1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Algorithm testing framework and tests. 4 * 5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 6 * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org> 7 * Copyright (c) 2007 Nokia Siemens Networks 8 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 9 * Copyright (c) 2019 Google LLC 10 * 11 * Updated RFC4106 AES-GCM testing. 12 * Authors: Aidan O'Mahony (aidan.o.mahony@intel.com) 13 * Adrian Hoban <adrian.hoban@intel.com> 14 * Gabriele Paoloni <gabriele.paoloni@intel.com> 15 * Tadeusz Struk (tadeusz.struk@intel.com) 16 * Copyright (c) 2010, Intel Corporation. 17 */ 18 19 #include <crypto/aead.h> 20 #include <crypto/hash.h> 21 #include <crypto/skcipher.h> 22 #include <linux/err.h> 23 #include <linux/fips.h> 24 #include <linux/module.h> 25 #include <linux/once.h> 26 #include <linux/prandom.h> 27 #include <linux/scatterlist.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/uio.h> 31 #include <crypto/rng.h> 32 #include <crypto/drbg.h> 33 #include <crypto/akcipher.h> 34 #include <crypto/kpp.h> 35 #include <crypto/acompress.h> 36 #include <crypto/sig.h> 37 #include <crypto/internal/cipher.h> 38 #include <crypto/internal/simd.h> 39 40 #include "internal.h" 41 42 MODULE_IMPORT_NS("CRYPTO_INTERNAL"); 43 44 static bool notests; 45 module_param(notests, bool, 0644); 46 MODULE_PARM_DESC(notests, "disable crypto self-tests"); 47 48 static bool panic_on_fail; 49 module_param(panic_on_fail, bool, 0444); 50 51 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 52 static bool noextratests; 53 module_param(noextratests, bool, 0644); 54 MODULE_PARM_DESC(noextratests, "disable expensive crypto self-tests"); 55 56 static unsigned int fuzz_iterations = 100; 57 module_param(fuzz_iterations, uint, 0644); 58 MODULE_PARM_DESC(fuzz_iterations, "number of fuzz test iterations"); 59 #endif 60 61 #ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS 62 63 /* a perfect nop */ 64 int alg_test(const char *driver, const char *alg, u32 type, u32 mask) 65 { 66 return 0; 67 } 68 69 #else 70 71 #include "testmgr.h" 72 73 /* 74 * Need slab memory for testing (size in number of pages). 75 */ 76 #define XBUFSIZE 8 77 78 /* 79 * Used by test_cipher() 80 */ 81 #define ENCRYPT 1 82 #define DECRYPT 0 83 84 struct aead_test_suite { 85 const struct aead_testvec *vecs; 86 unsigned int count; 87 88 /* 89 * Set if trying to decrypt an inauthentic ciphertext with this 90 * algorithm might result in EINVAL rather than EBADMSG, due to other 91 * validation the algorithm does on the inputs such as length checks. 92 */ 93 unsigned int einval_allowed : 1; 94 95 /* 96 * Set if this algorithm requires that the IV be located at the end of 97 * the AAD buffer, in addition to being given in the normal way. The 98 * behavior when the two IV copies differ is implementation-defined. 99 */ 100 unsigned int aad_iv : 1; 101 }; 102 103 struct cipher_test_suite { 104 const struct cipher_testvec *vecs; 105 unsigned int count; 106 }; 107 108 struct comp_test_suite { 109 struct { 110 const struct comp_testvec *vecs; 111 unsigned int count; 112 } comp, decomp; 113 }; 114 115 struct hash_test_suite { 116 const struct hash_testvec *vecs; 117 unsigned int count; 118 }; 119 120 struct cprng_test_suite { 121 const struct cprng_testvec *vecs; 122 unsigned int count; 123 }; 124 125 struct drbg_test_suite { 126 const struct drbg_testvec *vecs; 127 unsigned int count; 128 }; 129 130 struct akcipher_test_suite { 131 const struct akcipher_testvec *vecs; 132 unsigned int count; 133 }; 134 135 struct sig_test_suite { 136 const struct sig_testvec *vecs; 137 unsigned int count; 138 }; 139 140 struct kpp_test_suite { 141 const struct kpp_testvec *vecs; 142 unsigned int count; 143 }; 144 145 struct alg_test_desc { 146 const char *alg; 147 const char *generic_driver; 148 int (*test)(const struct alg_test_desc *desc, const char *driver, 149 u32 type, u32 mask); 150 int fips_allowed; /* set if alg is allowed in fips mode */ 151 152 union { 153 struct aead_test_suite aead; 154 struct cipher_test_suite cipher; 155 struct comp_test_suite comp; 156 struct hash_test_suite hash; 157 struct cprng_test_suite cprng; 158 struct drbg_test_suite drbg; 159 struct akcipher_test_suite akcipher; 160 struct sig_test_suite sig; 161 struct kpp_test_suite kpp; 162 } suite; 163 }; 164 165 static void hexdump(unsigned char *buf, unsigned int len) 166 { 167 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 168 16, 1, 169 buf, len, false); 170 } 171 172 static int __testmgr_alloc_buf(char *buf[XBUFSIZE], int order) 173 { 174 int i; 175 176 for (i = 0; i < XBUFSIZE; i++) { 177 buf[i] = (char *)__get_free_pages(GFP_KERNEL, order); 178 if (!buf[i]) 179 goto err_free_buf; 180 } 181 182 return 0; 183 184 err_free_buf: 185 while (i-- > 0) 186 free_pages((unsigned long)buf[i], order); 187 188 return -ENOMEM; 189 } 190 191 static int testmgr_alloc_buf(char *buf[XBUFSIZE]) 192 { 193 return __testmgr_alloc_buf(buf, 0); 194 } 195 196 static void __testmgr_free_buf(char *buf[XBUFSIZE], int order) 197 { 198 int i; 199 200 for (i = 0; i < XBUFSIZE; i++) 201 free_pages((unsigned long)buf[i], order); 202 } 203 204 static void testmgr_free_buf(char *buf[XBUFSIZE]) 205 { 206 __testmgr_free_buf(buf, 0); 207 } 208 209 #define TESTMGR_POISON_BYTE 0xfe 210 #define TESTMGR_POISON_LEN 16 211 212 static inline void testmgr_poison(void *addr, size_t len) 213 { 214 memset(addr, TESTMGR_POISON_BYTE, len); 215 } 216 217 /* Is the memory region still fully poisoned? */ 218 static inline bool testmgr_is_poison(const void *addr, size_t len) 219 { 220 return memchr_inv(addr, TESTMGR_POISON_BYTE, len) == NULL; 221 } 222 223 /* flush type for hash algorithms */ 224 enum flush_type { 225 /* merge with update of previous buffer(s) */ 226 FLUSH_TYPE_NONE = 0, 227 228 /* update with previous buffer(s) before doing this one */ 229 FLUSH_TYPE_FLUSH, 230 231 /* likewise, but also export and re-import the intermediate state */ 232 FLUSH_TYPE_REIMPORT, 233 }; 234 235 /* finalization function for hash algorithms */ 236 enum finalization_type { 237 FINALIZATION_TYPE_FINAL, /* use final() */ 238 FINALIZATION_TYPE_FINUP, /* use finup() */ 239 FINALIZATION_TYPE_DIGEST, /* use digest() */ 240 }; 241 242 /* 243 * Whether the crypto operation will occur in-place, and if so whether the 244 * source and destination scatterlist pointers will coincide (req->src == 245 * req->dst), or whether they'll merely point to two separate scatterlists 246 * (req->src != req->dst) that reference the same underlying memory. 247 * 248 * This is only relevant for algorithm types that support in-place operation. 249 */ 250 enum inplace_mode { 251 OUT_OF_PLACE, 252 INPLACE_ONE_SGLIST, 253 INPLACE_TWO_SGLISTS, 254 }; 255 256 #define TEST_SG_TOTAL 10000 257 258 /** 259 * struct test_sg_division - description of a scatterlist entry 260 * 261 * This struct describes one entry of a scatterlist being constructed to check a 262 * crypto test vector. 263 * 264 * @proportion_of_total: length of this chunk relative to the total length, 265 * given as a proportion out of TEST_SG_TOTAL so that it 266 * scales to fit any test vector 267 * @offset: byte offset into a 2-page buffer at which this chunk will start 268 * @offset_relative_to_alignmask: if true, add the algorithm's alignmask to the 269 * @offset 270 * @flush_type: for hashes, whether an update() should be done now vs. 271 * continuing to accumulate data 272 * @nosimd: if doing the pending update(), do it with SIMD disabled? 273 */ 274 struct test_sg_division { 275 unsigned int proportion_of_total; 276 unsigned int offset; 277 bool offset_relative_to_alignmask; 278 enum flush_type flush_type; 279 bool nosimd; 280 }; 281 282 /** 283 * struct testvec_config - configuration for testing a crypto test vector 284 * 285 * This struct describes the data layout and other parameters with which each 286 * crypto test vector can be tested. 287 * 288 * @name: name of this config, logged for debugging purposes if a test fails 289 * @inplace_mode: whether and how to operate on the data in-place, if applicable 290 * @req_flags: extra request_flags, e.g. CRYPTO_TFM_REQ_MAY_SLEEP 291 * @src_divs: description of how to arrange the source scatterlist 292 * @dst_divs: description of how to arrange the dst scatterlist, if applicable 293 * for the algorithm type. Defaults to @src_divs if unset. 294 * @iv_offset: misalignment of the IV in the range [0..MAX_ALGAPI_ALIGNMASK+1], 295 * where 0 is aligned to a 2*(MAX_ALGAPI_ALIGNMASK+1) byte boundary 296 * @iv_offset_relative_to_alignmask: if true, add the algorithm's alignmask to 297 * the @iv_offset 298 * @key_offset: misalignment of the key, where 0 is default alignment 299 * @key_offset_relative_to_alignmask: if true, add the algorithm's alignmask to 300 * the @key_offset 301 * @finalization_type: what finalization function to use for hashes 302 * @nosimd: execute with SIMD disabled? Requires !CRYPTO_TFM_REQ_MAY_SLEEP. 303 * This applies to the parts of the operation that aren't controlled 304 * individually by @nosimd_setkey or @src_divs[].nosimd. 305 * @nosimd_setkey: set the key (if applicable) with SIMD disabled? Requires 306 * !CRYPTO_TFM_REQ_MAY_SLEEP. 307 */ 308 struct testvec_config { 309 const char *name; 310 enum inplace_mode inplace_mode; 311 u32 req_flags; 312 struct test_sg_division src_divs[XBUFSIZE]; 313 struct test_sg_division dst_divs[XBUFSIZE]; 314 unsigned int iv_offset; 315 unsigned int key_offset; 316 bool iv_offset_relative_to_alignmask; 317 bool key_offset_relative_to_alignmask; 318 enum finalization_type finalization_type; 319 bool nosimd; 320 bool nosimd_setkey; 321 }; 322 323 #define TESTVEC_CONFIG_NAMELEN 192 324 325 /* 326 * The following are the lists of testvec_configs to test for each algorithm 327 * type when the basic crypto self-tests are enabled, i.e. when 328 * CONFIG_CRYPTO_MANAGER_DISABLE_TESTS is unset. They aim to provide good test 329 * coverage, while keeping the test time much shorter than the full fuzz tests 330 * so that the basic tests can be enabled in a wider range of circumstances. 331 */ 332 333 /* Configs for skciphers and aeads */ 334 static const struct testvec_config default_cipher_testvec_configs[] = { 335 { 336 .name = "in-place (one sglist)", 337 .inplace_mode = INPLACE_ONE_SGLIST, 338 .src_divs = { { .proportion_of_total = 10000 } }, 339 }, { 340 .name = "in-place (two sglists)", 341 .inplace_mode = INPLACE_TWO_SGLISTS, 342 .src_divs = { { .proportion_of_total = 10000 } }, 343 }, { 344 .name = "out-of-place", 345 .inplace_mode = OUT_OF_PLACE, 346 .src_divs = { { .proportion_of_total = 10000 } }, 347 }, { 348 .name = "unaligned buffer, offset=1", 349 .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, 350 .iv_offset = 1, 351 .key_offset = 1, 352 }, { 353 .name = "buffer aligned only to alignmask", 354 .src_divs = { 355 { 356 .proportion_of_total = 10000, 357 .offset = 1, 358 .offset_relative_to_alignmask = true, 359 }, 360 }, 361 .iv_offset = 1, 362 .iv_offset_relative_to_alignmask = true, 363 .key_offset = 1, 364 .key_offset_relative_to_alignmask = true, 365 }, { 366 .name = "two even aligned splits", 367 .src_divs = { 368 { .proportion_of_total = 5000 }, 369 { .proportion_of_total = 5000 }, 370 }, 371 }, { 372 .name = "one src, two even splits dst", 373 .inplace_mode = OUT_OF_PLACE, 374 .src_divs = { { .proportion_of_total = 10000 } }, 375 .dst_divs = { 376 { .proportion_of_total = 5000 }, 377 { .proportion_of_total = 5000 }, 378 }, 379 }, { 380 .name = "uneven misaligned splits, may sleep", 381 .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, 382 .src_divs = { 383 { .proportion_of_total = 1900, .offset = 33 }, 384 { .proportion_of_total = 3300, .offset = 7 }, 385 { .proportion_of_total = 4800, .offset = 18 }, 386 }, 387 .iv_offset = 3, 388 .key_offset = 3, 389 }, { 390 .name = "misaligned splits crossing pages, inplace", 391 .inplace_mode = INPLACE_ONE_SGLIST, 392 .src_divs = { 393 { 394 .proportion_of_total = 7500, 395 .offset = PAGE_SIZE - 32 396 }, { 397 .proportion_of_total = 2500, 398 .offset = PAGE_SIZE - 7 399 }, 400 }, 401 } 402 }; 403 404 static const struct testvec_config default_hash_testvec_configs[] = { 405 { 406 .name = "init+update+final aligned buffer", 407 .src_divs = { { .proportion_of_total = 10000 } }, 408 .finalization_type = FINALIZATION_TYPE_FINAL, 409 }, { 410 .name = "init+finup aligned buffer", 411 .src_divs = { { .proportion_of_total = 10000 } }, 412 .finalization_type = FINALIZATION_TYPE_FINUP, 413 }, { 414 .name = "digest aligned buffer", 415 .src_divs = { { .proportion_of_total = 10000 } }, 416 .finalization_type = FINALIZATION_TYPE_DIGEST, 417 }, { 418 .name = "init+update+final misaligned buffer", 419 .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, 420 .finalization_type = FINALIZATION_TYPE_FINAL, 421 .key_offset = 1, 422 }, { 423 .name = "digest misaligned buffer", 424 .src_divs = { 425 { 426 .proportion_of_total = 10000, 427 .offset = 1, 428 }, 429 }, 430 .finalization_type = FINALIZATION_TYPE_DIGEST, 431 .key_offset = 1, 432 }, { 433 .name = "init+update+update+final two even splits", 434 .src_divs = { 435 { .proportion_of_total = 5000 }, 436 { 437 .proportion_of_total = 5000, 438 .flush_type = FLUSH_TYPE_FLUSH, 439 }, 440 }, 441 .finalization_type = FINALIZATION_TYPE_FINAL, 442 }, { 443 .name = "digest uneven misaligned splits, may sleep", 444 .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, 445 .src_divs = { 446 { .proportion_of_total = 1900, .offset = 33 }, 447 { .proportion_of_total = 3300, .offset = 7 }, 448 { .proportion_of_total = 4800, .offset = 18 }, 449 }, 450 .finalization_type = FINALIZATION_TYPE_DIGEST, 451 }, { 452 .name = "digest misaligned splits crossing pages", 453 .src_divs = { 454 { 455 .proportion_of_total = 7500, 456 .offset = PAGE_SIZE - 32, 457 }, { 458 .proportion_of_total = 2500, 459 .offset = PAGE_SIZE - 7, 460 }, 461 }, 462 .finalization_type = FINALIZATION_TYPE_DIGEST, 463 }, { 464 .name = "import/export", 465 .src_divs = { 466 { 467 .proportion_of_total = 6500, 468 .flush_type = FLUSH_TYPE_REIMPORT, 469 }, { 470 .proportion_of_total = 3500, 471 .flush_type = FLUSH_TYPE_REIMPORT, 472 }, 473 }, 474 .finalization_type = FINALIZATION_TYPE_FINAL, 475 } 476 }; 477 478 static unsigned int count_test_sg_divisions(const struct test_sg_division *divs) 479 { 480 unsigned int remaining = TEST_SG_TOTAL; 481 unsigned int ndivs = 0; 482 483 do { 484 remaining -= divs[ndivs++].proportion_of_total; 485 } while (remaining); 486 487 return ndivs; 488 } 489 490 #define SGDIVS_HAVE_FLUSHES BIT(0) 491 #define SGDIVS_HAVE_NOSIMD BIT(1) 492 493 static bool valid_sg_divisions(const struct test_sg_division *divs, 494 unsigned int count, int *flags_ret) 495 { 496 unsigned int total = 0; 497 unsigned int i; 498 499 for (i = 0; i < count && total != TEST_SG_TOTAL; i++) { 500 if (divs[i].proportion_of_total <= 0 || 501 divs[i].proportion_of_total > TEST_SG_TOTAL - total) 502 return false; 503 total += divs[i].proportion_of_total; 504 if (divs[i].flush_type != FLUSH_TYPE_NONE) 505 *flags_ret |= SGDIVS_HAVE_FLUSHES; 506 if (divs[i].nosimd) 507 *flags_ret |= SGDIVS_HAVE_NOSIMD; 508 } 509 return total == TEST_SG_TOTAL && 510 memchr_inv(&divs[i], 0, (count - i) * sizeof(divs[0])) == NULL; 511 } 512 513 /* 514 * Check whether the given testvec_config is valid. This isn't strictly needed 515 * since every testvec_config should be valid, but check anyway so that people 516 * don't unknowingly add broken configs that don't do what they wanted. 517 */ 518 static bool valid_testvec_config(const struct testvec_config *cfg) 519 { 520 int flags = 0; 521 522 if (cfg->name == NULL) 523 return false; 524 525 if (!valid_sg_divisions(cfg->src_divs, ARRAY_SIZE(cfg->src_divs), 526 &flags)) 527 return false; 528 529 if (cfg->dst_divs[0].proportion_of_total) { 530 if (!valid_sg_divisions(cfg->dst_divs, 531 ARRAY_SIZE(cfg->dst_divs), &flags)) 532 return false; 533 } else { 534 if (memchr_inv(cfg->dst_divs, 0, sizeof(cfg->dst_divs))) 535 return false; 536 /* defaults to dst_divs=src_divs */ 537 } 538 539 if (cfg->iv_offset + 540 (cfg->iv_offset_relative_to_alignmask ? MAX_ALGAPI_ALIGNMASK : 0) > 541 MAX_ALGAPI_ALIGNMASK + 1) 542 return false; 543 544 if ((flags & (SGDIVS_HAVE_FLUSHES | SGDIVS_HAVE_NOSIMD)) && 545 cfg->finalization_type == FINALIZATION_TYPE_DIGEST) 546 return false; 547 548 if ((cfg->nosimd || cfg->nosimd_setkey || 549 (flags & SGDIVS_HAVE_NOSIMD)) && 550 (cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP)) 551 return false; 552 553 return true; 554 } 555 556 struct test_sglist { 557 char *bufs[XBUFSIZE]; 558 struct scatterlist sgl[XBUFSIZE]; 559 struct scatterlist sgl_saved[XBUFSIZE]; 560 struct scatterlist *sgl_ptr; 561 unsigned int nents; 562 }; 563 564 static int init_test_sglist(struct test_sglist *tsgl) 565 { 566 return __testmgr_alloc_buf(tsgl->bufs, 1 /* two pages per buffer */); 567 } 568 569 static void destroy_test_sglist(struct test_sglist *tsgl) 570 { 571 return __testmgr_free_buf(tsgl->bufs, 1 /* two pages per buffer */); 572 } 573 574 /** 575 * build_test_sglist() - build a scatterlist for a crypto test 576 * 577 * @tsgl: the scatterlist to build. @tsgl->bufs[] contains an array of 2-page 578 * buffers which the scatterlist @tsgl->sgl[] will be made to point into. 579 * @divs: the layout specification on which the scatterlist will be based 580 * @alignmask: the algorithm's alignmask 581 * @total_len: the total length of the scatterlist to build in bytes 582 * @data: if non-NULL, the buffers will be filled with this data until it ends. 583 * Otherwise the buffers will be poisoned. In both cases, some bytes 584 * past the end of each buffer will be poisoned to help detect overruns. 585 * @out_divs: if non-NULL, the test_sg_division to which each scatterlist entry 586 * corresponds will be returned here. This will match @divs except 587 * that divisions resolving to a length of 0 are omitted as they are 588 * not included in the scatterlist. 589 * 590 * Return: 0 or a -errno value 591 */ 592 static int build_test_sglist(struct test_sglist *tsgl, 593 const struct test_sg_division *divs, 594 const unsigned int alignmask, 595 const unsigned int total_len, 596 struct iov_iter *data, 597 const struct test_sg_division *out_divs[XBUFSIZE]) 598 { 599 struct { 600 const struct test_sg_division *div; 601 size_t length; 602 } partitions[XBUFSIZE]; 603 const unsigned int ndivs = count_test_sg_divisions(divs); 604 unsigned int len_remaining = total_len; 605 unsigned int i; 606 607 BUILD_BUG_ON(ARRAY_SIZE(partitions) != ARRAY_SIZE(tsgl->sgl)); 608 if (WARN_ON(ndivs > ARRAY_SIZE(partitions))) 609 return -EINVAL; 610 611 /* Calculate the (div, length) pairs */ 612 tsgl->nents = 0; 613 for (i = 0; i < ndivs; i++) { 614 unsigned int len_this_sg = 615 min(len_remaining, 616 (total_len * divs[i].proportion_of_total + 617 TEST_SG_TOTAL / 2) / TEST_SG_TOTAL); 618 619 if (len_this_sg != 0) { 620 partitions[tsgl->nents].div = &divs[i]; 621 partitions[tsgl->nents].length = len_this_sg; 622 tsgl->nents++; 623 len_remaining -= len_this_sg; 624 } 625 } 626 if (tsgl->nents == 0) { 627 partitions[tsgl->nents].div = &divs[0]; 628 partitions[tsgl->nents].length = 0; 629 tsgl->nents++; 630 } 631 partitions[tsgl->nents - 1].length += len_remaining; 632 633 /* Set up the sgl entries and fill the data or poison */ 634 sg_init_table(tsgl->sgl, tsgl->nents); 635 for (i = 0; i < tsgl->nents; i++) { 636 unsigned int offset = partitions[i].div->offset; 637 void *addr; 638 639 if (partitions[i].div->offset_relative_to_alignmask) 640 offset += alignmask; 641 642 while (offset + partitions[i].length + TESTMGR_POISON_LEN > 643 2 * PAGE_SIZE) { 644 if (WARN_ON(offset <= 0)) 645 return -EINVAL; 646 offset /= 2; 647 } 648 649 addr = &tsgl->bufs[i][offset]; 650 sg_set_buf(&tsgl->sgl[i], addr, partitions[i].length); 651 652 if (out_divs) 653 out_divs[i] = partitions[i].div; 654 655 if (data) { 656 size_t copy_len, copied; 657 658 copy_len = min(partitions[i].length, data->count); 659 copied = copy_from_iter(addr, copy_len, data); 660 if (WARN_ON(copied != copy_len)) 661 return -EINVAL; 662 testmgr_poison(addr + copy_len, partitions[i].length + 663 TESTMGR_POISON_LEN - copy_len); 664 } else { 665 testmgr_poison(addr, partitions[i].length + 666 TESTMGR_POISON_LEN); 667 } 668 } 669 670 sg_mark_end(&tsgl->sgl[tsgl->nents - 1]); 671 tsgl->sgl_ptr = tsgl->sgl; 672 memcpy(tsgl->sgl_saved, tsgl->sgl, tsgl->nents * sizeof(tsgl->sgl[0])); 673 return 0; 674 } 675 676 /* 677 * Verify that a scatterlist crypto operation produced the correct output. 678 * 679 * @tsgl: scatterlist containing the actual output 680 * @expected_output: buffer containing the expected output 681 * @len_to_check: length of @expected_output in bytes 682 * @unchecked_prefix_len: number of ignored bytes in @tsgl prior to real result 683 * @check_poison: verify that the poison bytes after each chunk are intact? 684 * 685 * Return: 0 if correct, -EINVAL if incorrect, -EOVERFLOW if buffer overrun. 