1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Algorithm testing framework and tests. 4 * 5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 6 * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org> 7 * Copyright (c) 2007 Nokia Siemens Networks 8 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 9 * Copyright (c) 2019 Google LLC 10 * 11 * Updated RFC4106 AES-GCM testing. 12 * Authors: Aidan O'Mahony (aidan.o.mahony@intel.com) 13 * Adrian Hoban <adrian.hoban@intel.com> 14 * Gabriele Paoloni <gabriele.paoloni@intel.com> 15 * Tadeusz Struk (tadeusz.struk@intel.com) 16 * Copyright (c) 2010, Intel Corporation. 17 */ 18 19 #include <crypto/aead.h> 20 #include <crypto/hash.h> 21 #include <crypto/skcipher.h> 22 #include <linux/err.h> 23 #include <linux/fips.h> 24 #include <linux/module.h> 25 #include <linux/once.h> 26 #include <linux/prandom.h> 27 #include <linux/scatterlist.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/uio.h> 31 #include <crypto/rng.h> 32 #include <crypto/drbg.h> 33 #include <crypto/akcipher.h> 34 #include <crypto/kpp.h> 35 #include <crypto/acompress.h> 36 #include <crypto/sig.h> 37 #include <crypto/internal/cipher.h> 38 #include <crypto/internal/simd.h> 39 40 #include "internal.h" 41 42 MODULE_IMPORT_NS("CRYPTO_INTERNAL"); 43 44 static bool notests; 45 module_param(notests, bool, 0644); 46 MODULE_PARM_DESC(notests, "disable all crypto self-tests"); 47 48 static bool noslowtests; 49 module_param(noslowtests, bool, 0644); 50 MODULE_PARM_DESC(noslowtests, "disable slow crypto self-tests"); 51 52 static unsigned int fuzz_iterations = 100; 53 module_param(fuzz_iterations, uint, 0644); 54 MODULE_PARM_DESC(fuzz_iterations, "number of fuzz test iterations"); 55 56 #ifndef CONFIG_CRYPTO_SELFTESTS 57 58 /* a perfect nop */ 59 int alg_test(const char *driver, const char *alg, u32 type, u32 mask) 60 { 61 return 0; 62 } 63 64 #else 65 66 #include "testmgr.h" 67 68 /* 69 * Need slab memory for testing (size in number of pages). 70 */ 71 #define XBUFSIZE 8 72 73 /* 74 * Used by test_cipher() 75 */ 76 #define ENCRYPT 1 77 #define DECRYPT 0 78 79 struct aead_test_suite { 80 const struct aead_testvec *vecs; 81 unsigned int count; 82 83 /* 84 * Set if trying to decrypt an inauthentic ciphertext with this 85 * algorithm might result in EINVAL rather than EBADMSG, due to other 86 * validation the algorithm does on the inputs such as length checks. 87 */ 88 unsigned int einval_allowed : 1; 89 90 /* 91 * Set if this algorithm requires that the IV be located at the end of 92 * the AAD buffer, in addition to being given in the normal way. The 93 * behavior when the two IV copies differ is implementation-defined. 94 */ 95 unsigned int aad_iv : 1; 96 }; 97 98 struct cipher_test_suite { 99 const struct cipher_testvec *vecs; 100 unsigned int count; 101 }; 102 103 struct comp_test_suite { 104 struct { 105 const struct comp_testvec *vecs; 106 unsigned int count; 107 } comp, decomp; 108 }; 109 110 struct hash_test_suite { 111 const struct hash_testvec *vecs; 112 unsigned int count; 113 }; 114 115 struct cprng_test_suite { 116 const struct cprng_testvec *vecs; 117 unsigned int count; 118 }; 119 120 struct drbg_test_suite { 121 const struct drbg_testvec *vecs; 122 unsigned int count; 123 }; 124 125 struct akcipher_test_suite { 126 const struct akcipher_testvec *vecs; 127 unsigned int count; 128 }; 129 130 struct sig_test_suite { 131 const struct sig_testvec *vecs; 132 unsigned int count; 133 }; 134 135 struct kpp_test_suite { 136 const struct kpp_testvec *vecs; 137 unsigned int count; 138 }; 139 140 struct alg_test_desc { 141 const char *alg; 142 const char *generic_driver; 143 int (*test)(const struct alg_test_desc *desc, const char *driver, 144 u32 type, u32 mask); 145 int fips_allowed; /* set if alg is allowed in fips mode */ 146 147 union { 148 struct aead_test_suite aead; 149 struct cipher_test_suite cipher; 150 struct comp_test_suite comp; 151 struct hash_test_suite hash; 152 struct cprng_test_suite cprng; 153 struct drbg_test_suite drbg; 154 struct akcipher_test_suite akcipher; 155 struct sig_test_suite sig; 156 struct kpp_test_suite kpp; 157 } suite; 158 }; 159 160 static void hexdump(unsigned char *buf, unsigned int len) 161 { 162 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 163 16, 1, 164 buf, len, false); 165 } 166 167 static int __testmgr_alloc_buf(char *buf[XBUFSIZE], int order) 168 { 169 int i; 170 171 for (i = 0; i < XBUFSIZE; i++) { 172 buf[i] = (char *)__get_free_pages(GFP_KERNEL, order); 173 if (!buf[i]) 174 goto err_free_buf; 175 } 176 177 return 0; 178 179 err_free_buf: 180 while (i-- > 0) 181 free_pages((unsigned long)buf[i], order); 182 183 return -ENOMEM; 184 } 185 186 static int testmgr_alloc_buf(char *buf[XBUFSIZE]) 187 { 188 return __testmgr_alloc_buf(buf, 0); 189 } 190 191 static void __testmgr_free_buf(char *buf[XBUFSIZE], int order) 192 { 193 int i; 194 195 for (i = 0; i < XBUFSIZE; i++) 196 free_pages((unsigned long)buf[i], order); 197 } 198 199 static void testmgr_free_buf(char *buf[XBUFSIZE]) 200 { 201 __testmgr_free_buf(buf, 0); 202 } 203 204 #define TESTMGR_POISON_BYTE 0xfe 205 #define TESTMGR_POISON_LEN 16 206 207 static inline void testmgr_poison(void *addr, size_t len) 208 { 209 memset(addr, TESTMGR_POISON_BYTE, len); 210 } 211 212 /* Is the memory region still fully poisoned? */ 213 static inline bool testmgr_is_poison(const void *addr, size_t len) 214 { 215 return memchr_inv(addr, TESTMGR_POISON_BYTE, len) == NULL; 216 } 217 218 /* flush type for hash algorithms */ 219 enum flush_type { 220 /* merge with update of previous buffer(s) */ 221 FLUSH_TYPE_NONE = 0, 222 223 /* update with previous buffer(s) before doing this one */ 224 FLUSH_TYPE_FLUSH, 225 226 /* likewise, but also export and re-import the intermediate state */ 227 FLUSH_TYPE_REIMPORT, 228 }; 229 230 /* finalization function for hash algorithms */ 231 enum finalization_type { 232 FINALIZATION_TYPE_FINAL, /* use final() */ 233 FINALIZATION_TYPE_FINUP, /* use finup() */ 234 FINALIZATION_TYPE_DIGEST, /* use digest() */ 235 }; 236 237 /* 238 * Whether the crypto operation will occur in-place, and if so whether the 239 * source and destination scatterlist pointers will coincide (req->src == 240 * req->dst), or whether they'll merely point to two separate scatterlists 241 * (req->src != req->dst) that reference the same underlying memory. 