in the exponent arithmetic.
332  * Since I know my constant operands are never zero, I only have to worry
333  * about zero values in the variable operand, and I do it with a simple
334  * conditional branch.	I know conditionals are expensive, but I couldn't
335  * see a non-horrible way of avoiding them, and I did manage to group the
336  * statements so that each if covers four group multiplications. */
337 
338 static const u8 poly_to_exp[255] = {
339 	0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
340 	0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
341 	0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
342 	0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
343 	0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
344 	0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
345 	0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
346 	0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
347 	0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
348 	0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
349 	0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
350 	0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
351 	0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
352 	0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
353 	0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
354 	0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
355 	0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
356 	0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
357 	0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
358 	0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
359 	0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
360 	0x85, 0xC8, 0xA1
361 };
362 
363 static const u8 exp_to_poly[492] = {
364 	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
365 	0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
366 	0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
367 	0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
368 	0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
369 	0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
370 	0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
371 	0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
372 	0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
373 	0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
374 	0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
375 	0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
376 	0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
377 	0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
378 	0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
379 	0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
380 	0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
381 	0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
382 	0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
383 	0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
384 	0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
385 	0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
386 	0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
387 	0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
388 	0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
389 	0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
390 	0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
391 	0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
392 	0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
393 	0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
394 	0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
395 	0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
396 	0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
397 	0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
398 	0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
399 	0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
400 	0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
401 	0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
402 	0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
403 	0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
404 	0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB
405 };
406 
407 
408 /* The table constants are indices of
409  * S-box entries, preprocessed through q0 and q1. */
410 static const u8 calc_sb_tbl[512] = {
411 	0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
412 	0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
413 	0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
414 	0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
415 	0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
416 	0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
417 	0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
418 	0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
419 	0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
420 	0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
421 	0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
422 	0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
423 	0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
424 	0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
425 	0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
426 	0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
427 	0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
428 	0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
429 	0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
430 	0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
431 	0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
432 	0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
433 	0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
434 	0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
435 	0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
436 	0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
437 	0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
438 	0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
439 	0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
440 	0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
441 	0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
442 	0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
443 	0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
444 	0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
445 	0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
446 	0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
447 	0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
448 	0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
449 	0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
450 	0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
451 	0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
452 	0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
453 	0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
454 	0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
455 	0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
456 	0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
457 	0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
458 	0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
459 	0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
460 	0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
461 	0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
462 	0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
463 	0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
464 	0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
465 	0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
466 	0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
467 	0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
468 	0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
469 	0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
470 	0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
471 	0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
472 	0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
473 	0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
474 	0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
475 };
476 
477 /* Macro to perform one column of the RS matrix multiplication.  The
478  * parameters a, b, c, and d are the four bytes of output; i is the index
479  * of the key bytes, and w, x, y, and z, are the column of constants from
480  * the RS matrix, preprocessed through the poly_to_exp table. */
481 
482 #define CALC_S(a, b, c, d, i, w, x, y, z) \
483    if (key[i]) { \
484       tmp = poly_to_exp[key[i] - 1]; \
485       (a) ^= exp_to_poly[tmp + (w)]; \
486       (b) ^= exp_to_poly[tmp + (x)]; \
487       (c) ^= exp_to_poly[tmp + (y)]; \
488       (d) ^= exp_to_poly[tmp + (z)]; \
489    }
490 
491 /* Macros to calculate the key-dependent S-boxes for a 128-bit key using
492  * the S vector from CALC_S.  CALC_SB_2 computes a single entry in all
493  * four S-boxes, where i is the index of the entry to compute, and a and b
494  * are the index numbers preprocessed through the q0 and q1 tables
495  * respectively. */
496 
497 #define CALC_SB_2(i, a, b) \
498    ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
499    ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
500    ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
501    ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
502 
503 /* Macro exactly like CALC_SB_2, but for 192-bit keys. */
504 
505 #define CALC_SB192_2(i, a, b) \
506    ctx->s[0][i] = mds[0][q0[q0[(b) ^ sa] ^ se] ^ si]; \
507    ctx->s[1][i] = mds[1][q0[q1[(b) ^ sb] ^ sf] ^ sj]; \
508    ctx->s[2][i] = mds[2][q1[q0[(a) ^ sc] ^ sg] ^ sk]; \
509    ctx->s[3][i] = mds[3][q1[q1[(a) ^ sd] ^ sh] ^ sl];
510 
511 /* Macro exactly like CALC_SB_2, but for 256-bit keys. */
512 
513 #define CALC_SB256_2(i, a, b) \
514    ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
515    ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
516    ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
517    ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
518 
519 /* Macros to calculate the whitening and round subkeys.  CALC_K_2 computes the
520  * last two stages of the h() function for a given index (either 2i or 2i+1).