686 */ 687 static int verify_correct_output(const struct test_sglist *tsgl, 688 const char *expected_output, 689 unsigned int len_to_check, 690 unsigned int unchecked_prefix_len, 691 bool check_poison) 692 { 693 unsigned int i; 694 695 for (i = 0; i < tsgl->nents; i++) { 696 struct scatterlist *sg = &tsgl->sgl_ptr[i]; 697 unsigned int len = sg->length; 698 unsigned int offset = sg->offset; 699 const char *actual_output; 700 701 if (unchecked_prefix_len) { 702 if (unchecked_prefix_len >= len) { 703 unchecked_prefix_len -= len; 704 continue; 705 } 706 offset += unchecked_prefix_len; 707 len -= unchecked_prefix_len; 708 unchecked_prefix_len = 0; 709 } 710 len = min(len, len_to_check); 711 actual_output = page_address(sg_page(sg)) + offset; 712 if (memcmp(expected_output, actual_output, len) != 0) 713 return -EINVAL; 714 if (check_poison && 715 !testmgr_is_poison(actual_output + len, TESTMGR_POISON_LEN)) 716 return -EOVERFLOW; 717 len_to_check -= len; 718 expected_output += len; 719 } 720 if (WARN_ON(len_to_check != 0)) 721 return -EINVAL; 722 return 0; 723 } 724 725 static bool is_test_sglist_corrupted(const struct test_sglist *tsgl) 726 { 727 unsigned int i; 728 729 for (i = 0; i < tsgl->nents; i++) { 730 if (tsgl->sgl[i].page_link != tsgl->sgl_saved[i].page_link) 731 return true; 732 if (tsgl->sgl[i].offset != tsgl->sgl_saved[i].offset) 733 return true; 734 if (tsgl->sgl[i].length != tsgl->sgl_saved[i].length) 735 return true; 736 } 737 return false; 738 } 739 740 struct cipher_test_sglists { 741 struct test_sglist src; 742 struct test_sglist dst; 743 }; 744 745 static struct cipher_test_sglists *alloc_cipher_test_sglists(void) 746 { 747 struct cipher_test_sglists *tsgls; 748 749 tsgls = kmalloc(sizeof(*tsgls), GFP_KERNEL); 750 if (!tsgls) 751 return NULL; 752 753 if (init_test_sglist(&tsgls->src) != 0) 754 goto fail_kfree; 755 if (init_test_sglist(&tsgls->dst) != 0) 756 goto fail_destroy_src; 757 758 return tsgls; 759 760 fail_destroy_src: 761 destroy_test_sglist(&tsgls->src); 762 fail_kfree: 763 kfree(tsgls); 764 return NULL; 765 } 766 767 static void free_cipher_test_sglists(struct cipher_test_sglists *tsgls) 768 { 769 if (tsgls) { 770 destroy_test_sglist(&tsgls->src); 771 destroy_test_sglist(&tsgls->dst); 772 kfree(tsgls); 773 } 774 } 775 776 /* Build the src and dst scatterlists for an skcipher or AEAD test */ 777 static int build_cipher_test_sglists(struct cipher_test_sglists *tsgls, 778 const struct testvec_config *cfg, 779 unsigned int alignmask, 780 unsigned int src_total_len, 781 unsigned int dst_total_len, 782 const struct kvec *inputs, 783 unsigned int nr_inputs) 784 { 785 struct iov_iter input; 786 int err; 787 788 iov_iter_kvec(&input, ITER_SOURCE, inputs, nr_inputs, src_total_len); 789 err = build_test_sglist(&tsgls->src, cfg->src_divs, alignmask, 790 cfg->inplace_mode != OUT_OF_PLACE ? 791 max(dst_total_len, src_total_len) : 792 src_total_len, 793 &input, NULL); 794 if (err) 795 return err; 796 797 /* 798 * In-place crypto operations can use the same scatterlist for both the 799 * source and destination (req->src == req->dst), or can use separate 800 * scatterlists (req->src != req->dst) which point to the same 801 * underlying memory. Make sure to test both cases. 802 */ 803 if (cfg->inplace_mode == INPLACE_ONE_SGLIST) { 804 tsgls->dst.sgl_ptr = tsgls->src.sgl; 805 tsgls->dst.nents = tsgls->src.nents; 806 return 0; 807 } 808 if (cfg->inplace_mode == INPLACE_TWO_SGLISTS) { 809 /* 810 * For now we keep it simple and only test the case where the 811 * two scatterlists have identical entries, rather than 812 * different entries that split up the same memory differently. 813 */ 814 memcpy(tsgls->dst.sgl, tsgls->src.sgl, 815 tsgls->src.nents * sizeof(tsgls->src.sgl[0])); 816 memcpy(tsgls->dst.sgl_saved, tsgls->src.sgl, 817 tsgls->src.nents * sizeof(tsgls->src.sgl[0])); 818 tsgls->dst.sgl_ptr = tsgls->dst.sgl; 819 tsgls->dst.nents = tsgls->src.nents; 820 return 0; 821 } 822 /* Out of place */ 823 return build_test_sglist(&tsgls->dst, 824 cfg->dst_divs[0].proportion_of_total ? 825 cfg->dst_divs : cfg->src_divs, 826 alignmask, dst_total_len, NULL, NULL); 827 } 828 829 /* 830 * Support for testing passing a misaligned key to setkey(): 831 * 832 * If cfg->key_offset is set, copy the key into a new buffer at that offset, 833 * optionally adding alignmask. Else, just use the key directly. 834 */ 835 static int prepare_keybuf(const u8 *key, unsigned int ksize, 836 const struct testvec_config *cfg, 837 unsigned int alignmask, 838 const u8 **keybuf_ret, const u8 **keyptr_ret) 839 { 840 unsigned int key_offset = cfg->key_offset; 841 u8 *keybuf = NULL, *keyptr = (u8 *)key; 842 843 if (key_offset != 0) { 844 if (cfg->key_offset_relative_to_alignmask) 845 key_offset += alignmask; 846 keybuf = kmalloc(key_offset + ksize, GFP_KERNEL); 847 if (!keybuf) 848 return -ENOMEM; 849 keyptr = keybuf + key_offset; 850 memcpy(keyptr, key, ksize); 851 } 852 *keybuf_ret = keybuf; 853 *keyptr_ret = keyptr; 854 return 0; 855 } 856 857 /* 858 * Like setkey_f(tfm, key, ksize), but sometimes misalign the key. 859 * In addition, run the setkey function in no-SIMD context if requested. 860 */ 861 #define do_setkey(setkey_f, tfm, key, ksize, cfg, alignmask) \ 862 ({ \ 863 const u8 *keybuf, *keyptr; \ 864 int err; \ 865 \ 866 err = prepare_keybuf((key), (ksize), (cfg), (alignmask), \ 867 &keybuf, &keyptr); \ 868 if (err == 0) { \ 869 if ((cfg)->nosimd_setkey) \ 870 crypto_disable_simd_for_test(); \ 871 err = setkey_f((tfm), keyptr, (ksize)); \ 872 if ((cfg)->nosimd_setkey) \ 873 crypto_reenable_simd_for_test(); \ 874 kfree(keybuf); \ 875 } \ 876 err; \ 877 }) 878 879 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 880 881 /* 882 * The fuzz tests use prandom instead of the normal Linux RNG since they don't 883 * need cryptographically secure random numbers. This greatly improves the 884 * performance of these tests, especially if they are run before the Linux RNG 885 * has been initialized or if they are run on a lockdep-enabled kernel. 886 */ 887 888 static inline void init_rnd_state(struct rnd_state *rng) 889 { 890 prandom_seed_state(rng, get_random_u64()); 891 } 892 893 static inline u8 prandom_u8(struct rnd_state *rng) 894 { 895 return prandom_u32_state(rng); 896 } 897 898 static inline u32 prandom_u32_below(struct rnd_state *rng, u32 ceil) 899 { 900 /* 901 * This is slightly biased for non-power-of-2 values of 'ceil', but this 902 * isn't important here. 903 */ 904 return prandom_u32_state(rng) % ceil; 905 } 906 907 static inline bool prandom_bool(struct rnd_state *rng) 908 { 909 return prandom_u32_below(rng, 2); 910 } 911 912 static inline u32 prandom_u32_inclusive(struct rnd_state *rng, 913 u32 floor, u32 ceil) 914 { 915 return floor + prandom_u32_below(rng, ceil - floor + 1); 916 } 917 918 /* Generate a random length in range [0, max_len], but prefer smaller values */ 919 static unsigned int generate_random_length(struct rnd_state *rng, 920 unsigned int max_len) 921 { 922 unsigned int len = prandom_u32_below(rng, max_len + 1); 923 924 switch (prandom_u32_below(rng, 4)) { 925 case 0: 926 len %= 64; 927 break; 928 case 1: 929 len %= 256; 930 break; 931 case 2: 932 len %= 1024; 933 break; 934 default: 935 break; 936 } 937 if (len && prandom_u32_below(rng, 4) == 0) 938 len = rounddown_pow_of_two(len); 939 return len; 940 } 941 942 /* Flip a random bit in the given nonempty data buffer */ 943 static void flip_random_bit(struct rnd_state *rng, u8 *buf, size_t size) 944 { 945 size_t bitpos; 946 947 bitpos = prandom_u32_below(rng, size * 8); 948 buf[bitpos / 8] ^= 1 << (bitpos % 8); 949 } 950 951 /* Flip a random byte in the given nonempty data buffer */ 952 static void flip_random_byte(struct rnd_state *rng, u8 *buf, size_t size) 953 { 954 buf[prandom_u32_below(rng, size)] ^= 0xff; 955 } 956 957 /* Sometimes make some random changes to the given nonempty data buffer */ 958 static void mutate_buffer(struct rnd_state *rng, u8 *buf, size_t size) 959 { 960 size_t num_flips; 961 size_t i; 962 963 /* Sometimes flip some bits */ 964 if (prandom_u32_below(rng, 4) == 0) { 965 num_flips = min_t(size_t, 1 << prandom_u32_below(rng, 8), 966 size * 8); 967 for (i = 0; i < num_flips; i++) 968 flip_random_bit(rng, buf, size); 969 } 970 971 /* Sometimes flip some bytes */ 972 if (prandom_u32_below(rng, 4) == 0) { 973 num_flips = min_t(size_t, 1 << prandom_u32_below(rng, 8), size); 974 for (i = 0; i < num_flips; i++) 975 flip_random_byte(rng, buf, size); 976 } 977 } 978 979 /* Randomly generate 'count' bytes, but sometimes make them "interesting" */ 980 static void generate_random_bytes(struct rnd_state *rng, u8 *buf, size_t count) 981 { 982 u8 b; 983 u8 increment; 984 size_t i; 985 986 if (count == 0) 987 return; 988 989 switch (prandom_u32_below(rng, 8)) { /* Choose a generation strategy */ 990 case 0: 991 case 1: 992 /* All the same byte, plus optional mutations */ 993 switch (prandom_u32_below(rng, 4)) { 994 case 0: 995 b = 0x00; 996 break; 997 case 1: 998 b = 0xff; 999 break; 1000 default: 1001 b = prandom_u8(rng); 1002 break; 1003 } 1004 memset(buf, b, count); 1005 mutate_buffer(rng, buf, count); 1006 break; 1007 case 2: 1008 /* Ascending or descending bytes, plus optional mutations */ 1009 increment = prandom_u8(rng); 1010 b = prandom_u8(rng); 1011 for (i = 0; i < count; i++, b += increment) 1012 buf[i] = b; 1013 mutate_buffer(rng, buf, count); 1014 break; 1015 default: 1016 /* Fully random bytes */ 1017 prandom_bytes_state(rng, buf, count); 1018 } 1019 } 1020 1021 static char *generate_random_sgl_divisions(struct rnd_state *rng, 1022 struct test_sg_division *divs, 1023 size_t max_divs, char *p, char *end, 1024 bool gen_flushes, u32 req_flags) 1025 { 1026 struct test_sg_division *div = divs; 1027 unsigned int remaining = TEST_SG_TOTAL; 1028 1029 do { 1030 unsigned int this_len; 1031 const char *flushtype_str; 1032 1033 if (div == &divs[max_divs - 1] || prandom_bool(rng)) 1034 this_len = remaining; 1035 else if (prandom_u32_below(rng, 4) == 0) 1036 this_len = (remaining + 1) / 2; 1037 else 1038 this_len = prandom_u32_inclusive(rng, 1, remaining); 1039 div->proportion_of_total = this_len; 1040 1041 if (prandom_u32_below(rng, 4) == 0) 1042 div->offset = prandom_u32_inclusive(rng, 1043 PAGE_SIZE - 128, 1044 PAGE_SIZE - 1); 1045 else if (prandom_bool(rng)) 1046 div->offset = prandom_u32_below(rng, 32); 1047 else 1048 div->offset = prandom_u32_below(rng, PAGE_SIZE); 1049 if (prandom_u32_below(rng, 8) == 0) 1050 div->offset_relative_to_alignmask = true; 1051 1052 div->flush_type = FLUSH_TYPE_NONE; 1053 if (gen_flushes) { 1054 switch (prandom_u32_below(rng, 4)) { 1055 case 0: 1056 div->flush_type = FLUSH_TYPE_REIMPORT; 1057 break; 1058 case 1: 1059 div->flush_type = FLUSH_TYPE_FLUSH; 1060 break; 1061 } 1062 } 1063 1064 if (div->flush_type != FLUSH_TYPE_NONE && 1065 !(req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && 1066 prandom_bool(rng)) 1067 div->nosimd = true; 1068 1069 switch (div->flush_type) { 1070 case FLUSH_TYPE_FLUSH: 1071 if (div->nosimd) 1072 flushtype_str = "<flush,nosimd>"; 1073 else 1074 flushtype_str = "<flush>"; 1075 break; 1076 case FLUSH_TYPE_REIMPORT: 1077 if (div->nosimd) 1078 flushtype_str = "<reimport,nosimd>"; 1079 else 1080 flushtype_str = "<reimport>"; 1081 break; 1082 default: 1083 flushtype_str = ""; 1084 break; 1085 } 1086 1087 BUILD_BUG_ON(TEST_SG_TOTAL != 10000); /* for "%u.%u%%" */ 1088 p += scnprintf(p, end - p, "%s%u.%u%%@%s+%u%s", flushtype_str, 1089 this_len / 100, this_len % 100, 1090 div->offset_relative_to_alignmask ? 1091 "alignmask" : "", 1092 div->offset, this_len == remaining ? "" : ", "); 1093 remaining -= this_len; 1094 div++; 1095 } while (remaining); 1096 1097 return p; 1098 } 1099 1100 /* Generate a random testvec_config for fuzz testing */ 1101 static void generate_random_testvec_config(struct rnd_state *rng, 1102 struct testvec_config *cfg, 1103 char *name, size_t max_namelen) 1104 { 1105 char *p = name; 1106 char * const end = name + max_namelen; 1107 1108 memset(cfg, 0, sizeof(*cfg)); 1109 1110 cfg->name = name; 1111 1112 p += scnprintf(p, end - p, "random:"); 1113 1114 switch (prandom_u32_below(rng, 4)) { 1115 case 0: 1116 case 1: 1117 cfg->inplace_mode = OUT_OF_PLACE; 1118 break; 1119 case 2: 1120 cfg->inplace_mode = INPLACE_ONE_SGLIST; 1121 p += scnprintf(p, end - p, " inplace_one_sglist"); 1122 break; 1123 default: 1124 cfg->inplace_mode = INPLACE_TWO_SGLISTS; 1125 p += scnprintf(p, end - p, " inplace_two_sglists"); 1126 break; 1127 } 1128 1129 if (prandom_bool(rng)) { 1130 cfg->req_flags |= CRYPTO_TFM_REQ_MAY_SLEEP; 1131 p += scnprintf(p, end - p, " may_sleep"); 1132 } 1133 1134 switch (prandom_u32_below(rng, 4)) { 1135 case 0: 1136 cfg->finalization_type = FINALIZATION_TYPE_FINAL; 1137 p += scnprintf(p, end - p, " use_final"); 1138 break; 1139 case 1: 1140 cfg->finalization_type = FINALIZATION_TYPE_FINUP; 1141 p += scnprintf(p, end - p, " use_finup"); 1142 break; 1143 default: 1144 cfg->finalization_type = FINALIZATION_TYPE_DIGEST; 1145 p += scnprintf(p, end - p, " use_digest"); 1146 break; 1147 } 1148 1149 if (!(cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP)) { 1150 if (prandom_bool(rng)) { 1151 cfg->nosimd = true; 1152 p += scnprintf(p, end - p, " nosimd"); 1153 } 1154 if (prandom_bool(rng)) { 1155 cfg->nosimd_setkey = true; 1156 p += scnprintf(p, end - p, " nosimd_setkey"); 1157 } 1158 } 1159 1160 p += scnprintf(p, end - p, " src_divs=["); 1161 p = generate_random_sgl_divisions(rng, cfg->src_divs, 1162 ARRAY_SIZE(cfg->src_divs), p, end, 1163 (cfg->finalization_type != 1164 FINALIZATION_TYPE_DIGEST), 1165 cfg->req_flags); 1166 p += scnprintf(p, end - p, "]"); 1167 1168 if (cfg->inplace_mode == OUT_OF_PLACE && prandom_bool(rng)) { 1169 p += scnprintf(p, end - p, " dst_divs=["); 1170 p = generate_random_sgl_divisions(rng, cfg->dst_divs, 1171 ARRAY_SIZE(cfg->dst_divs), 1172 p, end, false, 1173 cfg->req_flags); 1174 p += scnprintf(p, end - p, "]"); 1175 } 1176 1177 if (prandom_bool(rng)) { 1178 cfg->iv_offset = prandom_u32_inclusive(rng, 1, 1179 MAX_ALGAPI_ALIGNMASK); 1180 p += scnprintf(p, end - p, " iv_offset=%u", cfg->iv_offset); 1181 } 1182 1183 if (prandom_bool(rng)) { 1184 cfg->key_offset = prandom_u32_inclusive(rng, 1, 1185 MAX_ALGAPI_ALIGNMASK); 1186 p += scnprintf(p, end - p, " key_offset=%u", cfg->key_offset); 1187 } 1188 1189 WARN_ON_ONCE(!valid_testvec_config(cfg)); 1190 } 1191 1192 static void crypto_disable_simd_for_test(void) 1193 { 1194 migrate_disable(); 1195 __this_cpu_write(crypto_simd_disabled_for_test, true); 1196 } 1197 1198 static void crypto_reenable_simd_for_test(void) 1199 { 1200 __this_cpu_write(crypto_simd_disabled_for_test, false); 1201 migrate_enable(); 1202 } 1203 1204 /* 1205 * Given an algorithm name, build the name of the generic implementation of that 1206 * algorithm, assuming the usual naming convention. Specifically, this appends 1207 * "-generic" to every part of the name that is not a template name. Examples: 1208 * 1209 * aes => aes-generic 1210 * cbc(aes) => cbc(aes-generic) 1211 * cts(cbc(aes)) => cts(cbc(aes-generic)) 1212 * rfc7539(chacha20,poly1305) => rfc7539(chacha20-generic,poly1305-generic) 1213 * 1214 * Return: 0 on success, or -ENAMETOOLONG if the generic name would be too long 1215 */ 1216 static int build_generic_driver_name(const char *algname, 1217 char driver_name[CRYPTO_MAX_ALG_NAME]) 1218 { 1219 const char *in = algname; 1220 char *out = driver_name; 1221 size_t len = strlen(algname); 1222 1223 if (len >= CRYPTO_MAX_ALG_NAME) 1224 goto too_long; 1225 do { 1226 const char *in_saved = in; 1227 1228 while (*in && *in != '(' && *in != ')' && *in != ',') 1229 *out++ = *in++; 1230 if (*in != '(' && in > in_saved) { 1231 len += 8; 1232 if (len >= CRYPTO_MAX_ALG_NAME) 1233 goto too_long; 1234 memcpy(out, "-generic", 8); 1235 out += 8; 1236 } 1237 } while ((*out++ = *in++) != '\0'); 1238 return 0; 1239 1240 too_long: 1241 pr_err("alg: generic driver name for \"%s\" would be too long\n", 1242 algname); 1243 return -ENAMETOOLONG; 1244 } 1245 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1246 static void crypto_disable_simd_for_test(void) 1247 { 1248 } 1249 1250 static void crypto_reenable_simd_for_test(void) 1251 { 1252 } 1253 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1254 1255 static int build_hash_sglist(struct test_sglist *tsgl, 1256 const struct hash_testvec *vec, 1257 const struct testvec_config *cfg, 1258 unsigned int alignmask, 1259 const struct test_sg_division *divs[XBUFSIZE]) 1260 { 1261 struct kvec kv; 1262 struct iov_iter input; 1263 1264 kv.iov_base = (void *)vec->plaintext; 1265 kv.iov_len = vec->psize; 1266 iov_iter_kvec(&input, ITER_SOURCE, &kv, 1, vec->psize); 1267 return build_test_sglist(tsgl, cfg->src_divs, alignmask, vec->psize, 1268 &input, divs); 1269 } 1270 1271 static int check_hash_result(const char *type, 1272 const u8 *result, unsigned int digestsize, 1273 const struct hash_testvec *vec, 1274 const char *vec_name, 1275 const char *driver, 1276 const struct testvec_config *cfg) 1277 { 1278 if (memcmp(result, vec->digest, digestsize) != 0) { 1279 pr_err("alg: %s: %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 1280 type, driver, vec_name, cfg->name); 1281 return -EINVAL; 1282 } 1283 if (!testmgr_is_poison(&result[digestsize], TESTMGR_POISON_LEN)) { 1284 pr_err("alg: %s: %s overran result buffer on test vector %s, cfg=\"%s\"\n", 1285 type, driver, vec_name, cfg->name); 1286 return -EOVERFLOW; 1287 } 1288 return 0; 1289 } 1290 1291 static inline int check_shash_op(const char *op, int err, 1292 const char *driver, const char *vec_name, 1293 const struct testvec_config *cfg) 1294 { 1295 if (err) 1296 pr_err("alg: shash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", 1297 driver, op, err, vec_name, cfg->name); 1298 return err; 1299 } 1300 1301 /* Test one hash test vector in one configuration, using the shash API */ 1302 static int test_shash_vec_cfg(const struct hash_testvec *vec, 1303 const char *vec_name, 1304 const struct testvec_config *cfg, 1305 struct shash_desc *desc, 1306 struct test_sglist *tsgl, 1307 u8 *hashstate) 1308 { 1309 struct crypto_shash *tfm = desc->tfm; 1310 const unsigned int digestsize = crypto_shash_digestsize(tfm); 1311 const unsigned int statesize = crypto_shash_statesize(tfm); 1312 const char *driver = crypto_shash_driver_name(tfm); 1313 const struct test_sg_division *divs[XBUFSIZE]; 1314 unsigned int i; 1315 u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; 1316 int err; 1317 1318 /* Set the key, if specified */ 1319 if (vec->ksize) { 1320 err = do_setkey(crypto_shash_setkey, tfm, vec->key, vec->ksize, 1321 cfg, 0); 1322 if (err) { 1323 if (err == vec->setkey_error) 1324 return 0; 1325 pr_err("alg: shash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 1326 driver, vec_name, vec->setkey_error, err, 1327 crypto_shash_get_flags(tfm)); 1328 return err; 1329 } 1330 if (vec->setkey_error) { 1331 pr_err("alg: shash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 1332 driver, vec_name, vec->setkey_error); 1333 return -EINVAL; 1334 } 1335 } 1336 1337 /* Build the scatterlist for the source data */ 1338 err = build_hash_sglist(tsgl, vec, cfg, 0, divs); 1339 if (err) { 1340 pr_err("alg: shash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", 1341 driver, vec_name, cfg->name); 1342 return err; 1343 } 1344 1345 /* Do the actual hashing */ 1346 1347 testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); 1348 testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); 1349 1350 if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || 1351 vec->digest_error) { 1352 /* Just using digest() */ 1353 if (tsgl->nents != 1) 1354 return 0; 1355 if (cfg->nosimd) 1356 crypto_disable_simd_for_test(); 1357 err = crypto_shash_digest(desc, sg_virt(&tsgl->sgl[0]), 1358 tsgl->sgl[0].length, result); 1359 if (cfg->nosimd) 1360 crypto_reenable_simd_for_test(); 1361 if (err) { 1362 if (err == vec->digest_error) 1363 return 0; 1364 pr_err("alg: shash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 1365 driver, vec_name, vec->digest_error, err, 1366 cfg->name); 1367 return err; 1368 } 1369 if (vec->digest_error) { 1370 pr_err("alg: shash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 1371 driver, vec_name, vec->digest_error, cfg->name); 1372 return -EINVAL; 1373 } 1374 goto result_ready; 1375 } 1376 1377 /* Using init(), zero or more update(), then final() or finup() */ 1378 1379 if (cfg->nosimd) 1380 crypto_disable_simd_for_test(); 1381 err = crypto_shash_init(desc); 1382 if (cfg->nosimd) 1383 crypto_reenable_simd_for_test(); 1384 err = check_shash_op("init", err, driver, vec_name, cfg); 1385 if (err) 1386 return err; 1387 1388 for (i = 0; i < tsgl->nents; i++) { 1389 if (i + 1 == tsgl->nents && 1390 cfg->finalization_type == FINALIZATION_TYPE_FINUP) { 1391 if (divs[i]->nosimd) 1392 crypto_disable_simd_for_test(); 1393 err = crypto_shash_finup(desc, sg_virt(&tsgl->sgl[i]), 1394 tsgl->sgl[i].length, result); 1395 if (divs[i]->nosimd) 1396 crypto_reenable_simd_for_test(); 1397 err = check_shash_op("finup", err, driver, vec_name, 1398 cfg); 1399 if (err) 1400 return err; 1401 goto result_ready; 1402 } 1403 if (divs[i]->nosimd) 1404 crypto_disable_simd_for_test(); 1405 err = crypto_shash_update(desc, sg_virt(&tsgl->sgl[i]), 1406 tsgl->sgl[i].length); 1407 if (divs[i]->nosimd) 1408 crypto_reenable_simd_for_test(); 1409 err = check_shash_op("update", err, driver, vec_name, cfg); 1410 if (err) 1411 return err; 1412 if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { 1413 /* Test ->export() and ->import() */ 1414 testmgr_poison(hashstate + statesize, 1415 TESTMGR_POISON_LEN); 1416 err = crypto_shash_export(desc, hashstate); 1417 err = check_shash_op("export", err, driver, vec_name, 1418 cfg); 1419 if (err) 1420 return err; 1421 if (!testmgr_is_poison(hashstate + statesize, 1422 TESTMGR_POISON_LEN)) { 1423 pr_err("alg: shash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", 1424 driver, vec_name, cfg->name); 1425 return -EOVERFLOW; 1426 } 1427 testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); 1428 err = crypto_shash_import(desc, hashstate); 1429 err = check_shash_op("import", err, driver, vec_name, 1430 cfg); 1431 if (err) 1432 return err; 1433 } 1434 } 1435 1436 if (cfg->nosimd) 1437 crypto_disable_simd_for_test(); 1438 err = crypto_shash_final(desc, result); 1439 if (cfg->nosimd) 1440 crypto_reenable_simd_for_test(); 1441 err = check_shash_op("final", err, driver, vec_name, cfg); 1442 if (err) 1443 return err; 1444 result_ready: 1445 return check_hash_result("shash", result, digestsize, vec, vec_name, 1446 driver, cfg); 1447 } 1448 1449 static int do_ahash_op(int (*op)(struct ahash_request *req), 1450 struct ahash_request *req, 1451 struct crypto_wait *wait, bool nosimd) 1452 { 1453 int err; 1454 1455 if (nosimd) 1456 crypto_disable_simd_for_test(); 1457 1458 err = op(req); 1459 1460 if (nosimd) 1461 crypto_reenable_simd_for_test(); 1462 1463 return crypto_wait_req(err, wait); 1464 } 1465 1466 static int check_nonfinal_ahash_op(const char *op, int err, 1467 u8 *result, unsigned int digestsize, 1468 const char *driver, const char *vec_name, 1469 const struct testvec_config *cfg) 1470 { 1471 if (err) { 1472 pr_err("alg: ahash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", 1473 driver, op, err, vec_name, cfg->name); 1474 return err; 1475 } 1476 if (!testmgr_is_poison(result, digestsize)) { 1477 pr_err("alg: ahash: %s %s() used result buffer on test vector %s, cfg=\"%s\"\n", 1478 driver, op, vec_name, cfg->name); 1479 return -EINVAL; 1480 } 1481 return 0; 1482 } 1483 1484 /* Test one hash test vector in one configuration, using the ahash API */ 1485 static int test_ahash_vec_cfg(const struct hash_testvec *vec, 1486 const char *vec_name, 1487 const struct testvec_config *cfg, 1488 struct ahash_request *req, 1489 struct test_sglist *tsgl, 1490 u8 *hashstate) 1491 { 1492 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1493 const unsigned int digestsize = crypto_ahash_digestsize(tfm); 1494 const unsigned int statesize = crypto_ahash_statesize(tfm); 1495 const char *driver = crypto_ahash_driver_name(tfm); 1496 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 1497 const struct test_sg_division *divs[XBUFSIZE]; 1498 DECLARE_CRYPTO_WAIT(wait); 1499 unsigned int i; 1500 struct scatterlist *pending_sgl; 1501 unsigned int pending_len; 1502 u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; 1503 int err; 1504 1505 /* Set the key, if specified */ 1506 if (vec->ksize) { 1507 err = do_setkey(crypto_ahash_setkey, tfm, vec->key, vec->ksize, 1508 cfg, 0); 1509 if (err) { 1510 if (err == vec->setkey_error) 1511 return 0; 1512 pr_err("alg: ahash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 1513 driver, vec_name, vec->setkey_error, err, 1514 crypto_ahash_get_flags(tfm)); 1515 return err; 1516 } 1517 if (vec->setkey_error) { 1518 pr_err("alg: ahash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 1519 driver, vec_name, vec->setkey_error); 1520 return -EINVAL; 1521 } 1522 } 1523 1524 /* Build the scatterlist for the source data */ 1525 err = build_hash_sglist(tsgl, vec, cfg, 0, divs); 1526 if (err) { 1527 pr_err("alg: ahash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", 1528 driver, vec_name, cfg->name); 1529 return err; 1530 } 1531 1532 /* Do the actual hashing */ 1533 1534 testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); 1535 testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); 1536 1537 if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || 1538 vec->digest_error) { 1539 /* Just using digest() */ 1540 ahash_request_set_callback(req, req_flags, crypto_req_done, 1541 &wait); 1542 ahash_request_set_crypt(req, tsgl->sgl, result, vec->psize); 1543 err = do_ahash_op(crypto_ahash_digest, req, &wait, cfg->nosimd); 1544 if (err) { 1545 if (err == vec->digest_error) 1546 return 0; 1547 pr_err("alg: ahash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 1548 driver, vec_name, vec->digest_error, err, 1549 cfg->name); 1550 return err; 1551 } 1552 if (vec->digest_error) { 1553 pr_err("alg: ahash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 1554 driver, vec_name, vec->digest_error, cfg->name); 1555 return -EINVAL; 1556 } 1557 goto result_ready; 1558 } 1559 1560 /* Using init(), zero or more update(), then final() or finup() */ 1561 1562 ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); 1563 ahash_request_set_crypt(req, NULL, result, 0); 1564 err = do_ahash_op(crypto_ahash_init, req, &wait, cfg->nosimd); 1565 err = check_nonfinal_ahash_op("init", err, result, digestsize, 1566 driver, vec_name, cfg); 1567 if (err) 1568 return err; 1569 1570 pending_sgl = NULL; 1571 pending_len = 0; 1572 for (i = 0; i < tsgl->nents; i++) { 1573 if (divs[i]->flush_type != FLUSH_TYPE_NONE && 1574 pending_sgl != NULL) { 1575 /* update() with the pending data */ 1576 ahash_request_set_callback(req, req_flags, 1577 crypto_req_done, &wait); 1578 ahash_request_set_crypt(req, pending_sgl, result, 1579 pending_len); 1580 err = do_ahash_op(crypto_ahash_update, req, &wait, 1581 divs[i]->nosimd); 1582 err = check_nonfinal_ahash_op("update", err, 1583 result, digestsize, 1584 driver, vec_name, cfg); 1585 if (err) 1586 return err; 1587 pending_sgl = NULL; 1588 pending_len = 0; 1589 } 1590 if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { 1591 /* Test ->export() and ->import() */ 1592 testmgr_poison(hashstate + statesize, 1593 TESTMGR_POISON_LEN); 1594 err = crypto_ahash_export(req, hashstate); 1595 err = check_nonfinal_ahash_op("export", err, 1596 result, digestsize, 1597 driver, vec_name, cfg); 1598 if (err) 1599 return err; 1600 if (!testmgr_is_poison(hashstate + statesize, 1601 TESTMGR_POISON_LEN)) { 1602 pr_err("alg: ahash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", 1603 driver, vec_name, cfg->name); 1604 return -EOVERFLOW; 1605 } 1606 1607 testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); 1608 err = crypto_ahash_import(req, hashstate); 1609 err = check_nonfinal_ahash_op("import", err, 1610 result, digestsize, 1611 driver, vec_name, cfg); 1612 if (err) 1613 return err; 1614 } 1615 if (pending_sgl == NULL) 1616 pending_sgl = &tsgl->sgl[i]; 1617 pending_len += tsgl->sgl[i].length; 1618 } 1619 1620 ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); 1621 ahash_request_set_crypt(req, pending_sgl, result, pending_len); 1622 if (cfg->finalization_type == FINALIZATION_TYPE_FINAL) { 1623 /* finish with update() and final() */ 1624 err = do_ahash_op(crypto_ahash_update, req, &wait, cfg->nosimd); 1625 err = check_nonfinal_ahash_op("update", err, result, digestsize, 1626 driver, vec_name, cfg); 1627 if (err) 1628 return err; 1629 err = do_ahash_op(crypto_ahash_final, req, &wait, cfg->nosimd); 1630 if (err) { 1631 pr_err("alg: ahash: %s final() failed with err %d on test vector %s, cfg=\"%s\"\n", 1632 driver, err, vec_name, cfg->name); 1633 return err; 1634 } 1635 } else { 1636 /* finish with finup() */ 1637 err = do_ahash_op(crypto_ahash_finup, req, &wait, cfg->nosimd); 1638 if (err) { 1639 pr_err("alg: ahash: %s finup() failed with err %d on test vector %s, cfg=\"%s\"\n", 1640 driver, err, vec_name, cfg->name); 1641 return err; 1642 } 1643 } 1644 1645 result_ready: 1646 return check_hash_result("ahash", result, digestsize, vec, vec_name, 1647 driver, cfg); 1648 } 1649 1650 static int test_hash_vec_cfg(const struct hash_testvec *vec, 1651 const char *vec_name, 1652 const struct testvec_config *cfg, 1653 struct ahash_request *req, 1654 struct shash_desc *desc, 1655 struct test_sglist *tsgl, 1656 u8 *hashstate) 1657 { 1658 int err; 1659 1660 /* 1661 * For algorithms implemented as "shash", most bugs will be detected by 1662 * both the shash and ahash tests. Test the shash API first so that the 1663 * failures involve less indirection, so are easier to debug. 1664 */ 1665 1666 if (desc) { 1667 err = test_shash_vec_cfg(vec, vec_name, cfg, desc, tsgl, 1668 hashstate); 1669 if (err) 1670 return err; 1671 } 1672 1673 return test_ahash_vec_cfg(vec, vec_name, cfg, req, tsgl, hashstate); 1674 } 1675 1676 static int test_hash_vec(const struct hash_testvec *vec, unsigned int vec_num, 1677 struct ahash_request *req, struct shash_desc *desc, 1678 struct test_sglist *tsgl, u8 *hashstate) 1679 { 1680 char vec_name[16]; 1681 unsigned int i; 1682 int err; 1683 1684 sprintf(vec_name, "%u", vec_num); 1685 1686 for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) { 1687 err = test_hash_vec_cfg(vec, vec_name, 1688 &default_hash_testvec_configs[i], 1689 req, desc, tsgl, hashstate); 1690 if (err) 1691 return err; 1692 } 1693 1694 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 1695 if (!noextratests) { 1696 struct rnd_state rng; 1697 struct testvec_config cfg; 1698 char cfgname[TESTVEC_CONFIG_NAMELEN]; 1699 1700 init_rnd_state(&rng); 1701 1702 for (i = 0; i < fuzz_iterations; i++) { 1703 generate_random_testvec_config(&rng, &cfg, cfgname, 1704 sizeof(cfgname)); 1705 err = test_hash_vec_cfg(vec, vec_name, &cfg, 1706 req, desc, tsgl, hashstate); 1707 if (err) 1708 return err; 1709 cond_resched(); 1710 } 1711 } 1712 #endif 1713 return 0; 1714 } 1715 1716 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 1717 /* 1718 * Generate a hash test vector from the given implementation. 1719 * Assumes the buffers in 'vec' were already allocated. 1720 */ 1721 static void generate_random_hash_testvec(struct rnd_state *rng, 1722 struct shash_desc *desc, 1723 struct hash_testvec *vec, 1724 unsigned int maxkeysize, 1725 unsigned int maxdatasize, 1726 char *name, size_t max_namelen) 1727 { 1728 /* Data */ 1729 vec->psize = generate_random_length(rng, maxdatasize); 1730 generate_random_bytes(rng, (u8 *)vec->plaintext, vec->psize); 1731 1732 /* 1733 * Key: length in range [1, maxkeysize], but usually choose maxkeysize. 1734 * If algorithm is unkeyed, then maxkeysize == 0 and set ksize = 0. 1735 */ 1736 vec->setkey_error = 0; 1737 vec->ksize = 0; 1738 if (maxkeysize) { 1739 vec->ksize = maxkeysize; 1740 if (prandom_u32_below(rng, 4) == 0) 1741 vec->ksize = prandom_u32_inclusive(rng, 1, maxkeysize); 1742 generate_random_bytes(rng, (u8 *)vec->key, vec->ksize); 1743 1744 vec->setkey_error = crypto_shash_setkey(desc->tfm, vec->key, 1745 vec->ksize); 1746 /* If the key couldn't be set, no need to continue to digest. */ 1747 if (vec->setkey_error) 1748 goto done; 1749 } 1750 1751 /* Digest */ 1752 vec->digest_error = crypto_shash_digest(desc, vec->plaintext, 1753 vec->psize, (u8 *)vec->digest); 1754 done: 1755 snprintf(name, max_namelen, "\"random: psize=%u ksize=%u\"", 1756 vec->psize, vec->ksize); 1757 } 1758 1759 /* 1760 * Test the hash algorithm represented by @req against the corresponding generic 1761 * implementation, if one is available. 1762 */ 1763 static int test_hash_vs_generic_impl(const char *generic_driver, 1764 unsigned int maxkeysize, 1765 struct ahash_request *req, 1766 struct shash_desc *desc, 1767 struct test_sglist *tsgl, 1768 u8 *hashstate) 1769 { 1770 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1771 const unsigned int digestsize = crypto_ahash_digestsize(tfm); 1772 const unsigned int blocksize = crypto_ahash_blocksize(tfm); 1773 const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 1774 const char *algname = crypto_hash_alg_common(tfm)->base.cra_name; 1775 const char *driver = crypto_ahash_driver_name(tfm); 1776 struct rnd_state rng; 1777 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 1778 struct crypto_shash *generic_tfm = NULL; 1779 struct shash_desc *generic_desc = NULL; 1780 unsigned int i; 1781 struct hash_testvec vec = { 0 }; 1782 char vec_name[64]; 1783 struct testvec_config *cfg; 1784 char cfgname[TESTVEC_CONFIG_NAMELEN]; 1785 int err; 1786 1787 if (noextratests) 1788 return 0; 1789 1790 init_rnd_state(&rng); 1791 1792 if (!generic_driver) { /* Use default naming convention? */ 1793 err = build_generic_driver_name(algname, _generic_driver); 1794 if (err) 1795 return err; 1796 generic_driver = _generic_driver; 1797 } 1798 1799 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 1800 return 0; 1801 1802 generic_tfm = crypto_alloc_shash(generic_driver, 0, 0); 1803 if (IS_ERR(generic_tfm)) { 1804 err = PTR_ERR(generic_tfm); 1805 if (err == -ENOENT) { 1806 pr_warn("alg: hash: skipping comparison tests for %s because %s is unavailable\n", 1807 driver, generic_driver); 1808 return 0; 1809 } 1810 pr_err("alg: hash: error allocating %s (generic impl of %s): %d\n", 1811 generic_driver, algname, err); 1812 return err; 1813 } 1814 1815 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1816 if (!cfg) { 1817 err = -ENOMEM; 1818 goto out; 1819 } 1820 1821 generic_desc = kzalloc(sizeof(*desc) + 1822 crypto_shash_descsize(generic_tfm), GFP_KERNEL); 1823 if (!generic_desc) { 1824 err = -ENOMEM; 1825 goto out; 1826 } 1827 generic_desc->tfm = generic_tfm; 1828 1829 /* Check the algorithm properties for consistency. */ 1830 1831 if (digestsize != crypto_shash_digestsize(generic_tfm)) { 1832 pr_err("alg: hash: digestsize for %s (%u) doesn't match generic impl (%u)\n", 1833 driver, digestsize, 1834 crypto_shash_digestsize(generic_tfm)); 1835 err = -EINVAL; 1836 goto out; 1837 } 1838 1839 if (blocksize != crypto_shash_blocksize(generic_tfm)) { 1840 pr_err("alg: hash: blocksize for %s (%u) doesn't match generic impl (%u)\n", 1841 driver, blocksize, crypto_shash_blocksize(generic_tfm)); 1842 err = -EINVAL; 1843 goto out; 1844 } 1845 1846 /* 1847 * Now generate test vectors using the generic implementation, and test 1848 * the other implementation against them. 1849 */ 1850 1851 vec.key = kmalloc(maxkeysize, GFP_KERNEL); 1852 vec.plaintext = kmalloc(maxdatasize, GFP_KERNEL); 1853 vec.digest = kmalloc(digestsize, GFP_KERNEL); 1854 if (!vec.key || !vec.plaintext || !vec.digest) { 1855 err = -ENOMEM; 1856 goto out; 1857 } 1858 1859 for (i = 0; i < fuzz_iterations * 8; i++) { 1860 generate_random_hash_testvec(&rng, generic_desc, &vec, 1861 maxkeysize, maxdatasize, 1862 vec_name, sizeof(vec_name)); 1863 generate_random_testvec_config(&rng, cfg, cfgname, 1864 sizeof(cfgname)); 1865 1866 err = test_hash_vec_cfg(&vec, vec_name, cfg, 1867 req, desc, tsgl, hashstate); 1868 if (err) 1869 goto out; 1870 cond_resched(); 1871 } 1872 err = 0; 1873 out: 1874 kfree(cfg); 1875 kfree(vec.key); 1876 kfree(vec.plaintext); 1877 kfree(vec.digest); 1878 crypto_free_shash(generic_tfm); 1879 kfree_sensitive(generic_desc); 1880 return err; 1881 } 1882 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1883 static int test_hash_vs_generic_impl(const char *generic_driver, 1884 unsigned int maxkeysize, 1885 struct ahash_request *req, 1886 struct shash_desc *desc, 1887 struct test_sglist *tsgl, 1888 u8 *hashstate) 1889 { 1890 return 0; 1891 } 1892 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1893 1894 static int alloc_shash(const char *driver, u32 type, u32 mask, 1895 struct crypto_shash **tfm_ret, 1896 struct shash_desc **desc_ret) 1897 { 1898 struct crypto_shash *tfm; 1899 struct shash_desc *desc; 1900 1901 tfm = crypto_alloc_shash(driver, type, mask); 1902 if (IS_ERR(tfm)) { 1903 if (PTR_ERR(tfm) == -ENOENT) { 1904 /* 1905 * This algorithm is only available through the ahash 1906 * API, not the shash API, so skip the shash tests. 1907 */ 1908 return 0; 1909 } 1910 pr_err("alg: hash: failed to allocate shash transform for %s: %ld\n", 1911 driver, PTR_ERR(tfm)); 1912 return PTR_ERR(tfm); 1913 } 1914 1915 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL); 1916 if (!desc) { 1917 crypto_free_shash(tfm); 1918 return -ENOMEM; 1919 } 1920 desc->tfm = tfm; 1921 1922 *tfm_ret = tfm; 1923 *desc_ret = desc; 1924 return 0; 1925 } 1926 1927 static int __alg_test_hash(const struct hash_testvec *vecs, 1928 unsigned int num_vecs, const char *driver, 1929 u32 type, u32 mask, 1930 const char *generic_driver, unsigned int maxkeysize) 1931 { 1932 struct crypto_ahash *atfm = NULL; 1933 struct ahash_request *req = NULL; 1934 struct crypto_shash *stfm = NULL; 1935 struct shash_desc *desc = NULL; 1936 struct test_sglist *tsgl = NULL; 1937 u8 *hashstate = NULL; 1938 unsigned int statesize; 1939 unsigned int i; 1940 int err; 1941 1942 /* 1943 * Always test the ahash API. This works regardless of whether the 1944 * algorithm is implemented as ahash or shash. 1945 */ 1946 1947 atfm = crypto_alloc_ahash(driver, type, mask); 1948 if (IS_ERR(atfm)) { 1949 if (PTR_ERR(atfm) == -ENOENT) 1950 return 0; 1951 pr_err("alg: hash: failed to allocate transform for %s: %ld\n", 1952 driver, PTR_ERR(atfm)); 1953 return PTR_ERR(atfm); 1954 } 1955 driver = crypto_ahash_driver_name(atfm); 1956 1957 req = ahash_request_alloc(atfm, GFP_KERNEL); 1958 if (!req) { 1959 pr_err("alg: hash: failed to allocate request for %s\n", 1960 driver); 1961 err = -ENOMEM; 1962 goto out; 1963 } 1964 1965 /* 1966 * If available also test the shash API, to cover corner cases that may 1967 * be missed by testing the ahash API only. 1968 */ 1969 err = alloc_shash(driver, type, mask, &stfm, &desc); 1970 if (err) 1971 goto out; 1972 1973 tsgl = kmalloc(sizeof(*tsgl), GFP_KERNEL); 1974 if (!tsgl || init_test_sglist(tsgl) != 0) { 1975 pr_err("alg: hash: failed to allocate test buffers for %s\n", 1976 driver); 1977 kfree(tsgl); 1978 tsgl = NULL; 1979 err = -ENOMEM; 1980 goto out; 1981 } 1982 1983 statesize = crypto_ahash_statesize(atfm); 1984 if (stfm) 1985 statesize = max(statesize, crypto_shash_statesize(stfm)); 1986 hashstate = kmalloc(statesize + TESTMGR_POISON_LEN, GFP_KERNEL); 1987 if (!hashstate) { 1988 pr_err("alg: hash: failed to allocate hash state buffer for %s\n", 1989 driver); 1990 err = -ENOMEM; 1991 goto out; 1992 } 1993 1994 for (i = 0; i < num_vecs; i++) { 1995 if (fips_enabled && vecs[i].fips_skip) 1996 continue; 1997 1998 err = test_hash_vec(&vecs[i], i, req, desc, tsgl, hashstate); 1999 if (err) 2000 goto out; 2001 cond_resched(); 2002 } 2003 err = test_hash_vs_generic_impl(generic_driver, maxkeysize, req, 2004 desc, tsgl, hashstate); 2005 out: 2006 kfree(hashstate); 2007 if (tsgl) { 2008 destroy_test_sglist(tsgl); 2009 kfree(tsgl); 2010 } 2011 kfree(desc); 2012 crypto_free_shash(stfm); 2013 ahash_request_free(req); 2014 crypto_free_ahash(atfm); 2015 return err; 2016 } 2017 2018 static int alg_test_hash(const struct alg_test_desc *desc, const char *driver, 2019 u32 type, u32 mask) 2020 { 2021 const struct hash_testvec *template = desc->suite.hash.vecs; 2022 unsigned int tcount = desc->suite.hash.count; 2023 unsigned int nr_unkeyed, nr_keyed; 2024 unsigned int maxkeysize = 0; 2025 int err; 2026 2027 /* 2028 * For OPTIONAL_KEY algorithms, we have to do all the unkeyed tests 2029 * first, before setting a key on the tfm. To make this easier, we 2030 * require that the unkeyed test vectors (if any) are listed first. 2031 */ 2032 2033 for (nr_unkeyed = 0; nr_unkeyed < tcount; nr_unkeyed++) { 2034 if (template[nr_unkeyed].ksize) 2035 break; 2036 } 2037 for (nr_keyed = 0; nr_unkeyed + nr_keyed < tcount; nr_keyed++) { 2038 if (!template[nr_unkeyed + nr_keyed].ksize) { 2039 pr_err("alg: hash: test vectors for %s out of order, " 2040 "unkeyed ones must come first\n", desc->alg); 2041 return -EINVAL; 2042 } 2043 maxkeysize = max_t(unsigned int, maxkeysize, 2044 template[nr_unkeyed + nr_keyed].ksize); 2045 } 2046 2047 err = 0; 2048 if (nr_unkeyed) { 2049 err = __alg_test_hash(template, nr_unkeyed, driver, type, mask, 2050 desc->generic_driver, maxkeysize); 2051 template += nr_unkeyed; 2052 } 2053 2054 if (!err && nr_keyed) 2055 err = __alg_test_hash(template, nr_keyed, driver, type, mask, 2056 desc->generic_driver, maxkeysize); 2057 2058 return err; 2059 } 2060 2061 static int test_aead_vec_cfg(int enc, const struct aead_testvec *vec, 2062 const char *vec_name, 2063 const struct testvec_config *cfg, 2064 struct aead_request *req, 2065 struct cipher_test_sglists *tsgls) 2066 { 2067 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2068 const unsigned int alignmask = crypto_aead_alignmask(tfm); 2069 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2070 const unsigned int authsize = vec->clen - vec->plen; 2071 const char *driver = crypto_aead_driver_name(tfm); 2072 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 2073 const char *op = enc ? "encryption" : "decryption"; 2074 DECLARE_CRYPTO_WAIT(wait); 2075 u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; 2076 u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + 2077 cfg->iv_offset + 2078 (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); 2079 struct kvec input[2]; 2080 int err; 2081 2082 /* Set the key */ 2083 if (vec->wk) 2084 crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2085 else 2086 crypto_aead_clear_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2087 2088 err = do_setkey(crypto_aead_setkey, tfm, vec->key, vec->klen, 2089 cfg, alignmask); 2090 if (err && err != vec->setkey_error) { 2091 pr_err("alg: aead: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 2092 driver, vec_name, vec->setkey_error, err, 2093 crypto_aead_get_flags(tfm)); 2094 return err; 2095 } 2096 if (!err && vec->setkey_error) { 2097 pr_err("alg: aead: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 2098 driver, vec_name, vec->setkey_error); 2099 return -EINVAL; 2100 } 2101 2102 /* Set the authentication tag size */ 2103 err = crypto_aead_setauthsize(tfm, authsize); 2104 if (err && err != vec->setauthsize_error) { 2105 pr_err("alg: aead: %s setauthsize failed on test vector %s; expected_error=%d, actual_error=%d\n", 2106 driver, vec_name, vec->setauthsize_error, err); 2107 return err; 2108 } 2109 if (!err && vec->setauthsize_error) { 2110 pr_err("alg: aead: %s setauthsize unexpectedly succeeded on test vector %s; expected_error=%d\n", 2111 driver, vec_name, vec->setauthsize_error); 2112 return -EINVAL; 2113 } 2114 2115 if (vec->setkey_error || vec->setauthsize_error) 2116 return 0; 2117 2118 /* The IV must be copied to a buffer, as the algorithm may modify it */ 2119 if (WARN_ON(ivsize > MAX_IVLEN)) 2120 return -EINVAL; 2121 if (vec->iv) 2122 memcpy(iv, vec->iv, ivsize); 2123 else 2124 memset(iv, 0, ivsize); 2125 2126 /* Build the src/dst scatterlists */ 2127 input[0].iov_base = (void *)vec->assoc; 2128 input[0].iov_len = vec->alen; 2129 input[1].iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; 2130 input[1].iov_len = enc ? vec->plen : vec->clen; 2131 err = build_cipher_test_sglists(tsgls, cfg, alignmask, 2132 vec->alen + (enc ? vec->plen : 2133 vec->clen), 2134 vec->alen + (enc ? vec->clen : 2135 vec->plen), 2136 input, 2); 2137 if (err) { 2138 pr_err("alg: aead: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", 2139 driver, op, vec_name, cfg->name); 2140 return err; 2141 } 2142 2143 /* Do the actual encryption or decryption */ 2144 testmgr_poison(req->__ctx, crypto_aead_reqsize(tfm)); 2145 aead_request_set_callback(req, req_flags, crypto_req_done, &wait); 2146 aead_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, 2147 enc ? vec->plen : vec->clen, iv); 2148 aead_request_set_ad(req, vec->alen); 2149 if (cfg->nosimd) 2150 crypto_disable_simd_for_test(); 2151 err = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); 2152 if (cfg->nosimd) 2153 crypto_reenable_simd_for_test(); 2154 err = crypto_wait_req(err, &wait); 2155 2156 /* Check that the algorithm didn't overwrite things it shouldn't have */ 2157 if (req->cryptlen != (enc ? vec->plen : vec->clen) || 2158 req->assoclen != vec->alen || 2159 req->iv != iv || 2160 req->src != tsgls->src.sgl_ptr || 2161 req->dst != tsgls->dst.sgl_ptr || 2162 crypto_aead_reqtfm(req) != tfm || 2163 req->base.complete != crypto_req_done || 2164 req->base.flags != req_flags || 2165 req->base.data != &wait) { 2166 pr_err("alg: aead: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", 2167 driver, op, vec_name, cfg->name); 2168 if (req->cryptlen != (enc ? vec->plen : vec->clen)) 2169 pr_err("alg: aead: changed 'req->cryptlen'\n"); 2170 if (req->assoclen != vec->alen) 2171 pr_err("alg: aead: changed 'req->assoclen'\n"); 2172 if (req->iv != iv) 2173 pr_err("alg: aead: changed 'req->iv'\n"); 2174 if (req->src != tsgls->src.sgl_ptr) 2175 pr_err("alg: aead: changed 'req->src'\n"); 2176 if (req->dst != tsgls->dst.sgl_ptr) 2177 pr_err("alg: aead: changed 'req->dst'\n"); 2178 if (crypto_aead_reqtfm(req) != tfm) 2179 pr_err("alg: aead: changed 'req->base.tfm'\n"); 2180 if (req->base.complete != crypto_req_done) 2181 pr_err("alg: aead: changed 'req->base.complete'\n"); 2182 if (req->base.flags != req_flags) 2183 pr_err("alg: aead: changed 'req->base.flags'\n"); 2184 if (req->base.data != &wait) 2185 pr_err("alg: aead: changed 'req->base.data'\n"); 2186 return -EINVAL; 2187 } 2188 if (is_test_sglist_corrupted(&tsgls->src)) { 2189 pr_err("alg: aead: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", 2190 driver, op, vec_name, cfg->name); 2191 return -EINVAL; 2192 } 2193 if (tsgls->dst.sgl_ptr != tsgls->src.sgl && 2194 is_test_sglist_corrupted(&tsgls->dst)) { 2195 pr_err("alg: aead: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", 2196 driver, op, vec_name, cfg->name); 2197 return -EINVAL; 2198 } 2199 2200 /* Check for unexpected success or failure, or wrong error code */ 2201 if ((err == 0 && vec->novrfy) || 2202 (err != vec->crypt_error && !