242 * 243 * This is only relevant for algorithm types that support in-place operation. 244 */ 245 enum inplace_mode { 246 OUT_OF_PLACE, 247 INPLACE_ONE_SGLIST, 248 INPLACE_TWO_SGLISTS, 249 }; 250 251 #define TEST_SG_TOTAL 10000 252 253 /** 254 * struct test_sg_division - description of a scatterlist entry 255 * 256 * This struct describes one entry of a scatterlist being constructed to check a 257 * crypto test vector. 258 * 259 * @proportion_of_total: length of this chunk relative to the total length, 260 * given as a proportion out of TEST_SG_TOTAL so that it 261 * scales to fit any test vector 262 * @offset: byte offset into a 2-page buffer at which this chunk will start 263 * @offset_relative_to_alignmask: if true, add the algorithm's alignmask to the 264 * @offset 265 * @flush_type: for hashes, whether an update() should be done now vs. 266 * continuing to accumulate data 267 * @nosimd: if doing the pending update(), do it with SIMD disabled? 268 */ 269 struct test_sg_division { 270 unsigned int proportion_of_total; 271 unsigned int offset; 272 bool offset_relative_to_alignmask; 273 enum flush_type flush_type; 274 bool nosimd; 275 }; 276 277 /** 278 * struct testvec_config - configuration for testing a crypto test vector 279 * 280 * This struct describes the data layout and other parameters with which each 281 * crypto test vector can be tested. 282 * 283 * @name: name of this config, logged for debugging purposes if a test fails 284 * @inplace_mode: whether and how to operate on the data in-place, if applicable 285 * @req_flags: extra request_flags, e.g. CRYPTO_TFM_REQ_MAY_SLEEP 286 * @src_divs: description of how to arrange the source scatterlist 287 * @dst_divs: description of how to arrange the dst scatterlist, if applicable 288 * for the algorithm type. Defaults to @src_divs if unset. 289 * @iv_offset: misalignment of the IV in the range [0..MAX_ALGAPI_ALIGNMASK+1], 290 * where 0 is aligned to a 2*(MAX_ALGAPI_ALIGNMASK+1) byte boundary 291 * @iv_offset_relative_to_alignmask: if true, add the algorithm's alignmask to 292 * the @iv_offset 293 * @key_offset: misalignment of the key, where 0 is default alignment 294 * @key_offset_relative_to_alignmask: if true, add the algorithm's alignmask to 295 * the @key_offset 296 * @finalization_type: what finalization function to use for hashes 297 * @nosimd: execute with SIMD disabled? Requires !CRYPTO_TFM_REQ_MAY_SLEEP. 298 * This applies to the parts of the operation that aren't controlled 299 * individually by @nosimd_setkey or @src_divs[].nosimd. 300 * @nosimd_setkey: set the key (if applicable) with SIMD disabled? Requires 301 * !CRYPTO_TFM_REQ_MAY_SLEEP. 302 */ 303 struct testvec_config { 304 const char *name; 305 enum inplace_mode inplace_mode; 306 u32 req_flags; 307 struct test_sg_division src_divs[XBUFSIZE]; 308 struct test_sg_division dst_divs[XBUFSIZE]; 309 unsigned int iv_offset; 310 unsigned int key_offset; 311 bool iv_offset_relative_to_alignmask; 312 bool key_offset_relative_to_alignmask; 313 enum finalization_type finalization_type; 314 bool nosimd; 315 bool nosimd_setkey; 316 }; 317 318 #define TESTVEC_CONFIG_NAMELEN 192 319 320 /* 321 * The following are the lists of testvec_configs to test for each algorithm 322 * type when the fast crypto self-tests are enabled. They aim to provide good 323 * test coverage, while keeping the test time much shorter than the full tests 324 * so that the fast tests can be used to fulfill FIPS 140 testing requirements. 325 */ 326 327 /* Configs for skciphers and aeads */ 328 static const struct testvec_config default_cipher_testvec_configs[] = { 329 { 330 .name = "in-place (one sglist)", 331 .inplace_mode = INPLACE_ONE_SGLIST, 332 .src_divs = { { .proportion_of_total = 10000 } }, 333 }, { 334 .name = "in-place (two sglists)", 335 .inplace_mode = INPLACE_TWO_SGLISTS, 336 .src_divs = { { .proportion_of_total = 10000 } }, 337 }, { 338 .name = "out-of-place", 339 .inplace_mode = OUT_OF_PLACE, 340 .src_divs = { { .proportion_of_total = 10000 } }, 341 }, { 342 .name = "unaligned buffer, offset=1", 343 .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, 344 .iv_offset = 1, 345 .key_offset = 1, 346 }, { 347 .name = "buffer aligned only to alignmask", 348 .src_divs = { 349 { 350 .proportion_of_total = 10000, 351 .offset = 1, 352 .offset_relative_to_alignmask = true, 353 }, 354 }, 355 .iv_offset = 1, 356 .iv_offset_relative_to_alignmask = true, 357 .key_offset = 1, 358 .key_offset_relative_to_alignmask = true, 359 }, { 360 .name = "two even aligned splits", 361 .src_divs = { 362 { .proportion_of_total = 5000 }, 363 { .proportion_of_total = 5000 }, 364 }, 365 }, { 366 .name = "one src, two even splits dst", 367 .inplace_mode = OUT_OF_PLACE, 368 .src_divs = { { .proportion_of_total = 10000 } }, 369 .dst_divs = { 370 { .proportion_of_total = 5000 }, 371 { .proportion_of_total = 5000 }, 372 }, 373 }, { 374 .name = "uneven misaligned splits, may sleep", 375 .