521  * a, b, c, and d are the four bytes going into the last two stages.  For
522  * 128-bit keys, this is the entire h() function and a and c are the index
523  * preprocessed through q0 and q1 respectively; for longer keys they are the
524  * output of previous stages.  j is the index of the first key byte to use.
525  * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
526  * twice, doing the Pseudo-Hadamard Transform, and doing the necessary
527  * rotations.  Its parameters are: a, the array to write the results into,
528  * j, the index of the first output entry, k and l, the preprocessed indices
529  * for index 2i, and m and n, the preprocessed indices for index 2i+1.
530  * CALC_K192_2 expands CALC_K_2 to handle 192-bit keys, by doing an
531  * additional lookup-and-XOR stage.  The parameters a, b, c and d are the
532  * four bytes going into the last three stages.  For 192-bit keys, c = d
533  * are the index preprocessed through q0, and a = b are the index
534  * preprocessed through q1; j is the index of the first key byte to use.
535  * CALC_K192 is identical to CALC_K but for using the CALC_K192_2 macro
536  * instead of CALC_K_2.
537  * CALC_K256_2 expands CALC_K192_2 to handle 256-bit keys, by doing an
538  * additional lookup-and-XOR stage.  The parameters a and b are the index
539  * preprocessed through q0 and q1 respectively; j is the index of the first
540  * key byte to use.  CALC_K256 is identical to CALC_K but for using the
541  * CALC_K256_2 macro instead of CALC_K_2. */
542 
543 #define CALC_K_2(a, b, c, d, j) \
544      mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
545    ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
546    ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
547    ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
548 
549 #define CALC_K(a, j, k, l, m, n) \
550    x = CALC_K_2 (k, l, k, l, 0); \
551    y = CALC_K_2 (m, n, m, n, 4); \
552    y = rol32(y, 8); \
553    x += y; y += x; ctx->a[j] = x; \
554    ctx->a[(j) + 1] = rol32(y, 9)
555 
556 #define CALC_K192_2(a, b, c, d, j) \
557    CALC_K_2 (q0[a ^ key[(j) + 16]], \
558 	     q1[b ^ key[(j) + 17]], \
559 	     q0[c ^ key[(j) + 18]], \
560 	     q1[d ^ key[(j) + 19]], j)
561 
562 #define CALC_K192(a, j, k, l, m, n) \
563    x = CALC_K192_2 (l, l, k, k, 0); \
564    y = CALC_K192_2 (n, n, m, m, 4); \
565    y = rol32(y, 8); \
566    x += y; y += x; ctx->a[j] = x; \
567    ctx->a[(j) + 1] = rol32(y, 9)
568 
569 #define CALC_K256_2(a, b, j) \
570    CALC_K192_2 (q1[b ^ key[(j) + 24]], \
571 	        q1[a ^ key[(j) + 25]], \
572 	        q0[a ^ key[(j) + 26]], \
573 	        q0[b ^ key[(j) + 27]], j)
574 
575 #define CALC_K256(a, j, k, l, m, n) \
576    x = CALC_K256_2 (k, l, 0); \
577    y = CALC_K256_2 (m, n, 4); \
578    y = rol32(y, 8); \
579    x += y; y += x; ctx->a[j] = x; \
580    ctx->a[(j) + 1] = rol32(y, 9)
581 
582 /* Perform the key setup. */
583 int __twofish_setkey(struct twofish_ctx *ctx, const u8 *key,
584 		     unsigned int key_len, u32 *flags)
585 {
586 	int i, j, k;
587 
588 	/* Temporaries for CALC_K. */
589 	u32 x, y;
590 
591 	/* The S vector used to key the S-boxes, split up into individual bytes.