(err == -EBADMSG && vec->novrfy))) { 2203 char expected_error[32]; 2204 2205 if (vec->novrfy && 2206 vec->crypt_error != 0 && vec->crypt_error != -EBADMSG) 2207 sprintf(expected_error, "-EBADMSG or %d", 2208 vec->crypt_error); 2209 else if (vec->novrfy) 2210 sprintf(expected_error, "-EBADMSG"); 2211 else 2212 sprintf(expected_error, "%d", vec->crypt_error); 2213 if (err) { 2214 pr_err("alg: aead: %s %s failed on test vector %s; expected_error=%s, actual_error=%d, cfg=\"%s\"\n", 2215 driver, op, vec_name, expected_error, err, 2216 cfg->name); 2217 return err; 2218 } 2219 pr_err("alg: aead: %s %s unexpectedly succeeded on test vector %s; expected_error=%s, cfg=\"%s\"\n", 2220 driver, op, vec_name, expected_error, cfg->name); 2221 return -EINVAL; 2222 } 2223 if (err) /* Expectedly failed. */ 2224 return 0; 2225 2226 /* Check for the correct output (ciphertext or plaintext) */ 2227 err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, 2228 enc ? vec->clen : vec->plen, 2229 vec->alen, 2230 enc || cfg->inplace_mode == OUT_OF_PLACE); 2231 if (err == -EOVERFLOW) { 2232 pr_err("alg: aead: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", 2233 driver, op, vec_name, cfg->name); 2234 return err; 2235 } 2236 if (err) { 2237 pr_err("alg: aead: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 2238 driver, op, vec_name, cfg->name); 2239 return err; 2240 } 2241 2242 return 0; 2243 } 2244 2245 static int test_aead_vec(int enc, const struct aead_testvec *vec, 2246 unsigned int vec_num, struct aead_request *req, 2247 struct cipher_test_sglists *tsgls) 2248 { 2249 char vec_name[16]; 2250 unsigned int i; 2251 int err; 2252 2253 if (enc && vec->novrfy) 2254 return 0; 2255 2256 sprintf(vec_name, "%u", vec_num); 2257 2258 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { 2259 err = test_aead_vec_cfg(enc, vec, vec_name, 2260 &default_cipher_testvec_configs[i], 2261 req, tsgls); 2262 if (err) 2263 return err; 2264 } 2265 2266 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 2267 if (!noextratests) { 2268 struct rnd_state rng; 2269 struct testvec_config cfg; 2270 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2271 2272 init_rnd_state(&rng); 2273 2274 for (i = 0; i < fuzz_iterations; i++) { 2275 generate_random_testvec_config(&rng, &cfg, cfgname, 2276 sizeof(cfgname)); 2277 err = test_aead_vec_cfg(enc, vec, vec_name, 2278 &cfg, req, tsgls); 2279 if (err) 2280 return err; 2281 cond_resched(); 2282 } 2283 } 2284 #endif 2285 return 0; 2286 } 2287 2288 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 2289 2290 struct aead_extra_tests_ctx { 2291 struct rnd_state rng; 2292 struct aead_request *req; 2293 struct crypto_aead *tfm; 2294 const struct alg_test_desc *test_desc; 2295 struct cipher_test_sglists *tsgls; 2296 unsigned int maxdatasize; 2297 unsigned int maxkeysize; 2298 2299 struct aead_testvec vec; 2300 char vec_name[64]; 2301 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2302 struct testvec_config cfg; 2303 }; 2304 2305 /* 2306 * Make at least one random change to a (ciphertext, AAD) pair. "Ciphertext" 2307 * here means the full ciphertext including the authentication tag. The 2308 * authentication tag (and hence also the ciphertext) is assumed to be nonempty. 2309 */ 2310 static void mutate_aead_message(struct rnd_state *rng, 2311 struct aead_testvec *vec, bool aad_iv, 2312 unsigned int ivsize) 2313 { 2314 const unsigned int aad_tail_size = aad_iv ? ivsize : 0; 2315 const unsigned int authsize = vec->clen - vec->plen; 2316 2317 if (prandom_bool(rng) && vec->alen > aad_tail_size) { 2318 /* Mutate the AAD */ 2319 flip_random_bit(rng, (u8 *)vec->assoc, 2320 vec->alen - aad_tail_size); 2321 if (prandom_bool(rng)) 2322 return; 2323 } 2324 if (prandom_bool(rng)) { 2325 /* Mutate auth tag (assuming it's at the end of ciphertext) */ 2326 flip_random_bit(rng, (u8 *)vec->ctext + vec->plen, authsize); 2327 } else { 2328 /* Mutate any part of the ciphertext */ 2329 flip_random_bit(rng, (u8 *)vec->ctext, vec->clen); 2330 } 2331 } 2332 2333 /* 2334 * Minimum authentication tag size in bytes at which we assume that we can 2335 * reliably generate inauthentic messages, i.e. not generate an authentic 2336 * message by chance. 2337 */ 2338 #define MIN_COLLISION_FREE_AUTHSIZE 8 2339 2340 static void generate_aead_message(struct rnd_state *rng, 2341 struct aead_request *req, 2342 const struct aead_test_suite *suite, 2343 struct aead_testvec *vec, 2344 bool prefer_inauthentic) 2345 { 2346 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2347 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2348 const unsigned int authsize = vec->clen - vec->plen; 2349 const bool inauthentic = (authsize >= MIN_COLLISION_FREE_AUTHSIZE) && 2350 (prefer_inauthentic || 2351 prandom_u32_below(rng, 4) == 0); 2352 2353 /* Generate the AAD. */ 2354 generate_random_bytes(rng, (u8 *)vec->assoc, vec->alen); 2355 if (suite->aad_iv && vec->alen >= ivsize) 2356 /* Avoid implementation-defined behavior. */ 2357 memcpy((u8 *)vec->assoc + vec->alen - ivsize, vec->iv, ivsize); 2358 2359 if (inauthentic && prandom_bool(rng)) { 2360 /* Generate a random ciphertext. */ 2361 generate_random_bytes(rng, (u8 *)vec->ctext, vec->clen); 2362 } else { 2363 int i = 0; 2364 struct scatterlist src[2], dst; 2365 u8 iv[MAX_IVLEN]; 2366 DECLARE_CRYPTO_WAIT(wait); 2367 2368 /* Generate a random plaintext and encrypt it. */ 2369 sg_init_table(src, 2); 2370 if (vec->alen) 2371 sg_set_buf(&src[i++], vec->assoc, vec->alen); 2372 if (vec->plen) { 2373 generate_random_bytes(rng, (u8 *)vec->ptext, vec->plen); 2374 sg_set_buf(&src[i++], vec->ptext, vec->plen); 2375 } 2376 sg_init_one(&dst, vec->ctext, vec->alen + vec->clen); 2377 memcpy(iv, vec->iv, ivsize); 2378 aead_request_set_callback(req, 0, crypto_req_done, &wait); 2379 aead_request_set_crypt(req, src, &dst, vec->plen, iv); 2380 aead_request_set_ad(req, vec->alen); 2381 vec->crypt_error = crypto_wait_req(crypto_aead_encrypt(req), 2382 &wait); 2383 /* If encryption failed, we're done. */ 2384 if (vec->crypt_error != 0) 2385 return; 2386 memmove((u8 *)vec->ctext, vec->ctext + vec->alen, vec->clen); 2387 if (!inauthentic) 2388 return; 2389 /* 2390 * Mutate the authentic (ciphertext, AAD) pair to get an 2391 * inauthentic one. 2392 */ 2393 mutate_aead_message(rng, vec, suite->aad_iv, ivsize); 2394 } 2395 vec->novrfy = 1; 2396 if (suite->einval_allowed) 2397 vec->crypt_error = -EINVAL; 2398 } 2399 2400 /* 2401 * Generate an AEAD test vector 'vec' using the implementation specified by 2402 * 'req'. The buffers in 'vec' must already be allocated. 2403 * 2404 * If 'prefer_inauthentic' is true, then this function will generate inauthentic 2405 * test vectors (i.e. vectors with 'vec->novrfy=1') more often. 2406 */ 2407 static void generate_random_aead_testvec(struct rnd_state *rng, 2408 struct aead_request *req, 2409 struct aead_testvec *vec, 2410 const struct aead_test_suite *suite, 2411 unsigned int maxkeysize, 2412 unsigned int maxdatasize, 2413 char *name, size_t max_namelen, 2414 bool prefer_inauthentic) 2415 { 2416 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2417 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2418 const unsigned int maxauthsize = crypto_aead_maxauthsize(tfm); 2419 unsigned int authsize; 2420 unsigned int total_len; 2421 2422 /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ 2423 vec->klen = maxkeysize; 2424 if (prandom_u32_below(rng, 4) == 0) 2425 vec->klen = prandom_u32_below(rng, maxkeysize + 1); 2426 generate_random_bytes(rng, (u8 *)vec->key, vec->klen); 2427 vec->setkey_error = crypto_aead_setkey(tfm, vec->key, vec->klen); 2428 2429 /* IV */ 2430 generate_random_bytes(rng, (u8 *)vec->iv, ivsize); 2431 2432 /* Tag length: in [0, maxauthsize], but usually choose maxauthsize */ 2433 authsize = maxauthsize; 2434 if (prandom_u32_below(rng, 4) == 0) 2435 authsize = prandom_u32_below(rng, maxauthsize + 1); 2436 if (prefer_inauthentic && authsize < MIN_COLLISION_FREE_AUTHSIZE) 2437 authsize = MIN_COLLISION_FREE_AUTHSIZE; 2438 if (WARN_ON(authsize > maxdatasize)) 2439 authsize = maxdatasize; 2440 maxdatasize -= authsize; 2441 vec->setauthsize_error = crypto_aead_setauthsize(tfm, authsize); 2442 2443 /* AAD, plaintext, and ciphertext lengths */ 2444 total_len = generate_random_length(rng, maxdatasize); 2445 if (prandom_u32_below(rng, 4) == 0) 2446 vec->alen = 0; 2447 else 2448 vec->alen = generate_random_length(rng, total_len); 2449 vec->plen = total_len - vec->alen; 2450 vec->clen = vec->plen + authsize; 2451 2452 /* 2453 * Generate the AAD, plaintext, and ciphertext. Not applicable if the 2454 * key or the authentication tag size couldn't be set. 2455 */ 2456 vec->novrfy = 0; 2457 vec->crypt_error = 0; 2458 if (vec->setkey_error == 0 && vec->setauthsize_error == 0) 2459 generate_aead_message(rng, req, suite, vec, prefer_inauthentic); 2460 snprintf(name, max_namelen, 2461 "\"random: alen=%u plen=%u authsize=%u klen=%u novrfy=%d\"", 2462 vec->alen, vec->plen, authsize, vec->klen, vec->novrfy); 2463 } 2464 2465 static void try_to_generate_inauthentic_testvec( 2466 struct aead_extra_tests_ctx *ctx) 2467 { 2468 int i; 2469 2470 for (i = 0; i < 10; i++) { 2471 generate_random_aead_testvec(&ctx->rng, ctx->req, &ctx->vec, 2472 &ctx->test_desc->suite.aead, 2473 ctx->maxkeysize, ctx->maxdatasize, 2474 ctx->vec_name, 2475 sizeof(ctx->vec_name), true); 2476 if (ctx->vec.novrfy) 2477 return; 2478 } 2479 } 2480 2481 /* 2482 * Generate inauthentic test vectors (i.e. ciphertext, AAD pairs that aren't the 2483 * result of an encryption with the key) and verify that decryption fails. 2484 */ 2485 static int test_aead_inauthentic_inputs(struct aead_extra_tests_ctx *ctx) 2486 { 2487 unsigned int i; 2488 int err; 2489 2490 for (i = 0; i < fuzz_iterations * 8; i++) { 2491 /* 2492 * Since this part of the tests isn't comparing the 2493 * implementation to another, there's no point in testing any 2494 * test vectors other than inauthentic ones (vec.novrfy=1) here. 2495 * 2496 * If we're having trouble generating such a test vector, e.g. 2497 * if the algorithm keeps rejecting the generated keys, don't 2498 * retry forever; just continue on. 2499 */ 2500 try_to_generate_inauthentic_testvec(ctx); 2501 if (ctx->vec.novrfy) { 2502 generate_random_testvec_config(&ctx->rng, &ctx->cfg, 2503 ctx->cfgname, 2504 sizeof(ctx->cfgname)); 2505 err = test_aead_vec_cfg(DECRYPT, &ctx->vec, 2506 ctx->vec_name, &ctx->cfg, 2507 ctx->req, ctx->tsgls); 2508 if (err) 2509 return err; 2510 } 2511 cond_resched(); 2512 } 2513 return 0; 2514 } 2515 2516 /* 2517 * Test the AEAD algorithm against the corresponding generic implementation, if 2518 * one is available. 2519 */ 2520 static int test_aead_vs_generic_impl(struct aead_extra_tests_ctx *ctx) 2521 { 2522 struct crypto_aead *tfm = ctx->tfm; 2523 const char *algname = crypto_aead_alg(tfm)->base.cra_name; 2524 const char *driver = crypto_aead_driver_name(tfm); 2525 const char *generic_driver = ctx->test_desc->generic_driver; 2526 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 2527 struct crypto_aead *generic_tfm = NULL; 2528 struct aead_request *generic_req = NULL; 2529 unsigned int i; 2530 int err; 2531 2532 if (!generic_driver) { /* Use default naming convention? */ 2533 err = build_generic_driver_name(algname, _generic_driver); 2534 if (err) 2535 return err; 2536 generic_driver = _generic_driver; 2537 } 2538 2539 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 2540 return 0; 2541 2542 generic_tfm = crypto_alloc_aead(generic_driver, 0, 0); 2543 if (IS_ERR(generic_tfm)) { 2544 err = PTR_ERR(generic_tfm); 2545 if (err == -ENOENT) { 2546 pr_warn("alg: aead: skipping comparison tests for %s because %s is unavailable\n", 2547 driver, generic_driver); 2548 return 0; 2549 } 2550 pr_err("alg: aead: error allocating %s (generic impl of %s): %d\n", 2551 generic_driver, algname, err); 2552 return err; 2553 } 2554 2555 generic_req = aead_request_alloc(generic_tfm, GFP_KERNEL); 2556 if (!generic_req) { 2557 err = -ENOMEM; 2558 goto out; 2559 } 2560 2561 /* Check the algorithm properties for consistency. */ 2562 2563 if (crypto_aead_maxauthsize(tfm) != 2564 crypto_aead_maxauthsize(generic_tfm)) { 2565 pr_err("alg: aead: maxauthsize for %s (%u) doesn't match generic impl (%u)\n", 2566 driver, crypto_aead_maxauthsize(tfm), 2567 crypto_aead_maxauthsize(generic_tfm)); 2568 err = -EINVAL; 2569 goto out; 2570 } 2571 2572 if (crypto_aead_ivsize(tfm) != crypto_aead_ivsize(generic_tfm)) { 2573 pr_err("alg: aead: ivsize for %s (%u) doesn't match generic impl (%u)\n", 2574 driver, crypto_aead_ivsize(tfm), 2575 crypto_aead_ivsize(generic_tfm)); 2576 err = -EINVAL; 2577 goto out; 2578 } 2579 2580 if (crypto_aead_blocksize(tfm) != crypto_aead_blocksize(generic_tfm)) { 2581 pr_err("alg: aead: blocksize for %s (%u) doesn't match generic impl (%u)\n", 2582 driver, crypto_aead_blocksize(tfm), 2583 crypto_aead_blocksize(generic_tfm)); 2584 err = -EINVAL; 2585 goto out; 2586 } 2587 2588 /* 2589 * Now generate test vectors using the generic implementation, and test 2590 * the other implementation against them. 2591 */ 2592 for (i = 0; i < fuzz_iterations * 8; i++) { 2593 generate_random_aead_testvec(&ctx->rng, generic_req, &ctx->vec, 2594 &ctx->test_desc->suite.aead, 2595 ctx->maxkeysize, ctx->maxdatasize, 2596 ctx->vec_name, 2597 sizeof(ctx->vec_name), false); 2598 generate_random_testvec_config(&ctx->rng, &ctx->cfg, 2599 ctx->cfgname, 2600 sizeof(ctx->cfgname)); 2601 if (!ctx->vec.novrfy) { 2602 err = test_aead_vec_cfg(ENCRYPT, &ctx->vec, 2603 ctx->vec_name, &ctx->cfg, 2604 ctx->req, ctx->tsgls); 2605 if (err) 2606 goto out; 2607 } 2608 if (ctx->vec.crypt_error == 0 || ctx->vec.novrfy) { 2609 err = test_aead_vec_cfg(DECRYPT, &ctx->vec, 2610 ctx->vec_name, &ctx->cfg, 2611 ctx->req, ctx->tsgls); 2612 if (err) 2613 goto out; 2614 } 2615 cond_resched(); 2616 } 2617 err = 0; 2618 out: 2619 crypto_free_aead(generic_tfm); 2620 aead_request_free(generic_req); 2621 return err; 2622 } 2623 2624 static int test_aead_extra(const struct alg_test_desc *test_desc, 2625 struct aead_request *req, 2626 struct cipher_test_sglists *tsgls) 2627 { 2628 struct aead_extra_tests_ctx *ctx; 2629 unsigned int i; 2630 int err; 2631 2632 if (noextratests) 2633 return 0; 2634 2635 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2636 if (!ctx) 2637 return -ENOMEM; 2638 init_rnd_state(&ctx->rng); 2639 ctx->req = req; 2640 ctx->tfm = crypto_aead_reqtfm(req); 2641 ctx->test_desc = test_desc; 2642 ctx->tsgls = tsgls; 2643 ctx->maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 2644 ctx->maxkeysize = 0; 2645 for (i = 0; i < test_desc->suite.aead.count; i++) 2646 ctx->maxkeysize = max_t(unsigned int, ctx->maxkeysize, 2647 test_desc->suite.aead.vecs[i].klen); 2648 2649 ctx->vec.key = kmalloc(ctx->maxkeysize, GFP_KERNEL); 2650 ctx->vec.iv = kmalloc(crypto_aead_ivsize(ctx->tfm), GFP_KERNEL); 2651 ctx->vec.assoc = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2652 ctx->vec.ptext = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2653 ctx->vec.ctext = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2654 if (!ctx->vec.key || !ctx->vec.iv || !ctx->vec.assoc || 2655 !ctx->vec.ptext || !ctx->vec.ctext) { 2656 err = -ENOMEM; 2657 goto out; 2658 } 2659 2660 err = test_aead_vs_generic_impl(ctx); 2661 if (err) 2662 goto out; 2663 2664 err = test_aead_inauthentic_inputs(ctx); 2665 out: 2666 kfree(ctx->vec.key); 2667 kfree(ctx->vec.iv); 2668 kfree(ctx->vec.assoc); 2669 kfree(ctx->vec.ptext); 2670 kfree(ctx->vec.ctext); 2671 kfree(ctx); 2672 return err; 2673 } 2674 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 2675 static int test_aead_extra(const struct alg_test_desc *test_desc, 2676 struct aead_request *req, 2677 struct cipher_test_sglists *tsgls) 2678 { 2679 return 0; 2680 } 2681 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 2682 2683 static int test_aead(int enc, const struct aead_test_suite *suite, 2684 struct aead_request *req, 2685 struct cipher_test_sglists *tsgls) 2686 { 2687 unsigned int i; 2688 int err; 2689 2690 for (i = 0; i < suite->count; i++) { 2691 err = test_aead_vec(enc, &suite->vecs[i], i, req, tsgls); 2692 if (err) 2693 return err; 2694 cond_resched(); 2695 } 2696 return 0; 2697 } 2698 2699 static int alg_test_aead(const struct alg_test_desc *desc, const char *driver, 2700 u32 type, u32 mask) 2701 { 2702 const struct aead_test_suite *suite = &desc->suite.aead; 2703 struct crypto_aead *tfm; 2704 struct aead_request *req = NULL; 2705 struct cipher_test_sglists *tsgls = NULL; 2706 int err; 2707 2708 if (suite->count <= 0) { 2709 pr_err("alg: aead: empty test suite for %s\n", driver); 2710 return -EINVAL; 2711 } 2712 2713 tfm = crypto_alloc_aead(driver, type, mask); 2714 if (IS_ERR(tfm)) { 2715 if (PTR_ERR(tfm) == -ENOENT) 2716 return 0; 2717 pr_err("alg: aead: failed to allocate transform for %s: %ld\n", 2718 driver, PTR_ERR(tfm)); 2719 return PTR_ERR(tfm); 2720 } 2721 driver = crypto_aead_driver_name(tfm); 2722 2723 req = aead_request_alloc(tfm, GFP_KERNEL); 2724 if (!req) { 2725 pr_err("alg: aead: failed to allocate request for %s\n", 2726 driver); 2727 err = -ENOMEM; 2728 goto out; 2729 } 2730 2731 tsgls = alloc_cipher_test_sglists(); 2732 if (!tsgls) { 2733 pr_err("alg: aead: failed to allocate test buffers for %s\n", 2734 driver); 2735 err = -ENOMEM; 2736 goto out; 2737 } 2738 2739 err = test_aead(ENCRYPT, suite, req, tsgls); 2740 if (err) 2741 goto out; 2742 2743 err = test_aead(DECRYPT, suite, req, tsgls); 2744 if (err) 2745 goto out; 2746 2747 err = test_aead_extra(desc, req, tsgls); 2748 out: 2749 free_cipher_test_sglists(tsgls); 2750 aead_request_free(req); 2751 crypto_free_aead(tfm); 2752 return err; 2753 } 2754 2755 static int test_cipher(struct crypto_cipher *tfm, int enc, 2756 const struct cipher_testvec *template, 2757 unsigned int tcount) 2758 { 2759 const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm)); 2760 unsigned int i, j, k; 2761 char *q; 2762 const char *e; 2763 const char *input, *result; 2764 void *data; 2765 char *xbuf[XBUFSIZE]; 2766 int ret = -ENOMEM; 2767 2768 if (testmgr_alloc_buf(xbuf)) 2769 goto out_nobuf; 2770 2771 if (enc == ENCRYPT) 2772 e = "encryption"; 2773 else 2774 e = "decryption"; 2775 2776 j = 0; 2777 for (i = 0; i < tcount; i++) { 2778 2779 if (fips_enabled && template[i].fips_skip) 2780 continue; 2781 2782 input = enc ? template[i].ptext : template[i].ctext; 2783 result = enc ? template[i].ctext : template[i].ptext; 2784 j++; 2785 2786 ret = -EINVAL; 2787 if (WARN_ON(template[i].len > PAGE_SIZE)) 2788 goto out; 2789 2790 data = xbuf[0]; 2791 memcpy(data, input, template[i].len); 2792 2793 crypto_cipher_clear_flags(tfm, ~0); 2794 if (template[i].wk) 2795 crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2796 2797 ret = crypto_cipher_setkey(tfm, template[i].key, 2798 template[i].klen); 2799 if (ret) { 2800 if (ret == template[i].setkey_error) 2801 continue; 2802 pr_err("alg: cipher: %s setkey failed on test vector %u; expected_error=%d, actual_error=%d, flags=%#x\n", 2803 algo, j, template[i].setkey_error, ret, 2804 crypto_cipher_get_flags(tfm)); 2805 goto out; 2806 } 2807 if (template[i].setkey_error) { 2808 pr_err("alg: cipher: %s setkey unexpectedly succeeded on test vector %u; expected_error=%d\n", 2809 algo, j, template[i].setkey_error); 2810 ret = -EINVAL; 2811 goto out; 2812 } 2813 2814 for (k = 0; k < template[i].len; 2815 k += crypto_cipher_blocksize(tfm)) { 2816 if (enc) 2817 crypto_cipher_encrypt_one(tfm, data + k, 2818 data + k); 2819 else 2820 crypto_cipher_decrypt_one(tfm, data + k, 2821 data + k); 2822 } 2823 2824 q = data; 2825 if (memcmp(q, result, template[i].len)) { 2826 printk(KERN_ERR "alg: cipher: Test %d failed " 2827 "on %s for %s\n", j, e, algo); 2828 hexdump(q, template[i].len); 2829 ret = -EINVAL; 2830 goto out; 2831 } 2832 } 2833 2834 ret = 0; 2835 2836 out: 2837 testmgr_free_buf(xbuf); 2838 out_nobuf: 2839 return ret; 2840 } 2841 2842 static int test_skcipher_vec_cfg(int enc, const struct cipher_testvec *vec, 2843 const char *vec_name, 2844 const struct testvec_config *cfg, 2845 struct skcipher_request *req, 2846 struct cipher_test_sglists *tsgls) 2847 { 2848 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 2849 const unsigned int alignmask = crypto_skcipher_alignmask(tfm); 2850 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 2851 const char *driver = crypto_skcipher_driver_name(tfm); 2852 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 2853 const char *op = enc ? "encryption" : "decryption"; 2854 DECLARE_CRYPTO_WAIT(wait); 2855 u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; 2856 u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + 2857 cfg->iv_offset + 2858 (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); 2859 struct kvec input; 2860 int err; 2861 2862 /* Set the key */ 2863 if (vec->wk) 2864 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2865 else 2866 crypto_skcipher_clear_flags(tfm, 2867 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2868 err = do_setkey(crypto_skcipher_setkey, tfm, vec->key, vec->klen, 2869 cfg, alignmask); 2870 if (err) { 2871 if (err == vec->setkey_error) 2872 return 0; 2873 pr_err("alg: skcipher: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 2874 driver, vec_name, vec->setkey_error, err, 2875 crypto_skcipher_get_flags(tfm)); 2876 return err; 2877 } 2878 if (vec->setkey_error) { 2879 pr_err("alg: skcipher: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 2880 driver, vec_name, vec->setkey_error); 2881 return -EINVAL; 2882 } 2883 2884 /* The IV must be copied to a buffer, as the algorithm may modify it */ 2885 if (ivsize) { 2886 if (WARN_ON(ivsize > MAX_IVLEN)) 2887 return -EINVAL; 2888 if (vec->generates_iv && !enc) 2889 memcpy(iv, vec->iv_out, ivsize); 2890 else if (vec->iv) 2891 memcpy(iv, vec->iv, ivsize); 2892 else 2893 memset(iv, 0, ivsize); 2894 } else { 2895 if (vec->generates_iv) { 2896 pr_err("alg: skcipher: %s has ivsize=0 but test vector %s generates IV!