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, 376 .src_divs = { 377 { .proportion_of_total = 1900, .offset = 33 }, 378 { .proportion_of_total = 3300, .offset = 7 }, 379 { .proportion_of_total = 4800, .offset = 18 }, 380 }, 381 .iv_offset = 3, 382 .key_offset = 3, 383 }, { 384 .name = "misaligned splits crossing pages, inplace", 385 .inplace_mode = INPLACE_ONE_SGLIST, 386 .src_divs = { 387 { 388 .proportion_of_total = 7500, 389 .offset = PAGE_SIZE - 32 390 }, { 391 .proportion_of_total = 2500, 392 .offset = PAGE_SIZE - 7 393 }, 394 }, 395 } 396 }; 397 398 static const struct testvec_config default_hash_testvec_configs[] = { 399 { 400 .name = "init+update+final aligned buffer", 401 .src_divs = { { .proportion_of_total = 10000 } }, 402 .finalization_type = FINALIZATION_TYPE_FINAL, 403 }, { 404 .name = "init+finup aligned buffer", 405 .src_divs = { { .proportion_of_total = 10000 } }, 406 .finalization_type = FINALIZATION_TYPE_FINUP, 407 }, { 408 .name = "digest aligned buffer", 409 .src_divs = { { .proportion_of_total = 10000 } }, 410 .finalization_type = FINALIZATION_TYPE_DIGEST, 411 }, { 412 .name = "init+update+final misaligned buffer", 413 .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, 414 .finalization_type = FINALIZATION_TYPE_FINAL, 415 .key_offset = 1, 416 }, { 417 .name = "digest misaligned buffer", 418 .src_divs = { 419 { 420 .proportion_of_total = 10000, 421 .offset = 1, 422 }, 423 }, 424 .finalization_type = FINALIZATION_TYPE_DIGEST, 425 .key_offset = 1, 426 }, { 427 .name = "init+update+update+final two even splits", 428 .src_divs = { 429 { .proportion_of_total = 5000 }, 430 { 431 .proportion_of_total = 5000, 432 .flush_type = FLUSH_TYPE_FLUSH, 433 }, 434 }, 435 .finalization_type = FINALIZATION_TYPE_FINAL, 436 }, { 437 .name = "digest uneven misaligned splits, may sleep", 438 .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, 439 .src_divs = { 440 { .proportion_of_total = 1900, .offset = 33 }, 441 { .proportion_of_total = 3300, .offset = 7 }, 442 { .proportion_of_total = 4800, .offset = 18 }, 443 }, 444 .finalization_type = FINALIZATION_TYPE_DIGEST, 445 }, { 446 .name = "digest misaligned splits crossing pages", 447 .src_divs = { 448 { 449 .proportion_of_total = 7500, 450 .offset = PAGE_SIZE - 32, 451 }, { 452 .proportion_of_total = 2500, 453 .offset = PAGE_SIZE - 7, 454 }, 455 }, 456 .finalization_type = FINALIZATION_TYPE_DIGEST, 457 }, { 458 .name = "import/export", 459 .src_divs = { 460 { 461 .proportion_of_total = 6500, 462 .flush_type = FLUSH_TYPE_REIMPORT, 463 }, { 464 .proportion_of_total = 3500, 465 .flush_type = FLUSH_TYPE_REIMPORT, 466 }, 467 }, 468 .finalization_type = FINALIZATION_TYPE_FINAL, 469 } 470 }; 471 472 static unsigned int count_test_sg_divisions(const struct test_sg_division *divs) 473 { 474 unsigned int remaining = TEST_SG_TOTAL; 475 unsigned int ndivs = 0; 476 477 do { 478 remaining -= divs[ndivs++].proportion_of_total; 479 } while (remaining); 480 481 return ndivs; 482 } 483 484 #define SGDIVS_HAVE_FLUSHES BIT(0) 485 #define SGDIVS_HAVE_NOSIMD BIT(1) 486 487 static bool valid_sg_divisions(const struct test_sg_division *divs, 488 unsigned int count, int *flags_ret) 489 { 490 unsigned int total = 0; 491 unsigned int i; 492 493 for (i = 0; i < count && total != TEST_SG_TOTAL; i++) { 494 if (divs[i].proportion_of_total <= 0 || 495 divs[i].proportion_of_total > TEST_SG_TOTAL - total) 496 return false; 497 total += divs[i].proportion_of_total; 498 if (divs[i].flush_type != FLUSH_TYPE_NONE) 499 *flags_ret |= SGDIVS_HAVE_FLUSHES; 500 if (divs[i].nosimd) 501 *flags_ret |= SGDIVS_HAVE_NOSIMD; 502 } 503 return total == TEST_SG_TOTAL && 504 memchr_inv(&divs[i], 0, (count - i) * sizeof(divs[0])) == NULL; 505 } 506 507 /* 508 * Check whether the given testvec_config is valid. This isn't strictly needed 509 * since every testvec_config should be valid, but check anyway so that people 510 * don't unknowingly add broken configs that don't do what they wanted. 511 */ 512 static bool valid_testvec_config(const struct testvec_config *cfg) 513 { 514 int flags = 0; 515 516 if (cfg->name == NULL) 517 return false; 518 519 if (!valid_sg_divisions(cfg->src_divs, ARRAY_SIZE(cfg->src_divs), 520 &flags)) 521 return false; 522 523 if (cfg->dst_divs[0].proportion_of_total) { 524 if (!valid_sg_divisions(cfg->dst_divs, 525 ARRAY_SIZE(cfg->dst_divs), &flags)) 526 return false; 527 } else { 528 if (memchr_inv(cfg->dst_divs, 0, sizeof(cfg->dst_divs))) 529 return false; 530 /* defaults to dst_divs=src_divs */ 531 } 532 533 if (cfg->iv_offset + 534 (cfg->iv_offset_relative_to_alignmask ? MAX_ALGAPI_ALIGNMASK : 0) > 535 MAX_ALGAPI_ALIGNMASK + 1) 536 return false; 537 538 if ((flags & (SGDIVS_HAVE_FLUSHES | SGDIVS_HAVE_NOSIMD)) && 539 cfg->finalization_type == FINALIZATION_TYPE_DIGEST) 540 return false; 541 542 if ((cfg->nosimd || cfg->nosimd_setkey || 543 (flags & SGDIVS_HAVE_NOSIMD)) && 544 (cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP)) 545 return false; 546 547 return true; 548 } 549 550 struct test_sglist { 551 char *bufs[XBUFSIZE]; 552 struct scatterlist sgl[XBUFSIZE]; 553 struct scatterlist sgl_saved[XBUFSIZE]; 554 struct scatterlist *sgl_ptr; 555 unsigned int nents; 556 }; 557 558 static int init_test_sglist(struct test_sglist *tsgl) 559 { 560 return __testmgr_alloc_buf(tsgl->bufs, 1 /* two pages per buffer */); 561 } 562 563 static void destroy_test_sglist(struct test_sglist *tsgl) 564 { 565 return __testmgr_free_buf(tsgl->bufs, 1 /* two pages per buffer */); 566 } 567 568 /** 569 * build_test_sglist() - build a scatterlist for a crypto test 570 * 571 * @tsgl: the scatterlist to build. @tsgl->bufs[] contains an array of 2-page 572 * buffers which the scatterlist @tsgl->sgl[] will be made to point into. 573 * @divs: the layout specification on which the scatterlist will be based 574 * @alignmask: the algorithm's alignmask 575 * @total_len: the total length of the scatterlist to build in bytes 576 * @data: if non-NULL, the buffers will be filled with this data until it ends. 577 * Otherwise the buffers will be poisoned. In both cases, some bytes 578 * past the end of each buffer will be poisoned to help detect overruns. 