592 	 * 128-bit keys use only sa through sh; 256-bit use all of them. */
593 	u8 sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
594 	u8 si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
595 
596 	/* Temporary for CALC_S. */
597 	u8 tmp;
598 
599 	/* Check key length. */
600 	if (key_len % 8)
601 	{
602 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
603 		return -EINVAL; /* unsupported key length */
604 	}
605 
606 	/* Compute the first two words of the S vector.  The magic numbers are
607 	 * the entries of the RS matrix, preprocessed through poly_to_exp. The
608 	 * numbers in the comments are the original (polynomial form) matrix
609 	 * entries. */
610 	CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
611 	CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
612 	CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
613 	CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
614 	CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
615 	CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
616 	CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
617 	CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
618 	CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
619 	CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
620 	CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
621 	CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
622 	CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
623 	CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
624 	CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
625 	CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
626 
627 	if (key_len == 24 || key_len == 32) { /* 192- or 256-bit key */
628 		/* Calculate the third word of the S vector */
629 		CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
630 		CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
631 		CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
632 		CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
633 		CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
634 		CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
635 		CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
636 		CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
637 	}
638 
639 	if (key_len == 32) { /* 256-bit key */
640 		/* Calculate the fourth word of the S vector */
641 		CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
642 		CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
643 		CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
644 		CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
645 		CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
646 		CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
647 		CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
648 		CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
649 
650 		/* Compute the S-boxes. */
651 		for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
652 			CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
653 		}
654 
655 		/* CALC_K256/CALC_K192/CALC_K loops were unrolled.
656 		 * Unrolling produced x2.5 more code (+18k on i386),
657 		 * and speeded up key setup by 7%:
658 		 * unrolled: twofish_setkey/sec: 41128
659 		 *     loop: twofish_setkey/sec: 38148
660 		 * CALC_K256: ~100 insns each
661 		 * CALC_K192: ~90 insns
662 		 *    CALC_K: ~70 insns
663 		 */
664 		/* Calculate whitening and round subkeys */
665 		for ( i = 0; i < 8; i += 2 ) {
666 			CALC_K256 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
667 		}
668 		for ( i = 0; i < 32; i += 2 ) {
669 			CALC_K256 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
670 		}
671 	} else if (key_len == 24) { /* 192-bit key */
672 		/* Compute the S-boxes. */
673 		for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
674 		        CALC_SB192_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
675 		}
676 
677 		/* Calculate whitening and round subkeys */
678 		for ( i = 0; i < 8; i += 2 ) {
679 			CALC_K192 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
680 		}
681 		for ( i = 0; i < 32; i += 2 ) {
682 			CALC_K192 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
683 		}
684 	} else { /* 128-bit key */
685 		/* Compute the S-boxes. */
686 		for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
687 			CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
688 		}
689 
690 		/* Calculate whitening and round subkeys */
691 		for ( i = 0; i < 8; i += 2 ) {
692 			CALC_K (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
693 		}
694 		for ( i = 0; i < 32; i += 2 ) {
695 			CALC_K (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
696 		}
697 	}
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(__twofish_setkey);
702 
703 int twofish_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int key_len)
704 {
705 	return __twofish_setkey(crypto_tfm_ctx(tfm), key, key_len,
706 				&tfm->crt_flags);
707 }
708 EXPORT_SYMBOL_GPL(twofish_setkey);
709 
710 MODULE_LICENSE("GPL");
711 MODULE_DESCRIPTION("Twofish cipher common functions");
712