\n", 2897 driver, vec_name); 2898 return -EINVAL; 2899 } 2900 iv = NULL; 2901 } 2902 2903 /* Build the src/dst scatterlists */ 2904 input.iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; 2905 input.iov_len = vec->len; 2906 err = build_cipher_test_sglists(tsgls, cfg, alignmask, 2907 vec->len, vec->len, &input, 1); 2908 if (err) { 2909 pr_err("alg: skcipher: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", 2910 driver, op, vec_name, cfg->name); 2911 return err; 2912 } 2913 2914 /* Do the actual encryption or decryption */ 2915 testmgr_poison(req->__ctx, crypto_skcipher_reqsize(tfm)); 2916 skcipher_request_set_callback(req, req_flags, crypto_req_done, &wait); 2917 skcipher_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, 2918 vec->len, iv); 2919 if (cfg->nosimd) 2920 crypto_disable_simd_for_test(); 2921 err = enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req); 2922 if (cfg->nosimd) 2923 crypto_reenable_simd_for_test(); 2924 err = crypto_wait_req(err, &wait); 2925 2926 /* Check that the algorithm didn't overwrite things it shouldn't have */ 2927 if (req->cryptlen != vec->len || 2928 req->iv != iv || 2929 req->src != tsgls->src.sgl_ptr || 2930 req->dst != tsgls->dst.sgl_ptr || 2931 crypto_skcipher_reqtfm(req) != tfm || 2932 req->base.complete != crypto_req_done || 2933 req->base.flags != req_flags || 2934 req->base.data != &wait) { 2935 pr_err("alg: skcipher: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", 2936 driver, op, vec_name, cfg->name); 2937 if (req->cryptlen != vec->len) 2938 pr_err("alg: skcipher: changed 'req->cryptlen'\n"); 2939 if (req->iv != iv) 2940 pr_err("alg: skcipher: changed 'req->iv'\n"); 2941 if (req->src != tsgls->src.sgl_ptr) 2942 pr_err("alg: skcipher: changed 'req->src'\n"); 2943 if (req->dst != tsgls->dst.sgl_ptr) 2944 pr_err("alg: skcipher: changed 'req->dst'\n"); 2945 if (crypto_skcipher_reqtfm(req) != tfm) 2946 pr_err("alg: skcipher: changed 'req->base.tfm'\n"); 2947 if (req->base.complete != crypto_req_done) 2948 pr_err("alg: skcipher: changed 'req->base.complete'\n"); 2949 if (req->base.flags != req_flags) 2950 pr_err("alg: skcipher: changed 'req->base.flags'\n"); 2951 if (req->base.data != &wait) 2952 pr_err("alg: skcipher: changed 'req->base.data'\n"); 2953 return -EINVAL; 2954 } 2955 if (is_test_sglist_corrupted(&tsgls->src)) { 2956 pr_err("alg: skcipher: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", 2957 driver, op, vec_name, cfg->name); 2958 return -EINVAL; 2959 } 2960 if (tsgls->dst.sgl_ptr != tsgls->src.sgl && 2961 is_test_sglist_corrupted(&tsgls->dst)) { 2962 pr_err("alg: skcipher: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", 2963 driver, op, vec_name, cfg->name); 2964 return -EINVAL; 2965 } 2966 2967 /* Check for success or failure */ 2968 if (err) { 2969 if (err == vec->crypt_error) 2970 return 0; 2971 pr_err("alg: skcipher: %s %s failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 2972 driver, op, vec_name, vec->crypt_error, err, cfg->name); 2973 return err; 2974 } 2975 if (vec->crypt_error) { 2976 pr_err("alg: skcipher: %s %s unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 2977 driver, op, vec_name, vec->crypt_error, cfg->name); 2978 return -EINVAL; 2979 } 2980 2981 /* Check for the correct output (ciphertext or plaintext) */ 2982 err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, 2983 vec->len, 0, true); 2984 if (err == -EOVERFLOW) { 2985 pr_err("alg: skcipher: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", 2986 driver, op, vec_name, cfg->name); 2987 return err; 2988 } 2989 if (err) { 2990 pr_err("alg: skcipher: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 2991 driver, op, vec_name, cfg->name); 2992 return err; 2993 } 2994 2995 /* If applicable, check that the algorithm generated the correct IV */ 2996 if (vec->iv_out && memcmp(iv, vec->iv_out, ivsize) != 0) { 2997 pr_err("alg: skcipher: %s %s test failed (wrong output IV) on test vector %s, cfg=\"%s\"\n", 2998 driver, op, vec_name, cfg->name); 2999 hexdump(iv, ivsize); 3000 return -EINVAL; 3001 } 3002 3003 return 0; 3004 } 3005 3006 static int test_skcipher_vec(int enc, const struct cipher_testvec *vec, 3007 unsigned int vec_num, 3008 struct skcipher_request *req, 3009 struct cipher_test_sglists *tsgls) 3010 { 3011 char vec_name[16]; 3012 unsigned int i; 3013 int err; 3014 3015 if (fips_enabled && vec->fips_skip) 3016 return 0; 3017 3018 sprintf(vec_name, "%u", vec_num); 3019 3020 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { 3021 err = test_skcipher_vec_cfg(enc, vec, vec_name, 3022 &default_cipher_testvec_configs[i], 3023 req, tsgls); 3024 if (err) 3025 return err; 3026 } 3027 3028 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 3029 if (!noextratests) { 3030 struct rnd_state rng; 3031 struct testvec_config cfg; 3032 char cfgname[TESTVEC_CONFIG_NAMELEN]; 3033 3034 init_rnd_state(&rng); 3035 3036 for (i = 0; i < fuzz_iterations; i++) { 3037 generate_random_testvec_config(&rng, &cfg, cfgname, 3038 sizeof(cfgname)); 3039 err = test_skcipher_vec_cfg(enc, vec, vec_name, 3040 &cfg, req, tsgls); 3041 if (err) 3042 return err; 3043 cond_resched(); 3044 } 3045 } 3046 #endif 3047 return 0; 3048 } 3049 3050 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 3051 /* 3052 * Generate a symmetric cipher test vector from the given implementation. 3053 * Assumes the buffers in 'vec' were already allocated. 3054 */ 3055 static void generate_random_cipher_testvec(struct rnd_state *rng, 3056 struct skcipher_request *req, 3057 struct cipher_testvec *vec, 3058 unsigned int maxdatasize, 3059 char *name, size_t max_namelen) 3060 { 3061 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 3062 const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); 3063 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 3064 struct scatterlist src, dst; 3065 u8 iv[MAX_IVLEN]; 3066 DECLARE_CRYPTO_WAIT(wait); 3067 3068 /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ 3069 vec->klen = maxkeysize; 3070 if (prandom_u32_below(rng, 4) == 0) 3071 vec->klen = prandom_u32_below(rng, maxkeysize + 1); 3072 generate_random_bytes(rng, (u8 *)vec->key, vec->klen); 3073 vec->setkey_error = crypto_skcipher_setkey(tfm, vec->key, vec->klen); 3074 3075 /* IV */ 3076 generate_random_bytes(rng, (u8 *)vec->iv, ivsize); 3077 3078 /* Plaintext */ 3079 vec->len = generate_random_length(rng, maxdatasize); 3080 generate_random_bytes(rng, (u8 *)vec->ptext, vec->len); 3081 3082 /* If the key couldn't be set, no need to continue to encrypt. */ 3083 if (vec->setkey_error) 3084 goto done; 3085 3086 /* Ciphertext */ 3087 sg_init_one(&src, vec->ptext, vec->len); 3088 sg_init_one(&dst, vec->ctext, vec->len); 3089 memcpy(iv, vec->iv, ivsize); 3090 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 3091 skcipher_request_set_crypt(req, &src, &dst, vec->len, iv); 3092 vec->crypt_error = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 3093 if (vec->crypt_error != 0) { 3094 /* 3095 * The only acceptable error here is for an invalid length, so 3096 * skcipher decryption should fail with the same error too. 3097 * We'll test for this. But to keep the API usage well-defined, 3098 * explicitly initialize the ciphertext buffer too. 3099 */ 3100 memset((u8 *)vec->ctext, 0, vec->len); 3101 } 3102 done: 3103 snprintf(name, max_namelen, "\"random: len=%u klen=%u\"", 3104 vec->len, vec->klen); 3105 } 3106 3107 /* 3108 * Test the skcipher algorithm represented by @req against the corresponding 3109 * generic implementation, if one is available. 3110 */ 3111 static int test_skcipher_vs_generic_impl(const char *generic_driver, 3112 struct skcipher_request *req, 3113 struct cipher_test_sglists *tsgls) 3114 { 3115 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 3116 const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); 3117 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 3118 const unsigned int blocksize = crypto_skcipher_blocksize(tfm); 3119 const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 3120 const char *algname = crypto_skcipher_alg(tfm)->base.cra_name; 3121 const char *driver = crypto_skcipher_driver_name(tfm); 3122 struct rnd_state rng; 3123 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 3124 struct crypto_skcipher *generic_tfm = NULL; 3125 struct skcipher_request *generic_req = NULL; 3126 unsigned int i; 3127 struct cipher_testvec vec = { 0 }; 3128 char vec_name[64]; 3129 struct testvec_config *cfg; 3130 char cfgname[TESTVEC_CONFIG_NAMELEN]; 3131 int err; 3132 3133 if (noextratests) 3134 return 0; 3135 3136 /* Keywrap isn't supported here yet as it handles its IV differently. */ 3137 if (strncmp(algname, "kw(", 3) == 0) 3138 return 0; 3139 3140 init_rnd_state(&rng); 3141 3142 if (!generic_driver) { /* Use default naming convention? */ 3143 err = build_generic_driver_name(algname, _generic_driver); 3144 if (err) 3145 return err; 3146 generic_driver = _generic_driver; 3147 } 3148 3149 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 3150 return 0; 3151 3152 generic_tfm = crypto_alloc_skcipher(generic_driver, 0, 0); 3153 if (IS_ERR(generic_tfm)) { 3154 err = PTR_ERR(generic_tfm); 3155 if (err == -ENOENT) { 3156 pr_warn("alg: skcipher: skipping comparison tests for %s because %s is unavailable\n", 3157 driver, generic_driver); 3158 return 0; 3159 } 3160 pr_err("alg: skcipher: error allocating %s (generic impl of %s): %d\n", 3161 generic_driver, algname, err); 3162 return err; 3163 } 3164 3165 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 3166 if (!cfg) { 3167 err = -ENOMEM; 3168 goto out; 3169 } 3170 3171 generic_req = skcipher_request_alloc(generic_tfm, GFP_KERNEL); 3172 if (!generic_req) { 3173 err = -ENOMEM; 3174 goto out; 3175 } 3176 3177 /* Check the algorithm properties for consistency. */ 3178 3179 if (crypto_skcipher_min_keysize(tfm) != 3180 crypto_skcipher_min_keysize(generic_tfm)) { 3181 pr_err("alg: skcipher: min keysize for %s (%u) doesn't match generic impl (%u)\n", 3182 driver, crypto_skcipher_min_keysize(tfm), 3183 crypto_skcipher_min_keysize(generic_tfm)); 3184 err = -EINVAL; 3185 goto out; 3186 } 3187 3188 if (maxkeysize != crypto_skcipher_max_keysize(generic_tfm)) { 3189 pr_err("alg: skcipher: max keysize for %s (%u) doesn't match generic impl (%u)\n", 3190 driver, maxkeysize, 3191 crypto_skcipher_max_keysize(generic_tfm)); 3192 err = -EINVAL; 3193 goto out; 3194 } 3195 3196 if (ivsize != crypto_skcipher_ivsize(generic_tfm)) { 3197 pr_err("alg: skcipher: ivsize for %s (%u) doesn't match generic impl (%u)\n", 3198 driver, ivsize, crypto_skcipher_ivsize(generic_tfm)); 3199 err = -EINVAL; 3200 goto out; 3201 } 3202 3203 if (blocksize != crypto_skcipher_blocksize(generic_tfm)) { 3204 pr_err("alg: skcipher: blocksize for %s (%u) doesn't match generic impl (%u)\n", 3205 driver, blocksize, 3206 crypto_skcipher_blocksize(generic_tfm)); 3207 err = -EINVAL; 3208 goto out; 3209 } 3210 3211 /* 3212 * Now generate test vectors using the generic implementation, and test 3213 * the other implementation against them. 3214 */ 3215 3216 vec.key = kmalloc(maxkeysize, GFP_KERNEL); 3217 vec.iv = kmalloc(ivsize, GFP_KERNEL); 3218 vec.ptext = kmalloc(maxdatasize, GFP_KERNEL); 3219 vec.ctext = kmalloc(maxdatasize, GFP_KERNEL); 3220 if (!vec.key || !vec.iv || !vec.ptext || !vec.ctext) { 3221 err = -ENOMEM; 3222 goto out; 3223 } 3224 3225 for (i = 0; i < fuzz_iterations * 8; i++) { 3226 generate_random_cipher_testvec(&rng, generic_req, &vec, 3227 maxdatasize, 3228 vec_name, sizeof(vec_name)); 3229 generate_random_testvec_config(&rng, cfg, cfgname, 3230 sizeof(cfgname)); 3231 3232 err = test_skcipher_vec_cfg(ENCRYPT, &vec, vec_name, 3233 cfg, req, tsgls); 3234 if (err) 3235 goto out; 3236 err = test_skcipher_vec_cfg(DECRYPT, &vec, vec_name, 3237 cfg, req, tsgls); 3238 if (err) 3239 goto out; 3240 cond_resched(); 3241 } 3242 err = 0; 3243 out: 3244 kfree(cfg); 3245 kfree(vec.key); 3246 kfree(vec.iv); 3247 kfree(vec.ptext); 3248 kfree(vec.ctext); 3249 crypto_free_skcipher(generic_tfm); 3250 skcipher_request_free(generic_req); 3251 return err; 3252 } 3253 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 3254 static int test_skcipher_vs_generic_impl(const char *generic_driver, 3255 struct skcipher_request *req, 3256 struct cipher_test_sglists *tsgls) 3257 { 3258 return 0; 3259 } 3260 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 3261 3262 static int test_skcipher(int enc, const struct cipher_test_suite *suite, 3263 struct skcipher_request *req, 3264 struct cipher_test_sglists *tsgls) 3265 { 3266 unsigned int i; 3267 int err; 3268 3269 for (i = 0; i < suite->count; i++) { 3270 err = test_skcipher_vec(enc, &suite->vecs[i], i, req, tsgls); 3271 if (err) 3272 return err; 3273 cond_resched(); 3274 } 3275 return 0; 3276 } 3277 3278 static int alg_test_skcipher(const struct alg_test_desc *desc, 3279 const char *driver, u32 type, u32 mask) 3280 { 3281 const struct cipher_test_suite *suite = &desc->suite.cipher; 3282 struct crypto_skcipher *tfm; 3283 struct skcipher_request *req = NULL; 3284 struct cipher_test_sglists *tsgls = NULL; 3285 int err; 3286 3287 if (suite->count <= 0) { 3288 pr_err("alg: skcipher: empty test suite for %s\n", driver); 3289 return -EINVAL; 3290 } 3291 3292 tfm = crypto_alloc_skcipher(driver, type, mask); 3293 if (IS_ERR(tfm)) { 3294 if (PTR_ERR(tfm) == -ENOENT) 3295 return 0; 3296 pr_err("alg: skcipher: failed to allocate transform for %s: %ld\n", 3297 driver, PTR_ERR(tfm)); 3298 return PTR_ERR(tfm); 3299 } 3300 driver = crypto_skcipher_driver_name(tfm); 3301 3302 req = skcipher_request_alloc(tfm, GFP_KERNEL); 3303 if (!req) { 3304 pr_err("alg: skcipher: failed to allocate request for %s\n", 3305 driver); 3306 err = -ENOMEM; 3307 goto out; 3308 } 3309 3310 tsgls = alloc_cipher_test_sglists(); 3311 if (!tsgls) { 3312 pr_err("alg: skcipher: failed to allocate test buffers for %s\n", 3313 driver); 3314 err = -ENOMEM; 3315 goto out; 3316 } 3317 3318 err = test_skcipher(ENCRYPT, suite, req, tsgls); 3319 if (err) 3320 goto out; 3321 3322 err = test_skcipher(DECRYPT, suite, req, tsgls); 3323 if (err) 3324 goto out; 3325 3326 err = test_skcipher_vs_generic_impl(desc->generic_driver, req, tsgls); 3327 out: 3328 free_cipher_test_sglists(tsgls); 3329 skcipher_request_free(req); 3330 crypto_free_skcipher(tfm); 3331 return err; 3332 } 3333 3334 static int test_comp(struct crypto_comp *tfm, 3335 const struct comp_testvec *ctemplate, 3336 const struct comp_testvec *dtemplate, 3337 int ctcount, int dtcount) 3338 { 3339 const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm)); 3340 char *output, *decomp_output; 3341 unsigned int i; 3342 int ret; 3343 3344 output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3345 if (!output) 3346 return -ENOMEM; 3347 3348 decomp_output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3349 if (!decomp_output) { 3350 kfree(output); 3351 return -ENOMEM; 3352 } 3353 3354 for (i = 0; i < ctcount; i++) { 3355 int ilen; 3356 unsigned int dlen = COMP_BUF_SIZE; 3357 3358 memset(output, 0, COMP_BUF_SIZE); 3359 memset(decomp_output, 0, COMP_BUF_SIZE); 3360 3361 ilen = ctemplate[i].inlen; 3362 ret = crypto_comp_compress(tfm, ctemplate[i].input, 3363 ilen, output, &dlen); 3364 if (ret) { 3365 printk(KERN_ERR "alg: comp: compression failed " 3366 "on test %d for %s: ret=%d\n", i + 1, algo, 3367 -ret); 3368 goto out; 3369 } 3370 3371 ilen = dlen; 3372 dlen = COMP_BUF_SIZE; 3373 ret = crypto_comp_decompress(tfm, output, 3374 ilen, decomp_output, &dlen); 3375 if (ret) { 3376 pr_err("alg: comp: compression failed: decompress: on test %d for %s failed: ret=%d\n", 3377 i + 1, algo, -ret); 3378 goto out; 3379 } 3380 3381 if (dlen != ctemplate[i].inlen) { 3382 printk(KERN_ERR "alg: comp: Compression test %d " 3383 "failed for %s: output len = %d\n", i + 1, algo, 3384 dlen); 3385 ret = -EINVAL; 3386 goto out; 3387 } 3388 3389 if (memcmp(decomp_output, ctemplate[i].input, 3390 ctemplate[i].inlen)) { 3391 pr_err("alg: comp: compression failed: output differs: on test %d for %s\n", 3392 i + 1, algo); 3393 hexdump(decomp_output, dlen); 3394 ret = -EINVAL; 3395 goto out; 3396 } 3397 } 3398 3399 for (i = 0; i < dtcount; i++) { 3400 int ilen; 3401 unsigned int dlen = COMP_BUF_SIZE; 3402 3403 memset(decomp_output, 0, COMP_BUF_SIZE); 3404 3405 ilen = dtemplate[i].inlen; 3406 ret = crypto_comp_decompress(tfm, dtemplate[i].input, 3407 ilen, decomp_output, &dlen); 3408 if (ret) { 3409 printk(KERN_ERR "alg: comp: decompression failed " 3410 "on test %d for %s: ret=%d\n", i + 1, algo, 3411 -ret); 3412 goto out; 3413 } 3414 3415 if (dlen != dtemplate[i].outlen) { 3416 printk(KERN_ERR "alg: comp: Decompression test %d " 3417 "failed for %s: output len = %d\n", i + 1, algo, 3418 dlen); 3419 ret = -EINVAL; 3420 goto out; 3421 } 3422 3423 if (memcmp(decomp_output, dtemplate[i].output, dlen)) { 3424 printk(KERN_ERR "alg: comp: Decompression test %d " 3425 "failed for %s\n", i + 1, algo); 3426 hexdump(decomp_output, dlen); 3427 ret = -EINVAL; 3428 goto out; 3429 } 3430 } 3431 3432 ret = 0; 3433 3434 out: 3435 kfree(decomp_output); 3436 kfree(output); 3437 return ret; 3438 } 3439 3440 static int test_acomp(struct crypto_acomp *tfm, 3441 const struct comp_testvec *ctemplate, 3442 const struct comp_testvec *dtemplate, 3443 int ctcount, int dtcount) 3444 { 3445 const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm)); 3446 unsigned int i; 3447 char *output, *decomp_out; 3448 int ret; 3449 struct scatterlist src, dst; 3450 struct acomp_req *req; 3451 struct crypto_wait wait; 3452 3453 output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3454 if (!output) 3455 return -ENOMEM; 3456 3457 decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3458 if (!decomp_out) { 3459 kfree(output); 3460 return -ENOMEM; 3461 } 3462 3463 for (i = 0; i < ctcount; i++) { 3464 unsigned int dlen = COMP_BUF_SIZE; 3465 int ilen = ctemplate[i].inlen; 3466 void *input_vec; 3467 3468 input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL); 3469 if (!input_vec) { 3470 ret = -ENOMEM; 3471 goto out; 3472 } 3473 3474 memset(output, 0, dlen); 3475 crypto_init_wait(&wait); 3476 sg_init_one(&src, input_vec, ilen); 3477 sg_init_one(&dst, output, dlen); 3478 3479 req = acomp_request_alloc(tfm); 3480 if (!req) { 3481 pr_err("alg: acomp: request alloc failed for %s\n", 3482 algo); 3483 kfree(input_vec); 3484 ret = -ENOMEM; 3485 goto out; 3486 } 3487 3488 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3489 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3490 crypto_req_done, &wait); 3491 3492 ret = crypto_wait_req(crypto_acomp_compress(req), &wait); 3493 if (ret) { 3494 pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", 3495 i + 1, algo, -ret); 3496 kfree(input_vec); 3497 acomp_request_free(req); 3498 goto out; 3499 } 3500 3501 ilen = req->dlen; 3502 dlen = COMP_BUF_SIZE; 3503 sg_init_one(&src, output, ilen); 3504 sg_init_one(&dst, decomp_out, dlen); 3505 crypto_init_wait(&wait); 3506 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3507 3508 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3509 