579 * @out_divs: if non-NULL, the test_sg_division to which each scatterlist entry 580 * corresponds will be returned here. This will match @divs except 581 * that divisions resolving to a length of 0 are omitted as they are 582 * not included in the scatterlist. 583 * 584 * Return: 0 or a -errno value 585 */ 586 static int build_test_sglist(struct test_sglist *tsgl, 587 const struct test_sg_division *divs, 588 const unsigned int alignmask, 589 const unsigned int total_len, 590 struct iov_iter *data, 591 const struct test_sg_division *out_divs[XBUFSIZE]) 592 { 593 struct { 594 const struct test_sg_division *div; 595 size_t length; 596 } partitions[XBUFSIZE]; 597 const unsigned int ndivs = count_test_sg_divisions(divs); 598 unsigned int len_remaining = total_len; 599 unsigned int i; 600 601 BUILD_BUG_ON(ARRAY_SIZE(partitions) != ARRAY_SIZE(tsgl->sgl)); 602 if (WARN_ON(ndivs > ARRAY_SIZE(partitions))) 603 return -EINVAL; 604 605 /* Calculate the (div, length) pairs */ 606 tsgl->nents = 0; 607 for (i = 0; i < ndivs; i++) { 608 unsigned int len_this_sg = 609 min(len_remaining, 610 (total_len * divs[i].proportion_of_total + 611 TEST_SG_TOTAL / 2) / TEST_SG_TOTAL); 612 613 if (len_this_sg != 0) { 614 partitions[tsgl->nents].div = &divs[i]; 615 partitions[tsgl->nents].length = len_this_sg; 616 tsgl->nents++; 617 len_remaining -= len_this_sg; 618 } 619 } 620 if (tsgl->nents == 0) { 621 partitions[tsgl->nents].div = &divs[0]; 622 partitions[tsgl->nents].length = 0; 623 tsgl->nents++; 624 } 625 partitions[tsgl->nents - 1].length += len_remaining; 626 627 /* Set up the sgl entries and fill the data or poison */ 628 sg_init_table(tsgl->sgl, tsgl->nents); 629 for (i = 0; i < tsgl->nents; i++) { 630 unsigned int offset = partitions[i].div->offset; 631 void *addr; 632 633 if (partitions[i].div->offset_relative_to_alignmask) 634 offset += alignmask; 635 636 while (offset + partitions[i].length + TESTMGR_POISON_LEN > 637 2 * PAGE_SIZE) { 638 if (WARN_ON(offset <= 0)) 639 return -EINVAL; 640 offset /= 2; 641 } 642 643 addr = &tsgl->bufs[i][offset]; 644 sg_set_buf(&tsgl->sgl[i], addr, partitions[i].length); 645 646 if (out_divs) 647 out_divs[i] = partitions[i].div; 648 649 if (data) { 650 size_t copy_len, copied; 651 652 copy_len = min(partitions[i].length, data->count); 653 copied = copy_from_iter(addr, copy_len, data); 654 if (WARN_ON(copied != copy_len)) 655 return -EINVAL; 656 testmgr_poison(addr + copy_len, partitions[i].length + 657 TESTMGR_POISON_LEN - copy_len); 658 } else { 659 testmgr_poison(addr, partitions[i].length + 660 TESTMGR_POISON_LEN); 661 } 662 } 663 664 sg_mark_end(&tsgl->sgl[tsgl->nents - 1]); 665 tsgl->sgl_ptr = tsgl->sgl; 666 memcpy(tsgl->sgl_saved, tsgl->sgl, tsgl->nents * sizeof(tsgl->sgl[0])); 667 return 0; 668 } 669 670 /* 671 * Verify that a scatterlist crypto operation produced the correct output. 672 * 673 * @tsgl: scatterlist containing the actual output 674 * @expected_output: buffer containing the expected output 675 * @len_to_check: length of @expected_output in bytes 676 * @unchecked_prefix_len: number of ignored bytes in @tsgl prior to real result 677 * @check_poison: verify that the poison bytes after each chunk are intact? 678 * 679 * Return: 0 if correct, -EINVAL if incorrect, -EOVERFLOW if buffer overrun. 680 */ 681 static int verify_correct_output(const struct test_sglist *tsgl, 682 const char *expected_output, 683 unsigned int len_to_check, 684 unsigned int unchecked_prefix_len, 685 bool check_poison) 686 { 687 unsigned int i; 688 689 for (i = 0; i < tsgl->nents; i++) { 690 struct scatterlist *sg = &tsgl->sgl_ptr[i]; 691 unsigned int len = sg->length; 692 unsigned int offset = sg->offset; 693 const char *actual_output; 694 695 if (unchecked_prefix_len) { 696 if (unchecked_prefix_len >= len) { 697 unchecked_prefix_len -= len; 698 continue; 699 } 700 offset += unchecked_prefix_len; 701 len -= unchecked_prefix_len; 702 unchecked_prefix_len = 0; 703 } 704 len = min(len, len_to_check); 705 actual_output = page_address(sg_page(sg)) + offset; 706 if (memcmp(expected_output, actual_output, len) != 0) 707 return -EINVAL; 708 if (check_poison && 709 !testmgr_is_poison(actual_output + len, TESTMGR_POISON_LEN)) 710 return -EOVERFLOW; 711 len_to_check -= len; 712 expected_output += len; 713 } 714 if (WARN_ON(len_to_check != 0)) 715 return -EINVAL; 716 return 0; 717 } 718 719 static bool is_test_sglist_corrupted(const struct test_sglist *tsgl) 720 { 721 unsigned int i; 722 723 for (i = 0; i < tsgl->nents; i++) { 724 if (tsgl->sgl[i].page_link != tsgl->sgl_saved[i].page_link) 725 return true; 726 if (tsgl->sgl[i].offset != tsgl->sgl_saved[i].offset) 727 return true; 728 if (tsgl->sgl[i].length != tsgl->sgl_saved[i].length) 729 return true; 730 } 731 return false; 732 } 733 734 struct cipher_test_sglists { 735 struct test_sglist src; 736 struct test_sglist dst; 737 }; 738 739 static struct cipher_test_sglists *alloc_cipher_test_sglists(void) 740 { 741 struct cipher_test_sglists *tsgls; 742 743 tsgls = kmalloc(sizeof(*tsgls), GFP_KERNEL); 744 if (!tsgls) 745 return NULL; 746 747 if (init_test_sglist(&tsgls->src) != 0) 748 goto fail_kfree; 749 if (init_test_sglist(&tsgls->dst) != 0) 750 goto fail_destroy_src; 751 752 return tsgls; 753 754 fail_destroy_src: 755 destroy_test_sglist(&tsgls->src); 756 fail_kfree: 757 kfree(tsgls); 758 return NULL; 759 } 760 761 static void free_cipher_test_sglists(struct cipher_test_sglists *tsgls) 762 { 763 if (tsgls) { 764 destroy_test_sglist(&tsgls->src); 765 destroy_test_sglist(&tsgls->dst); 766 kfree(tsgls); 767 } 768 } 769 770 /* Build the src and dst scatterlists for an skcipher or AEAD test */ 771 static int build_cipher_test_sglists(struct cipher_test_sglists *tsgls, 772 const struct testvec_config *cfg, 773 unsigned int alignmask, 774 unsigned int src_total_len, 775 unsigned int dst_total_len, 776 const struct kvec *inputs, 777 unsigned int nr_inputs) 778 { 779 struct iov_iter input; 780 int err; 781 782 iov_iter_kvec(&input, ITER_SOURCE, inputs, nr_inputs, src_total_len); 783 err = build_test_sglist(&tsgls->src, cfg->src_divs, alignmask, 784 cfg->inplace_mode != OUT_OF_PLACE ? 785 max(dst_total_len, src_total_len) : 786 src_total_len, 787 &input, NULL); 788 if (err) 789 return err; 790 791 /* 792 * In-place crypto operations can use the same scatterlist for both the 793 * source and destination (req->src == req->dst), or can use separate 794 * scatterlists (req->src != req->dst) which point to the same 795 * underlying memory. Make sure to test both cases. 796 */ 797 if (cfg->inplace_mode == INPLACE_ONE_SGLIST) { 798 tsgls->dst.sgl_ptr = tsgls->src.sgl; 799 tsgls->dst.nents = tsgls->src.nents; 800 return 0; 801 } 802 if (cfg->inplace_mode == INPLACE_TWO_SGLISTS) { 803 /* 804 * For now we keep it simple and only test the case where the 805 * two scatterlists have identical entries, rather than 806 * different entries that split up the same memory differently. 807 */ 808 memcpy(tsgls->dst.sgl, tsgls->src.sgl, 809 tsgls->src.nents * sizeof(tsgls->src.sgl[0])); 810 memcpy(tsgls->dst.sgl_saved, tsgls->src.sgl, 811 tsgls->src.nents * sizeof(tsgls->src.sgl[0])); 812 tsgls->dst.sgl_ptr = tsgls->dst.sgl; 813 tsgls->dst.nents = tsgls->src.nents; 814 return 0; 815 } 816 /* Out of place */ 817 return build_test_sglist(&tsgls->dst, 818 cfg->dst_divs[0].proportion_of_total ? 819 cfg->dst_divs : cfg->src_divs, 820 alignmask, dst_total_len, NULL, NULL); 821 } 822 823 /* 824 * Support for testing passing a misaligned key to setkey(): 825 * 826 * If cfg->key_offset is set, copy the key into a new buffer at that offset, 827 * optionally adding alignmask. Else, just use the key directly. 828 */ 829 static int prepare_keybuf(const u8 *key, unsigned int ksize, 830 const struct testvec_config *cfg, 831 unsigned int alignmask, 832 const u8 **keybuf_ret, const u8 **keyptr_ret) 833 { 834 unsigned int key_offset = cfg->key_offset; 835 u8 *keybuf = NULL, *keyptr = (u8 *)key; 836 837 if (key_offset != 0) { 838 if (cfg->key_offset_relative_to_alignmask) 839 key_offset += alignmask; 840 keybuf = kmalloc(key_offset + ksize, GFP_KERNEL); 841 if (!keybuf) 842 return -ENOMEM; 843 keyptr = keybuf + key_offset; 844 memcpy(keyptr, key, ksize); 845 } 846 *keybuf_ret = keybuf; 847 *keyptr_ret = keyptr; 848 return 0; 849 } 850 851 /* 852 * Like setkey_f(tfm, key, ksize), but sometimes misalign the key. 853 * In addition, run the setkey function in no-SIMD context if requested. 854 */ 855 #define do_setkey(setkey_f, tfm, key, ksize, cfg, alignmask) \ 856 ({ \ 857 const u8 *keybuf, *keyptr; \ 858 int err; \ 859 \ 860 err = prepare_keybuf((key), (ksize), (cfg), (alignmask), \ 861 &keybuf, &keyptr); \ 862 if (err == 0) { \ 863 if ((cfg)->nosimd_setkey) \ 864 crypto_disable_simd_for_test(); \ 865 err = setkey_f((tfm), keyptr, (ksize)); \ 866 if ((cfg)->nosimd_setkey) \ 867 crypto_reenable_simd_for_test(); \ 868 kfree(keybuf); \ 869 } \ 870 err; \ 871 }) 872 873 /* 874 * The fuzz tests use prandom instead of the normal Linux RNG since they don't 875 * need cryptographically secure random numbers. This greatly improves the 876 * performance of these tests, especially if they are run before the Linux RNG 877 * has been initialized or if they are run on a lockdep-enabled kernel. 878 */ 879 880 static inline void init_rnd_state(struct rnd_state *rng) 881 { 882 prandom_seed_state(rng, get_random_u64()); 883 } 884 885 static inline u8 prandom_u8(struct rnd_state *rng) 886 { 887 return prandom_u32_state(rng); 888 } 889 890 static inline u32 prandom_u32_below(struct rnd_state *rng, u32 ceil) 891 { 892 /* 893 * This is slightly biased for non-power-of-2 values of 'ceil', but this 894 * isn't important here. 895 */ 896 return prandom_u32_state(rng) % ceil; 897 } 898 899 static inline bool prandom_bool(struct rnd_state *rng) 900 { 901 return prandom_u32_below(rng, 2); 902 } 903 904 static inline u32 prandom_u32_inclusive(struct rnd_state *rng, 905 u32 floor, u32 ceil) 906 { 907 return floor + prandom_u32_below(rng, ceil - floor + 1); 908 } 909 910 /* Generate a random length in range [0, max_len], but prefer smaller values */ 911 static unsigned int generate_random_length(struct rnd_state *rng, 912 unsigned int max_len) 913 { 914 unsigned int len = prandom_u32_below(rng, max_len + 1); 915 916 switch (prandom_u32_below(rng, 4)) { 917 case 0: 918 len %= 64; 919 break; 920 case 1: 921 len %= 256; 922 break; 923 case 2: 924 len %= 1024; 925 break; 926 default: 927 break; 928 } 929 if (len && prandom_u32_below(rng, 