if (ret) { 3510 pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", 3511 i + 1, algo, -ret); 3512 kfree(input_vec); 3513 acomp_request_free(req); 3514 goto out; 3515 } 3516 3517 if (req->dlen != ctemplate[i].inlen) { 3518 pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n", 3519 i + 1, algo, req->dlen); 3520 ret = -EINVAL; 3521 kfree(input_vec); 3522 acomp_request_free(req); 3523 goto out; 3524 } 3525 3526 if (memcmp(input_vec, decomp_out, req->dlen)) { 3527 pr_err("alg: acomp: Compression test %d failed for %s\n", 3528 i + 1, algo); 3529 hexdump(output, req->dlen); 3530 ret = -EINVAL; 3531 kfree(input_vec); 3532 acomp_request_free(req); 3533 goto out; 3534 } 3535 3536 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 3537 crypto_init_wait(&wait); 3538 sg_init_one(&src, input_vec, ilen); 3539 acomp_request_set_params(req, &src, NULL, ilen, 0); 3540 3541 ret = crypto_wait_req(crypto_acomp_compress(req), &wait); 3542 if (ret) { 3543 pr_err("alg: acomp: compression failed on NULL dst buffer test %d for %s: ret=%d\n", 3544 i + 1, algo, -ret); 3545 kfree(input_vec); 3546 acomp_request_free(req); 3547 goto out; 3548 } 3549 #endif 3550 3551 kfree(input_vec); 3552 acomp_request_free(req); 3553 } 3554 3555 for (i = 0; i < dtcount; i++) { 3556 unsigned int dlen = COMP_BUF_SIZE; 3557 int ilen = dtemplate[i].inlen; 3558 void *input_vec; 3559 3560 input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL); 3561 if (!input_vec) { 3562 ret = -ENOMEM; 3563 goto out; 3564 } 3565 3566 memset(output, 0, dlen); 3567 crypto_init_wait(&wait); 3568 sg_init_one(&src, input_vec, ilen); 3569 sg_init_one(&dst, output, dlen); 3570 3571 req = acomp_request_alloc(tfm); 3572 if (!req) { 3573 pr_err("alg: acomp: request alloc failed for %s\n", 3574 algo); 3575 kfree(input_vec); 3576 ret = -ENOMEM; 3577 goto out; 3578 } 3579 3580 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3581 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3582 crypto_req_done, &wait); 3583 3584 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3585 if (ret) { 3586 pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n", 3587 i + 1, algo, -ret); 3588 kfree(input_vec); 3589 acomp_request_free(req); 3590 goto out; 3591 } 3592 3593 if (req->dlen != dtemplate[i].outlen) { 3594 pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n", 3595 i + 1, algo, req->dlen); 3596 ret = -EINVAL; 3597 kfree(input_vec); 3598 acomp_request_free(req); 3599 goto out; 3600 } 3601 3602 if (memcmp(output, dtemplate[i].output, req->dlen)) { 3603 pr_err("alg: acomp: Decompression test %d failed for %s\n", 3604 i + 1, algo); 3605 hexdump(output, req->dlen); 3606 ret = -EINVAL; 3607 kfree(input_vec); 3608 acomp_request_free(req); 3609 goto out; 3610 } 3611 3612 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 3613 crypto_init_wait(&wait); 3614 acomp_request_set_params(req, &src, NULL, ilen, 0); 3615 3616 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3617 if (ret) { 3618 pr_err("alg: acomp: decompression failed on NULL dst buffer test %d for %s: ret=%d\n", 3619 i + 1, algo, -ret); 3620 kfree(input_vec); 3621 acomp_request_free(req); 3622 goto out; 3623 } 3624 #endif 3625 3626 kfree(input_vec); 3627 acomp_request_free(req); 3628 } 3629 3630 ret = 0; 3631 3632 out: 3633 kfree(decomp_out); 3634 kfree(output); 3635 return ret; 3636 } 3637 3638 static int test_cprng(struct crypto_rng *tfm, 3639 const struct cprng_testvec *template, 3640 unsigned int tcount) 3641 { 3642 const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm)); 3643 int err = 0, i, j, seedsize; 3644 u8 *seed; 3645 char result[32]; 3646 3647 seedsize = crypto_rng_seedsize(tfm); 3648 3649 seed = kmalloc(seedsize, GFP_KERNEL); 3650 if (!seed) { 3651 printk(KERN_ERR "alg: cprng: Failed to allocate seed space " 3652 "for %s\n", algo); 3653 return -ENOMEM; 3654 } 3655 3656 for (i = 0; i < tcount; i++) { 3657 memset(result, 0, 32); 3658 3659 memcpy(seed, template[i].v, template[i].vlen); 3660 memcpy(seed + template[i].vlen, template[i].key, 3661 template[i].klen); 3662 memcpy(seed + template[i].vlen + template[i].klen, 3663 template[i].dt, template[i].dtlen); 3664 3665 err = crypto_rng_reset(tfm, seed, seedsize); 3666 if (err) { 3667 printk(KERN_ERR "alg: cprng: Failed to reset rng " 3668 "for %s\n", algo); 3669 goto out; 3670 } 3671 3672 for (j = 0; j < template[i].loops; j++) { 3673 err = crypto_rng_get_bytes(tfm, result, 3674 template[i].rlen); 3675 if (err < 0) { 3676 printk(KERN_ERR "alg: cprng: Failed to obtain " 3677 "the correct amount of random data for " 3678 "%s (requested %d)\n", algo, 3679 template[i].rlen); 3680 goto out; 3681 } 3682 } 3683 3684 err = memcmp(result, template[i].result, 3685 template[i].rlen); 3686 if (err) { 3687 printk(KERN_ERR "alg: cprng: Test %d failed for %s\n", 3688 i, algo); 3689 hexdump(result, template[i].rlen); 3690 err = -EINVAL; 3691 goto out; 3692 } 3693 } 3694 3695 out: 3696 kfree(seed); 3697 return err; 3698 } 3699 3700 static int alg_test_cipher(const struct alg_test_desc *desc, 3701 const char *driver, u32 type, u32 mask) 3702 { 3703 const struct cipher_test_suite *suite = &desc->suite.cipher; 3704 struct crypto_cipher *tfm; 3705 int err; 3706 3707 tfm = crypto_alloc_cipher(driver, type, mask); 3708 if (IS_ERR(tfm)) { 3709 if (PTR_ERR(tfm) == -ENOENT) 3710 return 0; 3711 printk(KERN_ERR "alg: cipher: Failed to load transform for " 3712 "%s: %ld\n", driver, PTR_ERR(tfm)); 3713 return PTR_ERR(tfm); 3714 } 3715 3716 err = test_cipher(tfm, ENCRYPT, suite->vecs, suite->count); 3717 if (!err) 3718 err = test_cipher(tfm, DECRYPT, suite->vecs, suite->count); 3719 3720 crypto_free_cipher(tfm); 3721 return err; 3722 } 3723 3724 static int alg_test_comp(const struct alg_test_desc *desc, const char *driver, 3725 u32 type, u32 mask) 3726 { 3727 struct crypto_comp *comp; 3728 struct crypto_acomp *acomp; 3729 int err; 3730 u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK; 3731 3732 if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) { 3733 acomp = crypto_alloc_acomp(driver, type, mask); 3734 if (IS_ERR(acomp)) { 3735 if (PTR_ERR(acomp) == -ENOENT) 3736 return 0; 3737 pr_err("alg: acomp: Failed to load transform for %s: %ld\n", 3738 driver, PTR_ERR(acomp)); 3739 return PTR_ERR(acomp); 3740 } 3741 err = test_acomp(acomp, desc->suite.comp.comp.vecs, 3742 desc->suite.comp.decomp.vecs, 3743 desc->suite.comp.comp.count, 3744 desc->suite.comp.decomp.count); 3745 crypto_free_acomp(acomp); 3746 } else { 3747 comp = crypto_alloc_comp(driver, type, mask); 3748 if (IS_ERR(comp)) { 3749 if (PTR_ERR(comp) == -ENOENT) 3750 return 0; 3751 pr_err("alg: comp: Failed to load transform for %s: %ld\n", 3752 driver, PTR_ERR(comp)); 3753 return PTR_ERR(comp); 3754 } 3755 3756 err = test_comp(comp, desc->suite.comp.comp.vecs, 3757 desc->suite.comp.decomp.vecs, 3758 desc->suite.comp.comp.count, 3759 desc->suite.comp.decomp.count); 3760 3761 crypto_free_comp(comp); 3762 } 3763 return err; 3764 } 3765 3766 static int alg_test_crc32c(const struct alg_test_desc *desc, 3767 const char *driver, u32 type, u32 mask) 3768 { 3769 struct crypto_shash *tfm; 3770 __le32 val; 3771 int err; 3772 3773 err = alg_test_hash(desc, driver, type, mask); 3774 if (err) 3775 return err; 3776 3777 tfm = crypto_alloc_shash(driver, type, mask); 3778 if (IS_ERR(tfm)) { 3779 if (PTR_ERR(tfm) == -ENOENT) { 3780 /* 3781 * This crc32c implementation is only available through 3782 * ahash API, not the shash API, so the remaining part 3783 * of the test is not applicable to it. 3784 */ 3785 return 0; 3786 } 3787 printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: " 3788 "%ld\n", driver, PTR_ERR(tfm)); 3789 return PTR_ERR(tfm); 3790 } 3791 driver = crypto_shash_driver_name(tfm); 3792 3793 do { 3794 SHASH_DESC_ON_STACK(shash, tfm); 3795 u32 *ctx = (u32 *)shash_desc_ctx(shash); 3796 3797 shash->tfm = tfm; 3798 3799 *ctx = 420553207; 3800 err = crypto_shash_final(shash, (u8 *)&val); 3801 if (err) { 3802 printk(KERN_ERR "alg: crc32c: Operation failed for " 3803 "%s: %d\n", driver, err); 3804 break; 3805 } 3806 3807 if (val != cpu_to_le32(~420553207)) { 3808 pr_err("alg: crc32c: Test failed for %s: %u\n", 3809 driver, le32_to_cpu(val)); 3810 err = -EINVAL; 3811 } 3812 } while (0); 3813 3814 crypto_free_shash(tfm); 3815 3816 return err; 3817 } 3818 3819 static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver, 3820 u32 type, u32 mask) 3821 { 3822 struct crypto_rng *rng; 3823 int err; 3824 3825 rng = crypto_alloc_rng(driver, type, mask); 3826 if (IS_ERR(rng)) { 3827 if (PTR_ERR(rng) == -ENOENT) 3828 return 0; 3829 printk(KERN_ERR "alg: cprng: Failed to load transform for %s: " 3830 "%ld\n", driver, PTR_ERR(rng)); 3831 return PTR_ERR(rng); 3832 } 3833 3834 err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count); 3835 3836 crypto_free_rng(rng); 3837 3838 return err; 3839 } 3840 3841 3842 static int drbg_cavs_test(const struct drbg_testvec *test, int pr, 3843 const char *driver, u32 type, u32 mask) 3844 { 3845 int ret = -EAGAIN; 3846 struct crypto_rng *drng; 3847 struct drbg_test_data test_data; 3848 struct drbg_string addtl, pers, testentropy; 3849 unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL); 3850 3851 if (!buf) 3852 return -ENOMEM; 3853 3854 drng = crypto_alloc_rng(driver, type, mask); 3855 if (IS_ERR(drng)) { 3856 kfree_sensitive(buf); 3857 if (PTR_ERR(drng) == -ENOENT) 3858 return 0; 3859 printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for " 3860 "%s\n", driver); 3861 return PTR_ERR(drng); 3862 } 3863 3864 test_data.testentropy = &testentropy; 3865 drbg_string_fill(&testentropy, test->entropy, test->entropylen); 3866 drbg_string_fill(&pers, test->pers, test->perslen); 3867 ret = crypto_drbg_reset_test(drng, &pers, &test_data); 3868 if (ret) { 3869 printk(KERN_ERR "alg: drbg: Failed to reset rng\n"); 3870 goto outbuf; 3871 } 3872 3873 drbg_string_fill(&addtl, test->addtla, test->addtllen); 3874 if (pr) { 3875 drbg_string_fill(&testentropy, test->entpra, test->entprlen); 3876 ret = crypto_drbg_get_bytes_addtl_test(drng, 3877 buf, test->expectedlen, &addtl, &test_data); 3878 } else { 3879 ret = crypto_drbg_get_bytes_addtl(drng, 3880 buf, test->expectedlen, &addtl); 3881 } 3882 if (ret < 0) { 3883 printk(KERN_ERR "alg: drbg: could not obtain random data for " 3884 "driver %s\n", driver); 3885 goto outbuf; 3886 } 3887 3888 drbg_string_fill(&addtl, test->addtlb, test->addtllen); 3889 if (pr) { 3890 drbg_string_fill(&testentropy, test->entprb, test->entprlen); 3891 ret = crypto_drbg_get_bytes_addtl_test(drng, 3892 buf, test->expectedlen, &addtl, &test_data); 3893 } else { 3894 ret = crypto_drbg_get_bytes_addtl(drng, 3895 buf, test->expectedlen, &addtl); 3896 } 3897 if (ret < 0) { 3898 printk(KERN_ERR "alg: drbg: could not obtain random data for " 3899 "driver %s\n", driver); 3900 goto outbuf; 3901 } 3902 3903 ret = memcmp(test->expected, buf, test->expectedlen); 3904 3905 outbuf: 3906 crypto_free_rng(drng); 3907 kfree_sensitive(buf); 3908 return ret; 3909 } 3910 3911 3912 static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver, 3913 u32 type, u32 mask) 3914 { 3915 int err = 0; 3916 int pr = 0; 3917 int i = 0; 3918 const struct drbg_testvec *template = desc->suite.drbg.vecs; 3919 unsigned int tcount = desc->suite.drbg.count; 3920 3921 if (0 == memcmp(driver, "drbg_pr_", 8)) 3922 pr = 1; 3923 3924 for (i = 0; i < tcount; i++) { 3925 err = drbg_cavs_test(&template[i], pr, driver, type, mask); 3926 if (err) { 3927 printk(KERN_ERR "alg: drbg: Test %d failed for %s\n", 3928 i, driver); 3929 err = -EINVAL; 3930 break; 3931 } 3932 } 3933 return err; 3934 3935 } 3936 3937 static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec, 3938 const char *alg) 3939 { 3940 struct kpp_request *req; 3941 void *input_buf = NULL; 3942 void *output_buf = NULL; 3943 void *a_public = NULL; 3944 void *a_ss = NULL; 3945 void *shared_secret = NULL; 3946 struct crypto_wait wait; 3947 unsigned int out_len_max; 3948 int err = -ENOMEM; 3949 struct scatterlist src, dst; 3950 3951 req = kpp_request_alloc(tfm, GFP_KERNEL); 3952 if (!req) 3953 return err; 3954 3955 crypto_init_wait(&wait); 3956 3957 err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size); 3958 if (err < 0) 3959 goto free_req; 3960 3961 out_len_max = crypto_kpp_maxsize(tfm); 3962 output_buf = kzalloc(out_len_max, GFP_KERNEL); 3963 if (!output_buf) { 3964 err = -ENOMEM; 3965 goto free_req; 3966 } 3967 3968 /* Use appropriate parameter as base */ 3969 kpp_request_set_input(req, NULL, 0); 3970 sg_init_one(&dst, output_buf, out_len_max); 3971 kpp_request_set_output(req, &dst, out_len_max); 3972 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3973 crypto_req_done, &wait); 3974 3975 /* Compute party A's public key */ 3976 err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait); 3977 if (err) { 3978 pr_err("alg: %s: Party A: generate public key test failed. err %d\n", 3979 alg, err); 3980 goto free_output; 3981 } 3982 3983 if (vec->genkey) { 3984 /* Save party A's public key */ 3985 a_public = kmemdup(sg_virt(req->dst), out_len_max, GFP_KERNEL); 3986 if (!a_public) { 3987 err = -ENOMEM; 3988 goto free_output; 3989 } 3990 } else { 3991 /* Verify calculated public key */ 3992 if (memcmp(vec->expected_a_public, sg_virt(req->dst), 3993 vec->expected_a_public_size)) { 3994 pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n", 3995 alg); 3996 err = -EINVAL; 3997 goto free_output; 3998 } 3999 } 4000 4001 /* Calculate shared secret key by using counter part (b) public key. */ 4002 input_buf = kmemdup(vec->b_public, vec->b_public_size, GFP_KERNEL); 4003 if (!input_buf) { 4004 err = -ENOMEM; 4005 goto free_output; 4006 } 4007 4008 sg_init_one(&src, input_buf, vec->b_public_size); 4009 sg_init_one(&dst, output_buf, out_len_max); 4010 kpp_request_set_input(req, &src, vec->b_public_size); 4011 kpp_request_set_output(req, &dst, out_len_max); 4012 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 4013 crypto_req_done, &wait); 4014 err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); 4015 if (err) { 4016 pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n", 4017 alg, err); 4018 goto free_all; 4019 } 4020 4021 if (vec->genkey) { 4022 /* Save the shared secret obtained by party A */ 4023 a_ss = kmemdup(sg_virt(req->dst), vec->expected_ss_size, GFP_KERNEL); 4024 if (!a_ss) { 4025 err = -ENOMEM; 4026 goto free_all; 4027 } 4028 4029 /* 4030 * Calculate party B's shared secret by using party A's 4031 * public key. 4032 */ 4033 err = crypto_kpp_set_secret(tfm, vec->b_secret, 4034 vec->b_secret_size); 4035 if (err < 0) 4036 goto free_all; 4037 4038 sg_init_one(&src, a_public, vec->expected_a_public_size); 4039 sg_init_one(&dst, output_buf, out_len_max); 4040 kpp_request_set_input(req, &src, vec->expected_a_public_size); 4041 kpp_request_set_output(req, &dst, out_len_max); 4042 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 4043 crypto_req_done, &wait); 4044 err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), 4045 &wait); 4046 if (err) { 4047 pr_err("alg: %s: Party B: compute shared secret failed. err %d\n", 4048 alg, err); 4049 goto free_all; 4050 } 4051 4052 shared_secret = a_ss; 4053 } else { 4054 shared_secret = (void *)vec->expected_ss; 4055 } 4056 4057 /* 4058 * verify shared secret from which the user will derive 4059 * secret key by executing whatever hash it has chosen 4060 */ 4061 if (memcmp(shared_secret, sg_virt(req->dst), 4062 vec->expected_ss_size)) { 4063 pr_err("alg: %s: compute shared secret test failed. Invalid output\n", 4064 alg); 4065 err = -EINVAL; 4066 } 4067 4068 free_all: 4069 kfree(a_ss); 4070 kfree(input_buf); 4071 free_output: 4072 kfree(a_public); 4073 kfree(output_buf); 4074 free_req: 4075 kpp_request_free(req); 4076 return err; 4077 } 4078 4079 static int test_kpp(struct crypto_kpp *tfm, const char *alg, 4080 const struct kpp_testvec *vecs, unsigned int tcount) 4081 { 4082 int ret, i; 4083 4084 for (i = 0; i < tcount; i++) { 4085 ret = do_test_kpp(tfm, vecs++, alg); 4086 if (ret) { 4087 pr_err("alg: %s: test failed on vector %d, err=%d\n", 4088 alg, i + 1, ret); 4089 return ret; 4090 } 4091 } 4092 return 0; 4093 } 4094 4095 static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver, 4096 u32 type, u32 mask) 4097 { 4098 struct crypto_kpp *tfm; 4099 int err = 0; 4100 4101 tfm = crypto_alloc_kpp(driver, type, mask); 4102 if (IS_ERR(tfm)) { 4103 if (PTR_ERR(tfm) == -ENOENT) 4104 return 0; 4105 pr_err("alg: kpp: Failed to load tfm for %s: %ld\n", 4106 driver, PTR_ERR(tfm)); 4107 return PTR_ERR(tfm); 4108 } 4109 if (desc->suite.kpp.vecs) 4110 err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs, 4111 desc->suite.kpp.count); 4112 4113 crypto_free_kpp(tfm); 4114 return err; 4115 } 4116 4117 static u8 *test_pack_u32(u8 *dst, u32 val) 4118 { 4119 memcpy(dst, &val, sizeof(val)); 4120 return dst + sizeof(val); 4121 } 4122 4123 static int test_akcipher_one(struct crypto_akcipher *tfm, 4124 const struct akcipher_testvec *vecs) 4125 { 4126 char *xbuf[XBUFSIZE]; 4127 struct akcipher_request *req; 4128 void *outbuf_enc = NULL; 4129 void *outbuf_dec = NULL; 4130 struct crypto_wait wait; 4131 unsigned int out_len_max, out_len = 0; 4132 int err = -ENOMEM; 4133 struct scatterlist src, dst, src_tab[2]; 4134 const char *c; 4135 unsigned int c_size; 4136 4137 if (testmgr_alloc_buf(xbuf)) 4138 return err; 4139 4140 req = akcipher_request_alloc(tfm, GFP_KERNEL); 4141 if (!req) 4142 goto free_xbuf; 4143 4144 crypto_init_wait(&wait); 4145 4146 if (vecs->public_key_vec) 4147 err = crypto_akcipher_set_pub_key(tfm, vecs->key, 4148 vecs->key_len); 4149 else 4150 err = crypto_akcipher_set_priv_key(tfm, vecs->key, 4151 vecs->key_len); 4152 if (err) 4153 goto free_req; 4154 4155 /* First run encrypt test which does not require a private key */ 4156 err = -ENOMEM; 4157 out_len_max = crypto_akcipher_maxsize(tfm); 4158 outbuf_enc = kzalloc(out_len_max, GFP_KERNEL); 4159 if (!outbuf_enc) 4160 goto free_req; 4161 4162 c = vecs->c; 4163 c_size = vecs->c_size; 4164 4165 err = -E2BIG; 4166 if (WARN_ON(vecs->m_size > PAGE_SIZE)) 4167 goto free_all; 4168 memcpy(xbuf[0], vecs->m, vecs->m_size); 4169 4170 sg_init_table(src_tab, 2); 4171 sg_set_buf(&src_tab[0], xbuf[0], 8); 4172 sg_set_buf(&src_tab[1], xbuf[0] + 8, vecs->m_size - 8); 4173 sg_init_one(&dst, outbuf_enc, out_len_max); 4174 akcipher_request_set_crypt(req, src_tab, &dst, vecs->m_size, 4175 out_len_max); 4176 akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 4177 crypto_req_done, &wait); 4178 4179 err = crypto_wait_req(crypto_akcipher_encrypt(req), &wait); 4180 if (err) { 4181 pr_err("alg: akcipher: encrypt test failed. err %d\n", err); 4182 goto free_all; 4183 } 4184 if (c) { 4185 if (req->dst_len != c_size) { 4186 pr_err("alg: akcipher: encrypt test failed. Invalid output len\n"); 4187 err = -EINVAL; 4188 goto free_all; 4189 } 4190 /* verify that encrypted message is equal to expected */ 4191 if (memcmp(c, outbuf_enc, c_size) != 0) { 4192 pr_err("alg: akcipher: encrypt test failed. Invalid output\n"); 4193 hexdump(outbuf_enc, c_size); 4194 err = -EINVAL; 4195 goto free_all; 4196 } 4197 } 4198 4199 /* 4200 * Don't invoke decrypt test which requires a private key 4201 * for vectors with only a public key. 4202 */ 4203 if (vecs->public_key_vec) { 4204 err = 0; 4205 goto free_all; 4206 } 4207 outbuf_dec = kzalloc(out_len_max, GFP_KERNEL); 4208 if (!outbuf_dec) { 4209 err = -ENOMEM; 4210 goto free_all; 4211 } 4212 4213 if (!c) { 4214 c = outbuf_enc; 4215 c_size = req->dst_len; 4216 } 4217 4218 err = -E2BIG; 4219 if (WARN_ON(c_size > PAGE_SIZE)) 4220 goto free_all; 4221 memcpy(xbuf[0], c, c_size); 4222 4223 sg_init_one(&src, xbuf[0], c_size); 4224 sg_init_one(&dst, outbuf_dec, out_len_max); 4225 crypto_init_wait(&wait); 4226 akcipher_request_set_crypt(req, &src, &dst, c_size, out_len_max); 4227 4228 err = crypto_wait_req(crypto_akcipher_decrypt(req), &wait); 4229 if (err) { 4230 pr_err("alg: akcipher: decrypt test failed. err %d\n", err); 4231 goto free_all; 4232 } 4233 out_len = req->dst_len; 4234 if (out_len < vecs->m_size) { 4235 pr_err("alg: akcipher: decrypt test failed. Invalid output len %u\n", 4236 out_len); 4237 err = -EINVAL; 4238 goto free_all; 4239 } 4240 /* verify that decrypted message is equal to the original msg */ 4241 if (memchr_inv(outbuf_dec, 0, out_len - vecs->m_size) || 4242 memcmp(vecs->m, outbuf_dec + out_len - vecs->m_size, 4243 vecs->m_size)) { 4244 pr_err("alg: akcipher: decrypt test failed. Invalid output\n"); 4245 hexdump(outbuf_dec, out_len); 4246 err = -EINVAL; 4247 } 4248 free_all: 4249 kfree(outbuf_dec); 4250 kfree(outbuf_enc); 4251 free_req: 4252 akcipher_request_free(req); 4253 free_xbuf: 4254 testmgr_free_buf(xbuf); 4255 return err; 4256 } 4257 4258 static int test_akcipher(struct crypto_akcipher *tfm, const char *alg, 4259 const struct akcipher_testvec *vecs, 4260 unsigned int tcount) 4261 { 4262 const char *algo = 4263 crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm)); 4264 int ret, i; 4265 4266 for (i = 0; i < tcount; i++) { 4267 ret = test_akcipher_one(tfm, vecs++); 4268 if (!ret) 4269 continue; 4270 4271 pr_err("alg: akcipher: test %d failed for %s, err=%d\n", 4272 i + 1, algo, ret); 4273 return ret; 4274 } 4275 return 0; 4276 } 4277 4278 static int alg_test_akcipher(const struct alg_test_desc *desc, 4279 const char *driver, u32 type, u32 mask) 4280 { 4281 struct crypto_akcipher *tfm; 4282 int err = 0; 4283 4284 tfm = crypto_alloc_akcipher(driver, type, mask); 4285 if (IS_ERR(tfm)) { 4286 if (PTR_ERR(tfm) == -ENOENT) 4287 return 0; 4288 pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n", 4289 driver, PTR_ERR(tfm)); 4290 return PTR_ERR(tfm); 4291 } 4292 if (desc->suite.akcipher.vecs) 4293 err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs, 4294 desc->suite.akcipher.count); 4295 4296 crypto_free_akcipher(tfm); 4297 return err; 4298 } 4299 4300 static int test_sig_one(struct crypto_sig *tfm, const struct sig_testvec *vecs) 4301 { 4302 u8 *ptr, *key __free(kfree); 4303 int err, sig_size; 4304 4305 key = kmalloc(vecs->key_len + 2 * sizeof(u32) + vecs->param_len, 4306 GFP_KERNEL); 4307 if (!key) 4308 return -ENOMEM; 4309 4310 /* ecrdsa expects additional parameters appended to the key */ 4311 memcpy(key, vecs->key, vecs->key_len); 4312 ptr = key + vecs->key_len; 4313 ptr = test_pack_u32(ptr, vecs->algo); 4314 ptr = test_pack_u32(ptr, vecs->param_len); 4315 memcpy(ptr, vecs->params, vecs->param_len); 4316 4317 if (vecs->public_key_vec) 4318 err = crypto_sig_set_pubkey(tfm, key, vecs->key_len); 4319 else 4320 err = crypto_sig_set_privkey(tfm, key, vecs->key_len); 4321 if (err) 4322 return err; 4323 4324 /* 4325 * Run asymmetric signature verification first 4326 * (which does not require a private key) 4327 */ 4328 err = crypto_sig_verify(tfm, vecs->c, vecs->c_size, 4329 vecs->m, vecs->m_size); 4330 if (err) { 4331 pr_err("alg: sig: verify test failed: err %d\n", err); 4332 return err; 4333 } 4334 4335 /* 4336 * Don't invoke sign test (which requires a private key) 4337 * for vectors with only a public key. 4338 */ 4339 if (vecs->public_key_vec) 4340 return 0; 4341 4342 sig_size = crypto_sig_keysize(tfm); 4343 if (sig_size < vecs->c_size) { 4344 pr_err("alg: sig: invalid maxsize %u\n", sig_size); 4345 return -EINVAL; 4346 } 4347 4348 u8 *sig __free(kfree) = kzalloc(sig_size, GFP_KERNEL); 4349 if (!sig) 4350 return -ENOMEM; 4351 4352 /* Run asymmetric signature generation */ 4353 err = crypto_sig_sign(tfm, vecs->m, vecs->m_size, sig, sig_size); 4354 if (err) { 4355 pr_err("alg: sig: sign test failed: err %d\n", err); 4356 return err; 4357 } 4358 4359 /* Verify that generated signature equals cooked signature */ 4360 if (memcmp(sig, vecs->c, vecs->c_size) || 4361 memchr_inv(sig + vecs->c_size, 0, sig_size - vecs->c_size)) { 4362 pr_err("alg: sig: sign test failed: invalid output\n"); 4363 hexdump(sig, sig_size); 4364 return -EINVAL; 4365 } 4366 4367 return 0; 4368 } 4369 4370 static int test_sig(struct crypto_sig *tfm, const char *alg, 4371 const struct sig_testvec *vecs, unsigned int tcount) 4372 { 4373 const char *algo = crypto_tfm_alg_driver_name(crypto_sig_tfm(tfm)); 4374 int ret, i; 4375 4376 for (i = 0; i < tcount; i++) { 4377 ret = test_sig_one(tfm, vecs++); 4378 if (ret) { 4379 pr_err("alg: sig: test %d failed for %s: err %d\n", 4380 i + 1, algo, ret); 4381 return ret; 4382 } 4383 } 4384 return 0; 4385 } 4386 4387 static int alg_test_sig(const struct alg_test_desc *desc, const char *driver, 4388 u32 type, u32 mask) 4389 { 4390 struct crypto_sig *tfm; 4391 int err = 0; 4392 4393 tfm = crypto_alloc_sig(driver, type, mask); 4394 if (IS_ERR(tfm)) { 4395 pr_err("alg: sig: Failed to load tfm for %s: %ld\n", 4396 driver, PTR_ERR(tfm)); 4397 return PTR_ERR(tfm); 4398 } 4399 if (desc->suite.sig.vecs) 4400 err = test_sig(tfm, desc->alg, desc->suite.sig.vecs, 4401 desc->suite.sig.count); 4402 4403 crypto_free_sig(tfm); 4404 return err; 4405 } 4406 4407 static int alg_test_null(const struct alg_test_desc *desc, 4408 const char *driver, u32 type, u32 mask) 4409 { 4410 return 0; 4411 } 4412 4413 #define ____VECS(tv) .vecs = tv, .count = ARRAY_SIZE(tv) 4414 #define __VECS(tv) { ____VECS(tv) } 4415 4416 /* Please keep this list sorted by algorithm name. */ 4417 static const struct alg_test_desc alg_test_descs[] = { 4418 { 4419 .alg = "adiantum(xchacha12,aes)", 4420 .generic_driver = "adiantum(xchacha12-generic,aes-generic,nhpoly1305-generic)", 4421 .test = alg_test_skcipher, 4422 .suite = { 4423 .cipher = __VECS(adiantum_xchacha12_aes_tv_template) 4424 }, 4425 }, { 4426 .alg = "adiantum(xchacha20,aes)", 4427 .generic_driver = "adiantum(xchacha20-generic,aes-generic,nhpoly1305-generic)", 4428 .test = alg_test_skcipher, 4429 .suite = { 4430 .cipher = __VECS(adiantum_xchacha20_aes_tv_template) 4431 }, 4432 }, { 4433 .alg = "aegis128", 4434 .test = alg_test_aead, 4435 .suite = { 4436 .aead = __VECS(aegis128_tv_template) 4437 } 4438 }, { 4439 .alg = "ansi_cprng", 4440 .test = alg_test_cprng, 4441 .suite = { 4442 .cprng = __VECS(ansi_cprng_aes_tv_template) 4443 } 4444 }, { 4445 .alg = "authenc(hmac(md5),ecb(cipher_null))", 4446 .test = alg_test_aead, 4447 .suite = { 4448 .aead = __VECS(hmac_md5_ecb_cipher_null_tv_template) 4449 } 4450 }, { 4451 .alg = "authenc(hmac(sha1),cbc(aes))", 4452 .test = alg_test_aead, 4453 .fips_allowed = 1, 4454 .suite = { 4455 .aead = __VECS(hmac_sha1_aes_cbc_tv_temp) 4456 } 4457 }, { 4458 .alg = "authenc(hmac(sha1),cbc(des))", 4459 .test = alg_test_aead, 4460 .suite = { 4461 .aead = __VECS(hmac_sha1_des_cbc_tv_temp) 4462 } 4463 }, { 4464 .alg = "authenc(hmac(sha1),cbc(des3_ede))", 4465 .test = alg_test_aead, 4466 .suite = { 4467 .aead = __VECS(hmac_sha1_des3_ede_cbc_tv_temp) 4468 } 4469 }, { 4470 .alg = "authenc(hmac(sha1),ctr(aes))", 4471 .test = alg_test_null, 4472 .fips_allowed = 1, 4473 }, { 4474 .alg = "authenc(hmac(sha1),ecb(cipher_null))", 4475 .test = alg_test_aead, 4476 .suite = { 4477 .aead = __VECS(hmac_sha1_ecb_cipher_null_tv_temp) 4478 } 4479 }, { 4480 .alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))", 4481 .test = alg_test_null, 4482 .fips_allowed = 1, 4483 }, { 4484 .alg = "authenc(hmac(sha224),cbc(des))", 4485 .test = alg_test_aead, 4486 .suite = { 4487 .aead = __VECS(hmac_sha224_des_cbc_tv_temp) 4488 } 4489 }, { 4490 .alg = "authenc(hmac(sha224),cbc(des3_ede))", 4491 .test = alg_test_aead, 4492 .suite = { 4493 .aead = __VECS(hmac_sha224_des3_ede_cbc_tv_temp) 4494 } 4495 }, { 4496 .alg = "authenc(hmac(sha256),cbc(aes))", 4497 .test = alg_test_aead, 4498 .fips_allowed = 1, 4499 .suite = { 4500 .aead = __VECS(hmac_sha256_aes_cbc_tv_temp) 4501 } 4502 }, { 4503 .alg = "authenc(hmac(sha256),cbc(des))", 4504 .test = alg_test_aead, 4505 .suite = { 4506 .aead = __VECS(hmac_sha256_des_cbc_tv_temp) 4507 } 4508 }, { 4509 .alg = "authenc(hmac(sha256),cbc(des3_ede))", 4510 .test = alg_test_aead, 4511 .suite = { 4512 .aead = __VECS(hmac_sha256_des3_ede_cbc_tv_temp) 4513 } 4514 }, { 4515 .alg = "authenc(hmac(sha256),ctr(aes))", 4516 .test = alg_test_null, 4517 .fips_allowed = 1, 4518 }, { 4519 .alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))", 4520 .test = alg_test_null, 4521 .fips_allowed = 1, 4522 }, { 4523 .alg = "authenc(hmac(sha384),cbc(des))", 4524 .test = alg_test_aead, 4525 .suite = { 4526 .aead = __VECS(hmac_sha384_des_cbc_tv_temp) 4527 } 4528 }, { 4529 .alg = "authenc(hmac(sha384),cbc(des3_ede))", 4530 .test = alg_test_aead, 4531 .suite = { 4532 .aead = __VECS(hmac_sha384_des3_ede_cbc_tv_temp) 4533 } 4534 }, { 4535 .alg = "authenc(hmac(sha384),ctr(aes))", 4536 .test = alg_test_null, 4537 .fips_allowed = 1, 4538 }, { 4539 .alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))", 4540 .test = alg_test_null, 4541 .fips_allowed = 1, 4542 }, { 4543 .alg = "authenc(hmac(sha512),cbc(aes))", 4544 .fips_allowed = 1, 4545 .test = alg_test_aead, 4546 .suite = { 4547 .aead = __VECS(hmac_sha512_aes_cbc_tv_temp) 4548 } 4549 }, { 4550 .alg = "authenc(hmac(sha512),cbc(des))", 4551 .test = alg_test_aead, 4552 .suite = { 4553 .aead = __VECS(hmac_sha512_des_cbc_tv_temp) 4554 } 4555 }, { 4556 .alg = "authenc(hmac(sha512),cbc(des3_ede))", 4557 .test = alg_test_aead, 4558 .suite = { 4559 .aead = __VECS(hmac_sha512_des3_ede_cbc_tv_temp) 4560 } 4561 }, { 4562 .alg = "authenc(hmac(sha512),ctr(aes))", 4563 .test = alg_test_null, 4564 .fips_allowed = 1, 4565 }, { 4566 .alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))", 4567 .test = alg_test_null, 4568 .fips_allowed = 1, 4569 }, { 4570 .alg = "blake2b-160", 4571 .test = alg_test_hash, 4572 .fips_allowed = 0, 4573 .suite = { 4574 .hash = __VECS(blake2b_160_tv_template) 4575 } 4576 }, { 4577 .alg = "blake2b-256", 4578 .test = alg_test_hash, 4579 .fips_allowed = 0, 4580 .suite = { 4581 .hash = __VECS(blake2b_256_tv_template) 4582 } 4583 }, { 4584 .alg = "blake2b-384", 4585 .test = alg_test_hash, 4586 .fips_allowed = 0, 4587 .suite = { 4588 .hash = __VECS(blake2b_384_tv_template) 4589 } 4590 }, { 4591 .alg = "blake2b-512", 4592 .test = alg_test_hash, 4593 .fips_allowed = 0, 4594 .suite = { 4595 .hash = __VECS(blake2b_512_tv_template) 4596 } 4597 }, { 4598 .alg = "cbc(aes)", 4599 .test = alg_test_skcipher, 4600 .fips_allowed = 1, 4601 .suite = { 4602 .cipher = __VECS(aes_cbc_tv_template) 4603 }, 4604 }, { 4605 .alg = "cbc(anubis)", 4606 .test = alg_test_skcipher, 4607 .suite = { 4608 .cipher = __VECS(anubis_cbc_tv_template) 4609 }, 4610 }, { 4611 .alg = "cbc(aria)", 4612 .test = alg_test_skcipher, 4613 .suite = { 4614 .cipher = __VECS(aria_cbc_tv_template) 4615 }, 4616 }, { 4617 .alg = "cbc(blowfish)", 4618 .test = alg_test_skcipher, 4619 .suite = { 4620 .cipher = __VECS(bf_cbc_tv_template) 4621 }, 4622 }, { 4623 .alg = "cbc(camellia)", 4624 .test = alg_test_skcipher, 4625 .suite = { 4626 .cipher = __VECS(camellia_cbc_tv_template) 4627 }, 4628 }, { 4629 .alg = "cbc(cast5)", 4630 .test = alg_test_skcipher, 4631 .suite = { 4632 .cipher = __VECS(cast5_cbc_tv_template) 4633 }, 4634 }, { 4635 .alg = "cbc(cast6)", 4636 .test = alg_test_skcipher, 4637 .suite = { 4638 .cipher = __VECS(cast6_cbc_tv_template) 4639 }, 4640 }, { 4641 .alg = "cbc(des)", 4642 .test = alg_test_skcipher, 4643 .suite = { 4644 .cipher = __VECS(des_cbc_tv_template) 4645 }, 4646 }, { 4647 .alg = "cbc(des3_ede)", 4648 .test = alg_test_skcipher, 4649 .suite = { 4650 .cipher = __VECS(des3_ede_cbc_tv_template) 4651 }, 4652 }, { 4653 /* Same as cbc(aes) except the key is stored in 4654 * hardware secure memory which we reference by index 4655 */ 4656 .alg = "cbc(paes)", 4657 .test = alg_test_null, 4658 .fips_allowed = 1, 4659 }, { 4660 /* Same as cbc(sm4) except the key is stored in 4661 * hardware secure memory which we reference by index 4662 */ 4663 .alg = "cbc(psm4)", 4664 .test = alg_test_null, 4665 }, { 4666 .alg = "cbc(serpent)", 4667 .test = alg_test_skcipher, 4668 .suite = { 4669 .cipher = __VECS(serpent_cbc_tv_template) 4670 }, 4671 }, { 4672 .alg = "cbc(sm4)", 4673 .test = alg_test_skcipher, 4674 .suite = { 4675 .cipher = __VECS(sm4_cbc_tv_template) 4676 } 4677 }, { 4678 .alg = "cbc(twofish)", 4679 .test = alg_test_skcipher, 4680 .suite = { 4681 .cipher = __VECS(tf_cbc_tv_template) 4682 }, 4683 }, { 4684 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4685 .alg = "cbc-paes-s390", 4686 .fips_allowed = 1, 4687 .test = alg_test_skcipher, 4688 .suite = { 4689 .cipher = __VECS(aes_cbc_tv_template) 4690 } 4691 }, { 4692 #endif 4693 .alg = "cbcmac(aes)", 4694 .test = alg_test_hash, 4695 .suite = { 4696 .hash = __VECS(aes_cbcmac_tv_template) 4697 } 4698 }, { 4699 .alg = "cbcmac(sm4)", 4700 .test = alg_test_hash, 4701 .suite = { 4702 .hash = __VECS(sm4_cbcmac_tv_template) 4703 } 4704 }, { 4705 .alg = "ccm(aes)", 4706 .generic_driver = "ccm_base(ctr(aes-generic),cbcmac(aes-generic))", 4707 .test = alg_test_aead, 4708 .fips_allowed = 1, 4709 .suite = { 4710 .aead = { 4711 ____VECS(aes_ccm_tv_template), 4712 .einval_allowed = 1, 4713 } 4714 } 4715 }, { 4716 .alg = "ccm(sm4)", 4717 .generic_driver = "ccm_base(ctr(sm4-generic),cbcmac(sm4-generic))", 4718 .test = alg_test_aead, 4719 .suite = { 4720 .aead = { 4721 ____VECS(sm4_ccm_tv_template), 4722 .einval_allowed = 1, 4723 } 4724 } 4725 }, { 4726 .alg = "chacha20", 4727 .test = alg_test_skcipher, 4728 .suite = { 4729 .cipher = __VECS(chacha20_tv_template) 4730 }, 4731 }, { 4732 .alg = "cmac(aes)", 4733 .fips_allowed = 1, 4734 .test = alg_test_hash, 4735 .suite = { 4736 .hash = __VECS(aes_cmac128_tv_template) 4737 } 4738 }, { 4739 .alg = "cmac(camellia)", 4740 .test = alg_test_hash, 4741 .suite = { 4742 .hash = __VECS(camellia_cmac128_tv_template) 4743 } 4744 }, { 4745 .alg = "cmac(des3_ede)", 4746 .test = alg_test_hash, 4747 .suite = { 4748 .hash = __VECS(des3_ede_cmac64_tv_template) 4749 } 4750 }, { 4751 .alg = "cmac(sm4)", 4752 .test = alg_test_hash, 4753 .suite = { 4754 .hash = __VECS(sm4_cmac128_tv_template) 4755 } 4756 }, { 4757 .alg = "compress_null", 4758 .test = alg_test_null, 4759 }, { 4760 .alg = "crc32", 4761 .test = alg_test_hash, 4762 .fips_allowed = 1, 4763 .suite = { 4764 .hash = __VECS(crc32_tv_template) 4765 } 4766 }, { 4767 .alg = "crc32c", 4768 .test = alg_test_crc32c, 4769 .fips_allowed = 1, 4770 .suite = { 4771 .hash = __VECS(crc32c_tv_template) 4772 } 4773 }, { 4774 .alg = "crc64-rocksoft", 4775 .test = alg_test_hash, 4776 .fips_allowed = 1, 4777 .suite = { 4778 .hash = __VECS(crc64_rocksoft_tv_template) 4779 } 4780 }, { 4781 .alg = "crct10dif", 4782 .test = alg_test_hash, 4783 .fips_allowed = 1, 4784 .suite = { 4785 .hash = __VECS(crct10dif_tv_template) 4786 } 4787 }, { 4788 .alg = "ctr(aes)", 4789 .test = alg_test_skcipher, 4790 .fips_allowed = 1, 4791 .suite = { 4792 .cipher = __VECS(aes_ctr_tv_template) 4793 } 4794 }, { 4795 .alg = "ctr(aria)", 4796 .test = alg_test_skcipher, 4797 .suite = { 4798 .cipher = __VECS(aria_ctr_tv_template) 4799 } 4800 }, { 4801 .alg = "ctr(blowfish)", 4802 .test = alg_test_skcipher, 4803 .suite = { 4804 .cipher = __VECS(bf_ctr_tv_template) 4805 } 4806 }, { 4807 .alg = "ctr(camellia)", 4808 .test = alg_test_skcipher, 4809 .suite = { 4810 .cipher = __VECS(camellia_ctr_tv_template) 4811 } 4812 }, { 4813 .alg = "ctr(cast5)", 4814 .test = alg_test_skcipher, 4815 .suite = { 4816 .cipher = __VECS(cast5_ctr_tv_template) 4817 } 4818 }, { 4819 .alg = "ctr(cast6)", 4820 .test = alg_test_skcipher, 4821 .suite = { 4822 .cipher = __VECS(cast6_ctr_tv_template) 4823 } 4824 }, { 4825 .alg = "ctr(des)", 4826 .test = alg_test_skcipher, 4827 .suite = { 4828 .cipher = __VECS(des_ctr_tv_template) 4829 } 4830 }, { 4831 .alg = "ctr(des3_ede)", 4832 .test = alg_test_skcipher, 4833 .suite = { 4834 .cipher = __VECS(des3_ede_ctr_tv_template) 4835 } 4836 }, { 4837 /* Same as ctr(aes) except the key is stored in 4838 * hardware secure memory which we reference by index 4839 */ 4840 .alg = "ctr(paes)", 4841 .test = alg_test_null, 4842 .fips_allowed = 1, 4843 }, { 4844 4845 /* Same as ctr(sm4) except the key is stored in 4846 * hardware secure memory which we reference by index 4847 */ 4848 .alg = "ctr(psm4)", 4849 .test = alg_test_null, 4850 }, { 4851 .alg = "ctr(serpent)", 4852 .test = alg_test_skcipher, 4853 .suite = { 4854 .cipher = __VECS(serpent_ctr_tv_template) 4855 } 4856 }, { 4857 .alg = "ctr(sm4)", 4858 .test = alg_test_skcipher, 4859 .suite = { 4860 .cipher = __VECS(sm4_ctr_tv_template) 4861 } 4862 }, { 4863 .alg = "ctr(twofish)", 4864 .test = alg_test_skcipher, 4865 .suite = { 4866 .cipher = __VECS(tf_ctr_tv_template) 4867 } 4868 }, { 4869 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4870 .alg = "ctr-paes-s390", 4871 .fips_allowed = 1, 4872 .test = alg_test_skcipher, 4873 .suite = { 4874 .cipher = __VECS(aes_ctr_tv_template) 4875 } 4876 }, { 4877 #endif 4878 .alg = "cts(cbc(aes))", 4879 .test = alg_test_skcipher, 4880 .fips_allowed = 1, 4881 .suite = { 4882 .cipher = __VECS(cts_mode_tv_template) 4883 } 4884 }, { 4885 /* Same as cts(cbc((aes)) except the key is stored in 4886 * hardware secure memory which we reference by index 4887 */ 4888 .alg = "cts(cbc(paes))", 4889 .test = alg_test_null, 4890 .fips_allowed = 1, 4891 }, { 4892 .alg = "cts(cbc(sm4))", 4893 .test = alg_test_skcipher, 4894 .suite = { 4895 .cipher = __VECS(sm4_cts_tv_template) 4896 } 4897 }, { 4898 .alg = "curve25519", 4899 .test = alg_test_kpp, 4900 .suite = { 4901 .kpp = __VECS(curve25519_tv_template) 4902 } 4903 }, { 4904 .alg = "deflate", 4905 .test = alg_test_comp, 4906 .fips_allowed = 1, 4907 .suite = { 4908 .comp = { 4909 .comp = __VECS(deflate_comp_tv_template), 4910 .decomp = __VECS(deflate_decomp_tv_template) 4911 } 4912 } 4913 }, { 4914 .alg = "deflate-iaa", 4915 .test = alg_test_comp, 4916 .fips_allowed = 1, 4917 .suite = { 4918 .comp = { 4919 .comp = __VECS(deflate_comp_tv_template), 4920 .decomp = __VECS(deflate_decomp_tv_template) 4921 } 4922 } 4923 }, { 4924 .alg = "dh", 4925 .test = alg_test_kpp, 4926 .suite = { 4927 .kpp = __VECS(dh_tv_template) 4928 } 4929 }, { 4930 .alg = "digest_null", 4931 .test = alg_test_null, 4932 }, { 4933 .alg = "drbg_nopr_ctr_aes128", 4934 .test = alg_test_drbg, 4935 .fips_allowed = 1, 4936 .suite = { 4937 .drbg = __VECS(drbg_nopr_ctr_aes128_tv_template) 4938 } 4939 }, { 4940 .alg = "drbg_nopr_ctr_aes192", 4941 .test = alg_test_drbg, 4942 .fips_allowed = 1, 4943 .suite = { 4944 .drbg = __VECS(drbg_nopr_ctr_aes192_tv_template) 4945 } 4946 }, { 4947 .alg = "drbg_nopr_ctr_aes256", 4948 .test = alg_test_drbg, 4949 .fips_allowed = 1, 4950 .suite = { 4951 .drbg = __VECS(drbg_nopr_ctr_aes256_tv_template) 4952 } 4953 }, { 4954 .alg = "drbg_nopr_hmac_sha256", 4955 .test = alg_test_drbg, 4956 .fips_allowed = 1, 4957 .suite = { 4958 .drbg = __VECS(drbg_nopr_hmac_sha256_tv_template) 4959 } 4960 }, { 4961 /* 4962 * There is no need to specifically test the DRBG with every 4963 * backend cipher -- covered by drbg_nopr_hmac_sha512 test 4964 */ 4965 .alg = "drbg_nopr_hmac_sha384", 4966 .test = alg_test_null, 4967 }, { 4968 .alg = "drbg_nopr_hmac_sha512", 4969 .test = alg_test_drbg, 4970 .fips_allowed = 1, 4971 .suite = { 4972 .drbg = __VECS(drbg_nopr_hmac_sha512_tv_template) 4973 } 4974 }, { 4975 .alg = "drbg_nopr_sha256", 4976 .test = alg_test_drbg, 4977 .fips_allowed = 1, 4978 .suite = { 4979 .drbg = __VECS(drbg_nopr_sha256_tv_template) 4980 } 4981 }, { 4982 /* covered by drbg_nopr_sha256 test */ 4983 .alg = "drbg_nopr_sha384", 4984 .test = alg_test_null, 4985 }, { 4986 .alg = "drbg_nopr_sha512", 4987 .fips_allowed = 1, 4988 .test = alg_test_null, 4989 }, { 4990 .alg = "drbg_pr_ctr_aes128", 4991 .test = alg_test_drbg, 4992 .fips_allowed = 1, 4993 .suite = { 4994 .drbg = __VECS(drbg_pr_ctr_aes128_tv_template) 4995 } 4996 }, { 4997 /* covered by drbg_pr_ctr_aes128 test */ 4998 .alg = "drbg_pr_ctr_aes192", 4999 .fips_allowed = 1, 5000 .test = alg_test_null, 5001 }, { 5002 .alg = "drbg_pr_ctr_aes256", 5003 .fips_allowed = 1, 5004 .test = alg_test_null, 5005 }, { 5006 .alg = "drbg_pr_hmac_sha256", 5007 .test = alg_test_drbg, 5008 .fips_allowed = 1, 5009 .suite = { 5010 .drbg = __VECS(drbg_pr_hmac_sha256_tv_template) 5011 } 5012 }, { 5013 /* covered by drbg_pr_hmac_sha256 test */ 5014 .alg = "drbg_pr_hmac_sha384", 5015 .test = alg_test_null, 5016 }, { 5017 .alg = "drbg_pr_hmac_sha512", 5018 .test = alg_test_null, 5019 .fips_allowed = 1, 5020 }, { 5021 .alg = "drbg_pr_sha256", 5022 .test = alg_test_drbg, 5023 .fips_allowed = 1, 5024 .suite = { 5025 .drbg = __VECS(drbg_pr_sha256_tv_template) 5026 } 5027 }, { 5028 /* covered by drbg_pr_sha256 test */ 5029 .alg = "drbg_pr_sha384", 5030 .test = alg_test_null, 5031 }, { 5032 .alg = "drbg_pr_sha512", 5033 .fips_allowed = 1, 5034 .test = alg_test_null, 5035 }, { 5036 .alg = "ecb(aes)", 5037 .test = alg_test_skcipher, 5038 .fips_allowed = 1, 5039 .suite = { 5040 .cipher = __VECS(aes_tv_template) 5041 } 5042 }, { 5043 .alg = "ecb(anubis)", 5044 .test = alg_test_skcipher, 5045 .suite = { 5046 .cipher = __VECS(anubis_tv_template) 5047 } 5048 }, { 5049 .alg = "ecb(arc4)", 5050 .generic_driver = "arc4-generic", 5051 .test = alg_test_skcipher, 5052 .suite = { 5053 .cipher = __VECS(arc4_tv_template) 5054 } 5055 }, { 5056 .alg = "ecb(aria)", 5057 .test = alg_test_skcipher, 5058 .suite = { 5059 .cipher = __VECS(aria_tv_template) 5060 } 5061 }, { 5062 .alg = "ecb(blowfish)", 5063 .test = alg_test_skcipher, 5064 .suite = { 5065 .cipher = __VECS(bf_tv_template) 5066 } 5067 }, { 5068 .alg = "ecb(camellia)", 5069 .test = alg_test_skcipher, 5070 .suite = { 5071 .cipher = __VECS(camellia_tv_template) 5072 } 5073 }, { 5074 .alg = "ecb(cast5)", 5075 .test = alg_test_skcipher, 5076 .suite = { 5077 .cipher = __VECS(cast5_tv_template) 5078 } 5079 }, { 5080 .alg = "ecb(cast6)", 5081 .test = alg_test_skcipher, 5082 .suite = { 5083 .cipher = __VECS(cast6_tv_template) 5084 } 5085 }, { 5086 .alg = "ecb(cipher_null)", 5087 .test = alg_test_null, 5088 .fips_allowed = 1, 5089 }, { 5090 .alg = "ecb(des)", 5091 .test = alg_test_skcipher, 5092 .suite = { 5093 .cipher = __VECS(des_tv_template) 5094 } 5095 }, { 5096 .alg = "ecb(des3_ede)", 5097 .test = alg_test_skcipher, 5098 .suite = { 5099 .cipher = __VECS(des3_ede_tv_template) 5100 } 5101 }, { 5102 .alg = "ecb(fcrypt)", 5103 .test = alg_test_skcipher, 5104 .suite = { 5105 .cipher = { 5106 .vecs = fcrypt_pcbc_tv_template, 5107 .count = 1 5108 } 5109 } 5110 }, { 5111 .alg = "ecb(khazad)", 5112 .test = alg_test_skcipher, 5113 .suite = { 5114 .cipher = __VECS(khazad_tv_template) 5115 } 5116 }, { 5117 /* Same as ecb(aes) except the key is stored in 5118 * hardware secure memory which we reference by index 5119 */ 5120 .alg = "ecb(paes)", 5121 .test = alg_test_null, 5122 .fips_allowed = 1, 5123 }, { 5124 .alg = "ecb(seed)", 5125 .test = alg_test_skcipher, 5126 .suite = { 5127 .cipher = __VECS(seed_tv_template) 5128 } 5129 }, { 5130 .alg = "ecb(serpent)", 5131 .test = alg_test_skcipher, 5132 .suite = { 5133 .cipher = __VECS(serpent_tv_template) 5134 } 5135 }, { 5136 .alg = "ecb(sm4)", 5137 .test = alg_test_skcipher, 5138 .suite = { 5139 .cipher = __VECS(sm4_tv_template) 5140 } 5141 }, { 5142 .alg = "ecb(tea)", 5143 .test = alg_test_skcipher, 5144 .suite = { 5145 .cipher = __VECS(tea_tv_template) 5146 } 5147 }, { 5148 .alg = "ecb(twofish)", 5149 .test = alg_test_skcipher, 5150 .suite = { 5151 .cipher = __VECS(tf_tv_template) 5152 } 5153 }, { 5154 .alg = "ecb(xeta)", 5155 .test = alg_test_skcipher, 5156 .suite = { 5157 .cipher = __VECS(xeta_tv_template) 5158 } 5159 }, { 5160 .alg = "ecb(xtea)", 5161 .test = alg_test_skcipher, 5162 .suite = { 5163 .cipher = __VECS(xtea_tv_template) 5164 } 5165 }, { 5166 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 5167 .alg = "ecb-paes-s390", 5168 .fips_allowed = 1, 5169 .test = alg_test_skcipher, 5170 .suite = { 5171 .cipher = __VECS(aes_tv_template) 5172 } 5173 }, { 5174 #endif 5175 .alg = "ecdh-nist-p192", 5176 .test = alg_test_kpp, 5177 .suite = { 5178 .kpp = __VECS(ecdh_p192_tv_template) 5179 } 5180 }, { 5181 .alg = "ecdh-nist-p256", 5182 .test = alg_test_kpp, 5183 .fips_allowed = 1, 5184 .suite = { 5185 .kpp = __VECS(ecdh_p256_tv_template) 5186 } 5187 }, { 5188 .alg = "ecdh-nist-p384", 5189 .test = alg_test_kpp, 5190 .fips_allowed = 1, 5191 .suite = { 5192 .kpp = __VECS(ecdh_p384_tv_template) 5193 } 5194 }, { 5195 .alg = "ecdsa-nist-p192", 5196 .test = alg_test_sig, 5197 .suite = { 5198 .sig = __VECS(ecdsa_nist_p192_tv_template) 5199 } 5200 }, { 5201 .alg = "ecdsa-nist-p256", 5202 .test = alg_test_sig, 5203 .fips_allowed = 1, 5204 .suite = { 5205 .sig = __VECS(ecdsa_nist_p256_tv_template) 5206 } 5207 }, { 5208 .alg = "ecdsa-nist-p384", 5209 .test = alg_test_sig, 5210 .fips_allowed = 1, 5211 .suite = { 5212 .sig = __VECS(ecdsa_nist_p384_tv_template) 5213 } 5214 }, { 5215 .alg = "ecdsa-nist-p521", 5216 .test = alg_test_sig, 5217 .fips_allowed = 1, 5218 .suite = { 5219 .sig = __VECS(ecdsa_nist_p521_tv_template) 5220 } 5221 }, { 5222 .alg = "ecrdsa", 5223 .test = alg_test_sig, 5224 .suite = { 5225 .sig = __VECS(ecrdsa_tv_template) 5226 } 5227 }, { 5228 .alg = "essiv(authenc(hmac(sha256),cbc(aes)),sha256)", 5229 .test = alg_test_aead, 5230 .fips_allowed = 1, 5231 .suite = { 5232 .aead = __VECS(essiv_hmac_sha256_aes_cbc_tv_temp) 5233 } 5234 }, { 5235 .alg = "essiv(cbc(aes),sha256)", 5236 .test = alg_test_skcipher, 5237 .fips_allowed = 1, 5238 .suite = { 5239 .cipher = __VECS(essiv_aes_cbc_tv_template) 5240 } 5241 }, { 5242 #if IS_ENABLED(CONFIG_CRYPTO_DH_RFC7919_GROUPS) 5243 .alg = "ffdhe2048(dh)", 5244 .test = alg_test_kpp, 5245 .fips_allowed = 1, 5246 .suite = { 5247 .kpp = __VECS(ffdhe2048_dh_tv_template) 5248 } 5249 }, { 5250 .alg = "ffdhe3072(dh)", 5251 .test = alg_test_kpp, 5252 .fips_allowed = 1, 5253 .suite = { 5254 .kpp = __VECS(ffdhe3072_dh_tv_template) 5255 } 5256 }, { 5257 .alg = "ffdhe4096(dh)", 5258 .test = alg_test_kpp, 5259 .fips_allowed = 1, 5260 .suite = { 5261 .kpp = __VECS(ffdhe4096_dh_tv_template) 5262 } 5263 }, { 5264 .alg = "ffdhe6144(dh)", 5265 .test = alg_test_kpp, 5266 .fips_allowed = 1, 5267 .suite = { 5268 .kpp = __VECS(ffdhe6144_dh_tv_template) 5269 } 5270 }, { 5271 .alg = "ffdhe8192(dh)", 5272 .test = alg_test_kpp, 5273 .fips_allowed = 1, 5274 .suite = { 5275 .kpp = __VECS(ffdhe8192_dh_tv_template) 5276 } 5277 }, { 5278 #endif /* CONFIG_CRYPTO_DH_RFC7919_GROUPS */ 5279 .alg = "gcm(aes)", 5280 .generic_driver = "gcm_base(ctr(aes-generic),ghash-generic)", 5281 .test = alg_test_aead, 5282 .fips_allowed = 1, 5283 .suite = { 5284 .aead = __VECS(aes_gcm_tv_template) 5285 } 5286 }, { 5287 .alg = "gcm(aria)", 5288 .generic_driver = "gcm_base(ctr(aria-generic),ghash-generic)", 5289 .test = alg_test_aead, 5290 .suite = { 5291 .aead = __VECS(aria_gcm_tv_template) 5292 } 5293 }, { 5294 .alg = "gcm(sm4)", 5295 .generic_driver = "gcm_base(ctr(sm4-generic),ghash-generic)", 5296 .test = alg_test_aead, 5297 .suite = { 5298 .aead = __VECS(sm4_gcm_tv_template) 5299 } 5300 }, { 5301 .alg = "ghash", 5302 .test = alg_test_hash, 5303 .suite = { 5304 .hash = __VECS(ghash_tv_template) 5305 } 5306 }, { 5307 .alg = "hctr2(aes)", 5308 .generic_driver = 5309 "hctr2_base(xctr(aes-generic),polyval-generic)", 5310 .test = alg_test_skcipher, 5311 .suite = { 5312 .cipher = __VECS(aes_hctr2_tv_template) 5313 } 5314 }, { 5315 .alg = "hmac(md5)", 5316 .test = alg_test_hash, 5317 .suite = { 5318 .hash = __VECS(hmac_md5_tv_template) 5319 } 5320 }, { 5321 .alg = "hmac(rmd160)", 5322 .test = alg_test_hash, 5323 .suite = { 5324 .hash = __VECS(hmac_rmd160_tv_template) 5325 } 5326 }, { 5327 .alg = "hmac(sha1)", 5328 .test = alg_test_hash, 5329 .fips_allowed = 1, 5330 .suite = { 5331 .hash = __VECS(hmac_sha1_tv_template) 5332 } 5333 }, { 5334 .alg = "hmac(sha224)", 5335 .test = alg_test_hash, 5336 .fips_allowed = 1, 5337 .suite = { 5338 .hash = __VECS(hmac_sha224_tv_template) 5339 } 5340 }, { 5341 .alg = "hmac(sha256)", 5342 .test = alg_test_hash, 5343 .fips_allowed = 1, 5344 .suite = { 5345 .hash = __VECS(hmac_sha256_tv_template) 5346 } 5347 }, { 5348 .alg = "hmac(sha3-224)", 5349 .test = alg_test_hash, 5350 .fips_allowed = 1, 5351 .suite = { 5352 .hash = __VECS(hmac_sha3_224_tv_template) 5353 } 5354 }, { 5355 .alg = "hmac(sha3-256)", 5356 .test = alg_test_hash, 5357 .fips_allowed = 1, 5358 .suite = { 5359 .hash = __VECS(hmac_sha3_256_tv_template) 5360 } 5361 }, { 5362 .alg = "hmac(sha3-384)", 5363 .test = alg_test_hash, 5364 .fips_allowed = 1, 5365 .suite = { 5366 .hash = __VECS(hmac_sha3_384_tv_template) 5367 } 5368 }, { 5369 .alg = "hmac(sha3-512)", 5370 .test = alg_test_hash, 5371 .fips_allowed = 1, 5372 .suite = { 5373 .hash = __VECS(hmac_sha3_512_tv_template) 5374 } 5375 }, { 5376 .alg = "hmac(sha384)", 5377 .test = alg_test_hash, 5378 .fips_allowed = 1, 5379 .suite = { 5380 .hash = __VECS(hmac_sha384_tv_template) 5381 } 5382 }, { 5383 .alg = "hmac(sha512)", 5384 .test = alg_test_hash, 5385 .fips_allowed = 1, 5386 .suite = { 5387 .hash = __VECS(hmac_sha512_tv_template) 5388 } 5389 }, { 5390 .alg = "hmac(sm3)", 5391 .test = alg_test_hash, 5392 .suite = { 5393 .hash = __VECS(hmac_sm3_tv_template) 5394 } 5395 }, { 5396 .alg = "hmac(streebog256)", 5397 .test = alg_test_hash, 5398 .suite = { 5399 .hash = __VECS(hmac_streebog256_tv_template) 5400 } 5401 }, { 5402 .alg = "hmac(streebog512)", 5403 .test = alg_test_hash, 5404 .suite = { 5405 .hash = __VECS(hmac_streebog512_tv_template) 5406 } 5407 }, { 5408 .alg = "jitterentropy_rng", 5409 .fips_allowed = 1, 5410 .test = alg_test_null, 5411 }, { 5412 .alg = "kw(aes)", 5413 .test = alg_test_skcipher, 5414 .fips_allowed = 1, 5415 .suite = { 5416 .cipher = __VECS(aes_kw_tv_template) 5417 } 5418 }, { 5419 .alg = "lrw(aes)", 5420 .generic_driver = "lrw(ecb(aes-generic))", 5421 .test = alg_test_skcipher, 5422 .suite = { 5423 .cipher = __VECS(aes_lrw_tv_template) 5424 } 5425 }, { 5426 .alg = "lrw(camellia)", 5427 .generic_driver = "lrw(ecb(camellia-generic))", 5428 .test = alg_test_skcipher, 5429 .suite = { 5430 .cipher = __VECS(camellia_lrw_tv_template) 5431 } 5432 }, { 5433 .alg = "lrw(cast6)", 5434 .generic_driver = "lrw(ecb(cast6-generic))", 5435 .test = alg_test_skcipher, 5436 .suite = { 5437 .cipher = __VECS(cast6_lrw_tv_template) 5438 } 5439 }, { 5440 .alg = "lrw(serpent)", 5441 .generic_driver = "lrw(ecb(serpent-generic))", 5442 .test = alg_test_skcipher, 5443 .suite = { 5444 .cipher = __VECS(serpent_lrw_tv_template) 5445 } 5446 }, { 5447 .alg = "lrw(twofish)", 5448 .generic_driver = "lrw(ecb(twofish-generic))", 5449 .test = alg_test_skcipher, 5450 .suite = { 5451 .cipher = __VECS(tf_lrw_tv_template) 5452 } 5453 }, { 5454 .alg = "lz4", 5455 .test = alg_test_comp, 5456 .fips_allowed = 1, 5457 .suite = { 5458 .comp = { 5459 .comp = __VECS(lz4_comp_tv_template), 5460 .decomp = __VECS(lz4_decomp_tv_template) 5461 } 5462 } 5463 }, { 5464 .alg = "lz4hc", 5465 .test = alg_test_comp, 5466 .fips_allowed = 1, 5467 .suite = { 5468 .comp = { 5469 .comp = __VECS(lz4hc_comp_tv_template), 5470 .decomp = __VECS(lz4hc_decomp_tv_template) 5471 } 5472 } 5473 }, { 5474 .alg = "lzo", 5475 .test = alg_test_comp, 5476 .fips_allowed = 1, 5477 .suite = { 5478 .comp = { 5479 .comp = __VECS(lzo_comp_tv_template), 5480 .decomp = __VECS(lzo_decomp_tv_template) 5481 } 5482 } 5483 }, { 5484 .alg = "lzo-rle", 5485 .test = alg_test_comp, 5486 .fips_allowed = 1, 5487 .suite = { 5488 .comp = { 5489 .comp = __VECS(lzorle_comp_tv_template), 5490 .decomp = __VECS(lzorle_decomp_tv_template) 5491 } 5492 } 5493 }, { 5494 .alg = "md4", 5495 .test = alg_test_hash, 5496 .suite = { 5497 .hash = __VECS(md4_tv_template) 5498 } 5499 }, { 5500 .alg = "md5", 5501 .test = alg_test_hash, 5502 .suite = { 5503 .hash = __VECS(md5_tv_template) 5504 } 5505 }, { 5506 .alg = "michael_mic", 5507 .test = alg_test_hash, 5508 .suite = { 5509 .hash = __VECS(michael_mic_tv_template) 5510 } 5511 }, { 5512 .alg = "nhpoly1305", 5513 .test = alg_test_hash, 5514 .suite = { 5515 .hash = __VECS(nhpoly1305_tv_template) 5516 } 5517 }, { 5518 .alg = "p1363(ecdsa-nist-p192)", 5519 .test = alg_test_null, 5520 }, { 5521 .alg = "p1363(ecdsa-nist-p256)", 5522 .test = alg_test_sig, 5523 .fips_allowed = 1, 5524 .suite = { 5525 .sig = __VECS(p1363_ecdsa_nist_p256_tv_template) 5526 } 5527 }, { 5528 .alg = "p1363(ecdsa-nist-p384)", 5529 .test = alg_test_null, 5530 .fips_allowed = 1, 5531 }, { 5532 .alg = "p1363(ecdsa-nist-p521)", 5533 .test = alg_test_null, 5534 .fips_allowed = 1, 5535 }, { 5536 .alg = "pcbc(fcrypt)", 5537 .test = alg_test_skcipher, 5538 .suite = { 5539 .cipher = __VECS(fcrypt_pcbc_tv_template) 5540 } 5541 }, { 5542 .alg = "pkcs1(rsa,none)", 5543 .test = alg_test_sig, 5544 .suite = { 5545 .sig = __VECS(pkcs1_rsa_none_tv_template) 5546 } 5547 }, { 5548 .alg = "pkcs1(rsa,sha224)", 5549 .test = alg_test_null, 5550 .fips_allowed = 1, 5551 }, { 5552 .alg = "pkcs1(rsa,sha256)", 5553 .test = alg_test_sig, 5554 .fips_allowed = 1, 5555 .suite = { 5556 .sig = __VECS(pkcs1_rsa_tv_template) 5557 } 5558 }, { 5559 .alg = "pkcs1(rsa,sha3-256)", 5560 .test = alg_test_null, 5561 .fips_allowed = 1, 5562 }, { 5563 .alg = "pkcs1(rsa,sha3-384)", 5564 .test = alg_test_null, 5565 .fips_allowed = 1, 5566 }, { 5567 .alg = "pkcs1(rsa,sha3-512)", 5568 .test = alg_test_null, 5569 .fips_allowed = 1, 5570 }, { 5571 .alg = "pkcs1(rsa,sha384)", 5572 .test = alg_test_null, 5573 .fips_allowed = 1, 5574 }, { 5575 .alg = "pkcs1(rsa,sha512)", 5576 .test = alg_test_null, 5577 .fips_allowed = 1, 5578 }, { 5579 .alg = "pkcs1pad(rsa)", 5580 .test = alg_test_null, 5581 .fips_allowed = 1, 5582 }, { 5583 .alg = "poly1305", 5584 .test = alg_test_hash, 5585 .suite = { 5586 .hash = __VECS(poly1305_tv_template) 5587 } 5588 }, { 5589 .alg = "polyval", 5590 .test = alg_test_hash, 5591 .suite = { 5592 .hash = __VECS(polyval_tv_template) 5593 } 5594 }, { 5595 .alg = "rfc3686(ctr(aes))", 5596 .test = alg_test_skcipher, 5597 .fips_allowed = 1, 5598 .suite = { 5599 .cipher = __VECS(aes_ctr_rfc3686_tv_template) 5600 } 5601 }, { 5602 .alg = "rfc3686(ctr(sm4))", 5603 .test = alg_test_skcipher, 5604 .suite = { 5605 .cipher = __VECS(sm4_ctr_rfc3686_tv_template) 5606 } 5607 }, { 5608 .alg = "rfc4106(gcm(aes))", 5609 .generic_driver = "rfc4106(gcm_base(ctr(aes-generic),ghash-generic))", 5610 .test = alg_test_aead, 5611 .fips_allowed = 1, 5612 .suite = { 5613 .aead = { 5614 ____VECS(aes_gcm_rfc4106_tv_template), 5615 .einval_allowed = 1, 5616 .aad_iv = 1, 5617 } 5618 } 5619 }, { 5620 .alg = "rfc4309(ccm(aes))", 5621 .generic_driver = "rfc4309(ccm_base(ctr(aes-generic),cbcmac(aes-generic)))", 5622 .test = alg_test_aead, 5623 .fips_allowed = 1, 5624 .suite = { 5625 .aead = { 5626 ____VECS(aes_ccm_rfc4309_tv_template), 5627 .einval_allowed = 1, 5628 .aad_iv = 1, 5629 } 5630 } 5631 }, { 5632 .alg = "rfc4543(gcm(aes))", 5633 .generic_driver = "rfc4543(gcm_base(ctr(aes-generic),ghash-generic))", 5634 .test = alg_test_aead, 5635 .suite = { 5636 .aead = { 5637 ____VECS(aes_gcm_rfc4543_tv_template), 5638 .einval_allowed = 1, 5639 .aad_iv = 1, 5640 } 5641 } 5642 }, { 5643 .alg = "rfc7539(chacha20,poly1305)", 5644 .test = alg_test_aead, 5645 .suite = { 5646 .aead = __VECS(rfc7539_tv_template) 5647 } 5648 }, { 5649 .alg = "rfc7539esp(chacha20,poly1305)", 5650 .test = alg_test_aead, 5651 .suite = { 5652 .aead = { 5653 ____VECS(rfc7539esp_tv_template), 5654 .einval_allowed = 1, 5655 .aad_iv = 1, 5656 } 5657 } 5658 }, { 5659 .alg = "rmd160", 5660 .test = alg_test_hash, 5661 .suite = { 5662 .hash = __VECS(rmd160_tv_template) 5663 } 5664 }, { 5665 .alg = "rsa", 5666 .test = alg_test_akcipher, 5667 .fips_allowed = 1, 5668 .suite = { 5669 .akcipher = __VECS(rsa_tv_template) 5670 } 5671 }, { 5672 .alg = "sha1", 5673 .test = alg_test_hash, 5674 .fips_allowed = 1, 5675 .suite = { 5676 .hash = __VECS(sha1_tv_template) 5677 } 5678 }, { 5679 .alg = "sha224", 5680 .test = alg_test_hash, 5681 .fips_allowed = 1, 5682 .suite = { 5683 .hash = __VECS(sha224_tv_template) 5684 } 5685 }, { 5686 .alg = "sha256", 5687 .test = alg_test_hash, 5688 .fips_allowed = 1, 5689 .suite = { 5690 .hash = __VECS(sha256_tv_template) 5691 } 5692 }, { 5693 .alg = "sha3-224", 5694 .test = alg_test_hash, 5695 .fips_allowed = 1, 5696 .suite = { 5697 .hash = __VECS(sha3_224_tv_template) 5698 } 5699 }, { 5700 .alg = "sha3-256", 5701 .test = alg_test_hash, 5702 .fips_allowed = 1, 5703 .suite = { 5704 .hash = __VECS(sha3_256_tv_template) 5705 } 5706 }, { 5707 .alg = "sha3-384", 5708 .test = alg_test_hash, 5709 .fips_allowed = 1, 5710 .suite = { 5711 .hash = __VECS(sha3_384_tv_template) 5712 } 5713 }, { 5714 .alg = "sha3-512", 5715 .test = alg_test_hash, 5716 .fips_allowed = 1, 5717 .suite = { 5718 .hash = __VECS(sha3_512_tv_template) 5719 } 5720 }, { 5721 .alg = "sha384", 5722 .test = alg_test_hash, 5723 .fips_allowed = 1, 5724 .suite = { 5725 .hash = __VECS(sha384_tv_template) 5726 } 5727 }, { 5728 .alg = "sha512", 5729 .test = alg_test_hash, 5730 .fips_allowed = 1, 5731 .suite = { 5732 .hash = __VECS(sha512_tv_template) 5733 } 5734 }, { 5735 .alg = "sm3", 5736 .test = alg_test_hash, 5737 .suite = { 5738 .hash = __VECS(sm3_tv_template) 5739 } 5740 }, { 5741 .alg = "streebog256", 5742 .test = alg_test_hash, 5743 .suite = { 5744 .hash = __VECS(streebog256_tv_template) 5745 } 5746 }, { 5747 .alg = "streebog512", 5748 .test = alg_test_hash, 5749 .suite = { 5750 .hash = __VECS(streebog512_tv_template) 5751 } 5752 }, { 5753 .alg = "vmac64(aes)", 5754 .test = alg_test_hash, 5755 .suite = { 5756 .hash = __VECS(vmac64_aes_tv_template) 5757 } 5758 }, { 5759 .alg = "wp256", 5760 .test = alg_test_hash, 5761 .suite = { 5762 .hash = __VECS(wp256_tv_template) 5763 } 5764 }, { 5765 .alg = "wp384", 5766 .test = alg_test_hash, 5767 .suite = { 5768 .hash = __VECS(wp384_tv_template) 5769 } 5770 }, { 5771 .alg = "wp512", 5772 .test = alg_test_hash, 5773 .suite = { 5774 .hash = __VECS(wp512_tv_template) 5775 } 5776 }, { 5777 .alg = "x962(ecdsa-nist-p192)", 5778 .test = alg_test_sig, 5779 .suite = { 5780 .sig = __VECS(x962_ecdsa_nist_p192_tv_template) 5781 } 5782 }, { 5783 .alg = "x962(ecdsa-nist-p256)", 5784 .test = alg_test_sig, 5785 .fips_allowed = 1, 5786 .suite = { 5787 .sig = __VECS(x962_ecdsa_nist_p256_tv_template) 5788 } 5789 }, { 5790 .alg = "x962(ecdsa-nist-p384)", 5791 .test = alg_test_sig, 5792 .fips_allowed = 1, 5793 .suite = { 5794 .sig = __VECS(x962_ecdsa_nist_p384_tv_template) 5795 } 5796 }, { 5797 .alg = "x962(ecdsa-nist-p521)", 5798 .test = alg_test_sig, 5799 .fips_allowed = 1, 5800 .suite = { 5801 .sig = __VECS(x962_ecdsa_nist_p521_tv_template) 5802 } 5803 }, { 5804 .alg = "xcbc(aes)", 5805 .test = alg_test_hash, 5806 .suite = { 5807 .hash = __VECS(aes_xcbc128_tv_template) 5808 } 5809 }, { 5810 .alg = "xcbc(sm4)", 5811 .test = alg_test_hash, 5812 .suite = { 5813 .hash = __VECS(sm4_xcbc128_tv_template) 5814 } 5815 }, { 5816 .alg = "xchacha12", 5817 .test = alg_test_skcipher, 5818 .suite = { 5819 .cipher = __VECS(xchacha12_tv_template) 5820 }, 5821 }, { 5822 .alg = "xchacha20", 5823 .test = alg_test_skcipher, 5824 .suite = { 5825 .cipher = __VECS(xchacha20_tv_template) 5826 }, 5827 }, { 5828 .alg = "xctr(aes)", 5829 .test = alg_test_skcipher, 5830 .suite = { 5831 .cipher = __VECS(aes_xctr_tv_template) 5832 } 5833 }, { 5834 .alg = "xts(aes)", 5835 .generic_driver = "xts(ecb(aes-generic))", 5836 .test = alg_test_skcipher, 5837 .fips_allowed = 1, 5838 .suite = { 5839 .cipher = __VECS(aes_xts_tv_template) 5840 } 5841 }, { 5842 .alg = "xts(camellia)", 5843 .generic_driver = "xts(ecb(camellia-generic))", 5844 .test = alg_test_skcipher, 5845 .suite = { 5846 .cipher = __VECS(camellia_xts_tv_template) 5847 } 5848 }, { 5849 .alg = "xts(cast6)", 5850 .generic_driver = "xts(ecb(cast6-generic))", 5851 .test = alg_test_skcipher, 5852 .suite = { 5853 .cipher = __VECS(cast6_xts_tv_template) 5854 } 5855 }, { 5856 /* Same as xts(aes) except the key is stored in 5857 * hardware secure memory which we reference by index 5858 */ 5859 .alg = "xts(paes)", 5860 .test = alg_test_null, 5861 .fips_allowed = 1, 5862 }, { 5863 .alg = "xts(serpent)", 5864 .generic_driver = "xts(ecb(serpent-generic))", 5865 .test = alg_test_skcipher, 5866 .suite = { 5867 .cipher = __VECS(serpent_xts_tv_template) 5868 } 5869 }, { 5870 .alg = "xts(sm4)", 5871 .generic_driver = "xts(ecb(sm4-generic))", 5872 .test = alg_test_skcipher, 5873 .suite = { 5874 .cipher = __VECS(sm4_xts_tv_template) 5875 } 5876 }, { 5877 .alg = "xts(twofish)", 5878 .generic_driver = "xts(ecb(twofish-generic))", 5879 .test = alg_test_skcipher, 5880 .suite = { 5881 .cipher = __VECS(tf_xts_tv_template) 5882 } 5883 }, { 5884 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 5885 .alg = "xts-paes-s390", 5886 .fips_allowed = 1, 5887 .test = alg_test_skcipher, 5888 .suite = { 5889 .cipher = __VECS(aes_xts_tv_template) 5890 } 5891 }, { 5892 #endif 5893 .alg = "xxhash64", 5894 .test = alg_test_hash, 5895 .fips_allowed = 1, 5896 .suite = { 5897 .hash = __VECS(xxhash64_tv_template) 5898 } 5899 }, { 5900 .alg = "zstd", 5901 .test = alg_test_comp, 5902 .fips_allowed = 1, 5903 .suite = { 5904 .comp = { 5905 .comp = __VECS(zstd_comp_tv_template), 5906 .decomp = __VECS(zstd_decomp_tv_template) 5907 } 5908 } 5909 } 5910 }; 5911 5912 static void alg_check_test_descs_order(void) 5913 { 5914 int i; 5915 5916 for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) { 5917 int diff = strcmp(alg_test_descs[i - 1].alg, 5918 alg_test_descs[i].alg); 5919 5920 if (WARN_ON(diff > 0)) { 5921 pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n", 5922 alg_test_descs[i - 1].alg, 5923 alg_test_descs[i].alg); 5924 } 5925 5926 if (WARN_ON(diff == 0)) { 5927 pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n", 5928 alg_test_descs[i].alg); 5929 } 5930 } 5931 } 5932 5933 static void alg_check_testvec_configs(void) 5934 { 5935 int i; 5936 5937 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) 5938 WARN_ON(!valid_testvec_config( 5939 &default_cipher_testvec_configs[i])); 5940 5941 for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) 5942 WARN_ON(!valid_testvec_config( 5943 &default_hash_testvec_configs[i])); 5944 } 5945 5946 static void testmgr_onetime_init(void) 5947 { 5948 alg_check_test_descs_order(); 5949 alg_check_testvec_configs(); 5950 5951 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 5952 pr_warn("alg: extra crypto tests enabled. This is intended for developer use only.\n"); 5953 #endif 5954 } 5955 5956 static int alg_find_test(const char *alg) 5957 { 5958 int start = 0; 5959 int end = ARRAY_SIZE(alg_test_descs); 5960 5961 while (start < end) { 5962 int i = (start + end) / 2; 5963 int diff = strcmp(alg_test_descs[i].alg, alg); 5964 5965 if (diff > 0) { 5966 end = i; 5967 continue; 5968 } 5969 5970 if (diff < 0) { 5971 start = i + 1; 5972 continue; 5973 } 5974 5975 return i; 5976 } 5977 5978 return -1; 5979 } 5980 5981 static int alg_fips_disabled(const char *driver, const char *alg) 5982 { 5983 pr_info("alg: %s (%s) is disabled due to FIPS\n", alg, driver); 5984 5985 return -ECANCELED; 5986 } 5987 5988 int alg_test(const char *driver, const char *alg, u32 type, u32 mask) 5989 { 5990 int i; 5991 int j; 5992 int rc; 5993 5994 if (!fips_enabled && notests) { 5995 printk_once(KERN_INFO "alg: self-tests disabled\n"); 5996 return 0; 5997 } 5998 5999 DO_ONCE(testmgr_onetime_init); 6000 6001 if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) { 6002 char nalg[CRYPTO_MAX_ALG_NAME]; 6003 6004 if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= 6005 sizeof(nalg)) 6006 return -ENAMETOOLONG; 6007 6008 i = alg_find_test(nalg); 6009 if (i < 0) 6010 goto notest; 6011 6012 if (fips_enabled && !alg_test_descs[i].fips_allowed) 6013 goto non_fips_alg; 6014 6015 rc = alg_test_cipher(alg_test_descs + i, driver, type, mask); 6016 goto test_done; 6017 } 6018 6019 i = alg_find_test(alg); 6020 j = alg_find_test(driver); 6021 if (i < 0 && j < 0) 6022 goto notest; 6023 6024 if (fips_enabled) { 6025 if (j >= 0 && !alg_test_descs[j].fips_allowed) 6026 return -EINVAL; 6027 6028 if (i >= 0 && !alg_test_descs[i].fips_allowed) 6029 goto non_fips_alg; 6030 } 6031 6032 rc = 0; 6033 if (i >= 0) 6034 rc |= alg_test_descs[i].test(alg_test_descs + i, driver, 6035 type, mask); 6036 if (j >= 0 && j != i) 6037 rc |= alg_test_descs[j].test(alg_test_descs + j, driver, 6038 type, mask); 6039 6040 test_done: 6041 if (rc) { 6042 if (fips_enabled || panic_on_fail) { 6043 fips_fail_notify(); 6044 panic("alg: self-tests for %s (%s) failed in %s mode!\n", 6045 driver, alg, 6046 fips_enabled ? "fips" : "panic_on_fail"); 6047 } 6048 pr_warn("alg: self-tests for %s using %s failed (rc=%d)", 6049 alg, driver, rc); 6050 WARN(rc != -ENOENT, 6051 "alg: self-tests for %s using %s failed (rc=%d)", 6052 alg, driver, rc); 6053 } else { 6054 if (fips_enabled) 6055 pr_info("alg: self-tests for %s (%s) passed\n", 6056 driver, alg); 6057 } 6058 6059 return rc; 6060 6061 notest: 6062 if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_LSKCIPHER) { 6063 char nalg[CRYPTO_MAX_ALG_NAME]; 6064 6065 if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= 6066 sizeof(nalg)) 6067 goto notest2; 6068 6069 i = alg_find_test(nalg); 6070 if (i < 0) 6071 goto notest2; 6072 6073 if (fips_enabled && !alg_test_descs[i].fips_allowed) 6074 goto non_fips_alg; 6075 6076 rc = alg_test_skcipher(alg_test_descs + i, driver, type, mask); 6077 goto test_done; 6078 } 6079 6080 notest2: 6081 printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver); 6082 6083 if (type & CRYPTO_ALG_FIPS_INTERNAL) 6084 return alg_fips_disabled(driver, alg); 6085 6086 return 0; 6087 non_fips_alg: 6088 return alg_fips_disabled(driver, alg); 6089 } 6090 6091 #endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */ 6092 6093 EXPORT_SYMBOL_GPL(alg_test); 6094