4) == 0) 930 len = rounddown_pow_of_two(len); 931 return len; 932 } 933 934 /* Flip a random bit in the given nonempty data buffer */ 935 static void flip_random_bit(struct rnd_state *rng, u8 *buf, size_t size) 936 { 937 size_t bitpos; 938 939 bitpos = prandom_u32_below(rng, size * 8); 940 buf[bitpos / 8] ^= 1 << (bitpos % 8); 941 } 942 943 /* Flip a random byte in the given nonempty data buffer */ 944 static void flip_random_byte(struct rnd_state *rng, u8 *buf, size_t size) 945 { 946 buf[prandom_u32_below(rng, size)] ^= 0xff; 947 } 948 949 /* Sometimes make some random changes to the given nonempty data buffer */ 950 static void mutate_buffer(struct rnd_state *rng, u8 *buf, size_t size) 951 { 952 size_t num_flips; 953 size_t i; 954 955 /* Sometimes flip some bits */ 956 if (prandom_u32_below(rng, 4) == 0) { 957 num_flips = min_t(size_t, 1 << prandom_u32_below(rng, 8), 958 size * 8); 959 for (i = 0; i < num_flips; i++) 960 flip_random_bit(rng, buf, size); 961 } 962 963 /* Sometimes flip some bytes */ 964 if (prandom_u32_below(rng, 4) == 0) { 965 num_flips = min_t(size_t, 1 << prandom_u32_below(rng, 8), size); 966 for (i = 0; i < num_flips; i++) 967 flip_random_byte(rng, buf, size); 968 } 969 } 970 971 /* Randomly generate 'count' bytes, but sometimes make them "interesting" */ 972 static void generate_random_bytes(struct rnd_state *rng, u8 *buf, size_t count) 973 { 974 u8 b; 975 u8 increment; 976 size_t i; 977 978 if (count == 0) 979 return; 980 981 switch (prandom_u32_below(rng, 8)) { /* Choose a generation strategy */ 982 case 0: 983 case 1: 984 /* All the same byte, plus optional mutations */ 985 switch (prandom_u32_below(rng, 4)) { 986 case 0: 987 b = 0x00; 988 break; 989 case 1: 990 b = 0xff; 991 break; 992 default: 993 b = prandom_u8(rng); 994 break; 995 } 996 memset(buf, b, count); 997 mutate_buffer(rng, buf, count); 998 break; 999 case 2: 1000 /* Ascending or descending bytes, plus optional mutations */ 1001 increment = prandom_u8(rng); 1002 b = prandom_u8(rng); 1003 for (i = 0; i < count; i++, b += increment) 1004 buf[i] = b; 1005 mutate_buffer(rng, buf, count); 1006 break; 1007 default: 1008 /* Fully random bytes */ 1009 prandom_bytes_state(rng, buf, count); 1010 } 1011 } 1012 1013 static char *generate_random_sgl_divisions(struct rnd_state *rng, 1014 struct test_sg_division *divs, 1015 size_t max_divs, char *p, char *end, 1016 bool gen_flushes, u32 req_flags) 1017 { 1018 struct test_sg_division *div = divs; 1019 unsigned int remaining = TEST_SG_TOTAL; 1020 1021 do { 1022 unsigned int this_len; 1023 const char *flushtype_str; 1024 1025 if (div == &divs[max_divs - 1] || prandom_bool(rng)) 1026 this_len = remaining; 1027 else if (prandom_u32_below(rng, 4) == 0) 1028 this_len = (remaining + 1) / 2; 1029 else 1030 this_len = prandom_u32_inclusive(rng, 1, remaining); 1031 div->proportion_of_total = this_len; 1032 1033 if (prandom_u32_below(rng, 4) == 0) 1034 div->offset = prandom_u32_inclusive(rng, 1035 PAGE_SIZE - 128, 1036 PAGE_SIZE - 1); 1037 else if (prandom_bool(rng)) 1038 div->offset = prandom_u32_below(rng, 32); 1039 else 1040 div->offset = prandom_u32_below(rng, PAGE_SIZE); 1041 if (prandom_u32_below(rng, 8) == 0) 1042 div->offset_relative_to_alignmask = true; 1043 1044 div->flush_type = FLUSH_TYPE_NONE; 1045 if (gen_flushes) { 1046 switch (prandom_u32_below(rng, 4)) { 1047 case 0: 1048 div->flush_type = FLUSH_TYPE_REIMPORT; 1049 break; 1050 case 1: 1051 div->flush_type = FLUSH_TYPE_FLUSH; 1052 break; 1053 } 1054 } 1055 1056 if (div->flush_type != FLUSH_TYPE_NONE && 1057 !(req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && 1058 prandom_bool(rng)) 1059 div->nosimd = true; 1060 1061 switch (div->flush_type) { 1062 case FLUSH_TYPE_FLUSH: 1063 if (div->nosimd) 1064 flushtype_str = "<flush,nosimd>"; 1065 else 1066 flushtype_str = "<flush>"; 1067 break; 1068 case FLUSH_TYPE_REIMPORT: 1069 if (div->nosimd) 1070 flushtype_str = "<reimport,nosimd>"; 1071 else 1072 flushtype_str = "<reimport>"; 1073 break; 1074 default: 1075 flushtype_str = ""; 1076 break; 1077 } 1078 1079 BUILD_BUG_ON(TEST_SG_TOTAL != 10000); /* for "%u.%u%%" */ 1080 p += scnprintf(p, end - p, "%s%u.%u%%@%s+%u%s", flushtype_str, 1081 this_len / 100, this_len % 100, 1082 div->offset_relative_to_alignmask ? 1083 "alignmask" : "", 1084 div->offset, this_len == remaining ? "" : ", "); 1085 remaining -= this_len; 1086 div++; 1087 } while (remaining); 1088 1089 return p; 1090 } 1091 1092 /* Generate a random testvec_config for fuzz testing */ 1093 static void generate_random_testvec_config(struct rnd_state *rng, 1094 struct testvec_config *cfg, 1095 char *name, size_t max_namelen) 1096 { 1097 char *p = name; 1098 char * const end = name + max_namelen; 1099 1100 memset(cfg, 0, sizeof(*cfg)); 1101 1102 cfg->name = name; 1103 1104 p += scnprintf(p, end - p, "random:"); 1105 1106 switch (prandom_u32_below(rng, 4)) { 1107 case 0: 1108 case 1: 1109 cfg->inplace_mode = OUT_OF_PLACE; 1110 break; 1111 case 2: 1112 cfg->inplace_mode = INPLACE_ONE_SGLIST; 1113 p += scnprintf(p, end - p, " inplace_one_sglist"); 1114 break; 1115 default: 1116 cfg->inplace_mode = INPLACE_TWO_SGLISTS; 1117 p += scnprintf(p, end - p, " inplace_two_sglists"); 1118 break; 1119 } 1120 1121 if (prandom_bool(rng)) { 1122 cfg->req_flags |= CRYPTO_TFM_REQ_MAY_SLEEP; 1123 p += scnprintf(p, end - p, " may_sleep"); 1124 } 1125 1126 switch (prandom_u32_below(rng, 4)) { 1127 case 0: 1128 cfg->finalization_type = FINALIZATION_TYPE_FINAL; 1129 p += scnprintf(p, end - p, " use_final"); 1130 break; 1131 case 1: 1132 cfg->finalization_type = FINALIZATION_TYPE_FINUP; 1133 p += scnprintf(p, end - p, " use_finup"); 1134 break; 1135 default: 1136 cfg->finalization_type = FINALIZATION_TYPE_DIGEST; 1137 p += scnprintf(p, end - p, " use_digest"); 1138 break; 1139 } 1140 1141 if (!(cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP)) { 1142 if (prandom_bool(rng)) { 1143 cfg->nosimd = true; 1144 p += scnprintf(p, end - p, " nosimd"); 1145 } 1146 if (prandom_bool(rng)) { 1147 cfg->nosimd_setkey = true; 1148 p += scnprintf(p, end - p, " nosimd_setkey"); 1149 } 1150 } 1151 1152 p += scnprintf(p, end - p, " src_divs=["); 1153 p = generate_random_sgl_divisions(rng, cfg->src_divs, 1154 ARRAY_SIZE(cfg->src_divs), p, end, 1155 (cfg->finalization_type != 1156 FINALIZATION_TYPE_DIGEST), 1157 cfg->req_flags); 1158 p += scnprintf(p, end - p, "]"); 1159 1160 if (cfg->inplace_mode == OUT_OF_PLACE && prandom_bool(rng)) { 1161 p += scnprintf(p, end - p, " dst_divs=["); 1162 p = generate_random_sgl_divisions(rng, cfg->dst_divs, 1163 ARRAY_SIZE(cfg->dst_divs), 1164 p, end, false, 1165 cfg->req_flags); 1166 p += scnprintf(p, end - p, "]"); 1167 } 1168 1169 if (prandom_bool(rng)) { 1170 cfg->iv_offset = prandom_u32_inclusive(rng, 1, 1171 MAX_ALGAPI_ALIGNMASK); 1172 p += scnprintf(p, end - p, " iv_offset=%u", cfg->iv_offset); 1173 } 1174 1175 if (prandom_bool(rng)) { 1176 cfg->key_offset = prandom_u32_inclusive(rng, 1, 1177 MAX_ALGAPI_ALIGNMASK); 1178 p += scnprintf(p, end - p, " key_offset=%u", cfg->key_offset); 1179 } 1180 1181 WARN_ON_ONCE(!valid_testvec_config(cfg)); 1182 } 1183 1184 static void crypto_disable_simd_for_test(void) 1185 { 1186 migrate_disable(); 1187 __this_cpu_write(crypto_simd_disabled_for_test, true); 1188 } 1189 1190 static void crypto_reenable_simd_for_test(void) 1191 { 1192 __this_cpu_write(crypto_simd_disabled_for_test, false); 1193 migrate_enable(); 1194 } 1195 1196 /* 1197 * Given an algorithm name, build the name of the generic implementation of that 1198 * algorithm, assuming the usual naming convention. Specifically, this appends 1199 * "-generic" to every part of the name that is not a template name. Examples: 1200 * 1201 * aes => aes-generic 1202 * cbc(aes) => cbc(aes-generic) 1203 * cts(cbc(aes)) => cts(cbc(aes-generic)) 1204 * rfc7539(chacha20,poly1305) => rfc7539(chacha20-generic,poly1305-generic) 1205 * 1206 * Return: 0 on success, or -ENAMETOOLONG if the generic name would be too long 1207 */ 1208 static int build_generic_driver_name(const char *algname, 1209 char driver_name[CRYPTO_MAX_ALG_NAME]) 1210 { 1211 const char *in = algname; 1212 char *out = driver_name; 1213 size_t len = strlen(algname); 1214 1215 if (len >= CRYPTO_MAX_ALG_NAME) 1216 goto too_long; 1217 do { 1218 const char *in_saved = in; 1219 1220 while (*in && *in != '(' && *in != ')' && *in != ',') 1221 *out++ = *in++; 1222 if (*in != '(' && in > in_saved) { 1223 len += 8; 1224 if (len >= CRYPTO_MAX_ALG_NAME) 1225 goto too_long; 1226 memcpy(out, "-generic", 8); 1227 out += 8; 1228 } 1229 } while ((*out++ = *in++) != '\0'); 1230 return 0; 1231 1232 too_long: 1233 pr_err("alg: generic driver name for \"%s\" would be too long\n", 1234 algname); 1235 return -ENAMETOOLONG; 1236 } 1237 1238 static int build_hash_sglist(struct test_sglist *tsgl, 1239 const struct hash_testvec *vec, 1240 const struct testvec_config *cfg, 1241 unsigned int alignmask, 1242 const struct test_sg_division *divs[XBUFSIZE]) 1243 { 1244 struct kvec kv; 1245 struct iov_iter input; 1246 1247 kv.iov_base = (void *)vec->plaintext; 1248 kv.iov_len = vec->psize; 1249 iov_iter_kvec(&input, ITER_SOURCE, &kv, 1, vec->psize); 1250 return build_test_sglist(tsgl, cfg->src_divs, alignmask, vec->psize, 1251 &input, divs); 1252 } 1253 1254 static int check_hash_result(const char *type, 1255 const u8 *result, unsigned int digestsize, 1256 const struct hash_testvec *vec, 1257 const char *vec_name, 1258 const char *driver, 1259 const struct testvec_config *cfg) 1260 { 1261 if (memcmp(result, vec->digest, digestsize) != 0) { 1262 pr_err("alg: %s: %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 1263 type, driver, vec_name, cfg->name); 1264 return -EINVAL; 1265 } 1266 if (!testmgr_is_poison(&result[digestsize], TESTMGR_POISON_LEN)) { 1267 pr_err("alg: %s: %s overran result buffer on test vector %s, cfg=\"%s\"\n", 1268 type, driver, vec_name, cfg->name); 1269 return -EOVERFLOW; 1270 } 1271 return 0; 1272 } 1273 1274 static inline int check_shash_op(const char *op, int err, 1275 const char *driver, const char *vec_name, 1276 const struct testvec_config *cfg) 1277 { 1278 if (err) 1279 pr_err("alg: shash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", 1280 driver, op, err, vec_name, cfg->name); 1281 return err; 1282 } 1283 1284 /* Test one hash test vector in one configuration, using the shash API */ 1285 static int test_shash_vec_cfg(const struct hash_testvec *vec, 1286 const char *vec_name, 1287 const struct testvec_config *cfg, 1288 struct shash_desc *desc, 1289 struct test_sglist *tsgl, 1290 u8 *hashstate) 1291 { 1292 struct crypto_shash *tfm = desc->tfm; 1293 const unsigned int digestsize = crypto_shash_digestsize(tfm); 1294 const unsigned int statesize = crypto_shash_statesize(tfm); 1295 const char *driver = crypto_shash_driver_name(tfm); 1296 const struct test_sg_division *divs[XBUFSIZE]; 1297 unsigned int i; 1298 u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; 1299 int err; 1300 1301 /* Set the key, if specified */ 1302 if (vec->ksize) { 1303 err = do_setkey(crypto_shash_setkey, tfm, vec->key, vec->ksize, 1304 cfg, 0); 1305 if (err) { 1306 if (err == vec->setkey_error) 1307 return 0; 1308 pr_err("alg: shash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 1309 driver, vec_name, vec->setkey_error, err, 1310 crypto_shash_get_flags(tfm)); 1311 return err; 1312 } 1313 if (vec->setkey_error) { 1314 pr_err("alg: shash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 1315 driver, vec_name, vec->setkey_error); 1316 return -EINVAL; 1317 } 1318 } 1319 1320 /* Build the scatterlist for the source data */ 1321 err = build_hash_sglist(tsgl, vec, cfg, 0, divs); 1322 if (err) { 1323 pr_err("alg: shash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", 1324 driver, vec_name, cfg->name); 1325 return err; 1326 } 1327 1328 /* Do the actual hashing */ 1329 1330 testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); 1331 testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); 1332 1333 if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || 1334 vec->digest_error) { 1335 /* Just using digest() */ 1336 if (tsgl->nents != 1) 1337 return 0; 1338 if (cfg->nosimd) 1339 crypto_disable_simd_for_test(); 1340 err = crypto_shash_digest(desc, sg_virt(&tsgl->sgl[0]), 1341 tsgl->sgl[0].length, result); 1342 if (cfg->nosimd) 1343 crypto_reenable_simd_for_test(); 1344 if (err) { 1345 if (err == vec->digest_error) 1346 return 0; 1347 pr_err("alg: shash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 1348 driver, vec_name, vec->digest_error, err, 1349 cfg->name); 1350 return err; 1351 } 1352 if (vec->digest_error) { 1353 pr_err("alg: shash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 1354 driver, vec_name, vec->digest_error, cfg->name); 1355 return -EINVAL; 1356 } 1357 goto result_ready; 1358 } 1359 1360 /* Using init(), zero or more update(), then final() or finup() */ 1361 1362 if (cfg->nosimd) 1363 crypto_disable_simd_for_test(); 1364 err = crypto_shash_init(desc); 1365 if (cfg->nosimd) 1366 crypto_reenable_simd_for_test(); 1367 err = check_shash_op("init", err, driver, vec_name, cfg); 1368 if (err) 1369 return err; 1370 1371 for (i = 0; i < tsgl->nents; i++) { 1372 if (i + 1 == tsgl->nents && 1373 cfg->finalization_type == FINALIZATION_TYPE_FINUP) { 1374 if (divs[i]->nosimd) 1375 crypto_disable_simd_for_test(); 1376 err = crypto_shash_finup(desc, sg_virt(&tsgl->sgl[i]), 1377 tsgl->sgl[i].length, result); 1378 if (divs[i]->nosimd) 1379 crypto_reenable_simd_for_test(); 1380 err = check_shash_op("finup", err, driver, vec_name, 1381 cfg); 1382 if (err) 1383 return err; 1384 goto result_ready; 1385 } 1386 if (divs[i]->nosimd) 1387 crypto_disable_simd_for_test(); 1388 err = crypto_shash_update(desc, sg_virt(&tsgl->sgl[i]), 1389 tsgl->sgl[i].length); 1390 if (divs[i]->nosimd) 1391 crypto_reenable_simd_for_test(); 1392 err = check_shash_op("update", err, driver, vec_name, cfg); 1393 if (err) 1394 return err; 1395 if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { 1396 /* Test ->export() and ->import() */ 1397 testmgr_poison(hashstate + statesize, 1398 TESTMGR_POISON_LEN); 1399 err = crypto_shash_export(desc, hashstate); 1400 err = check_shash_op("export", err, driver, vec_name, 1401 cfg); 1402 if (err) 1403 return err; 1404 if (!testmgr_is_poison(hashstate + statesize, 1405 TESTMGR_POISON_LEN)) { 1406 pr_err("alg: shash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", 1407 driver, vec_name, cfg->name); 1408 return -EOVERFLOW; 1409 } 1410 testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); 1411 err = crypto_shash_import(desc, hashstate); 1412 err = check_shash_op("import", err, driver, vec_name, 1413 cfg); 1414 if (err) 1415 return err; 1416 } 1417 } 1418 1419 if (cfg->nosimd) 1420 crypto_disable_simd_for_test(); 1421 err = crypto_shash_final(desc, result); 1422 if (cfg->nosimd) 1423 crypto_reenable_simd_for_test(); 1424 err = check_shash_op("final", err, driver, vec_name, cfg); 1425 if (err) 1426 return err; 1427 result_ready: 1428 return check_hash_result("shash", result, digestsize, vec, vec_name, 1429 driver, cfg); 1430 } 1431 1432 static int do_ahash_op(int (*op)(struct ahash_request *req), 1433 struct ahash_request *req, 1434 struct crypto_wait *wait, bool nosimd) 1435 { 1436 int err; 1437 1438 if (nosimd) 1439 crypto_disable_simd_for_test(); 1440 1441 err = op(req); 1442 1443 if (nosimd) 1444 crypto_reenable_simd_for_test(); 1445 1446 return crypto_wait_req(err, wait); 1447 } 1448 1449 static int check_nonfinal_ahash_op(const char *op, int err, 1450 u8 *result, unsigned int digestsize, 1451 const char *driver, const char *vec_name, 1452 const struct testvec_config *cfg) 1453 { 1454 if (err) { 1455 pr_err("alg: ahash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", 1456 driver, op, err, vec_name, cfg->name); 1457 return err; 1458 } 1459 if (!testmgr_is_poison(result, digestsize)) { 1460 pr_err("alg: ahash: %s %s() used result buffer on test vector %s, cfg=\"%s\"\n", 1461 driver, op, vec_name, cfg->name); 1462 return -EINVAL; 1463 } 1464 return 0; 1465 } 1466 1467 /* Test one hash test vector in one configuration, using the ahash API */ 1468 static int test_ahash_vec_cfg(const struct hash_testvec *vec, 1469 const char *vec_name, 1470 const struct testvec_config *cfg, 1471 struct ahash_request *req, 1472 struct test_sglist *tsgl, 1473 u8 *hashstate) 1474 { 1475 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1476 const unsigned int digestsize = crypto_ahash_digestsize(tfm); 1477 const unsigned int statesize = crypto_ahash_statesize(tfm); 1478 const char *driver = crypto_ahash_driver_name(tfm); 1479 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 1480 const struct test_sg_division *divs[XBUFSIZE]; 1481 DECLARE_CRYPTO_WAIT(wait); 1482 unsigned int i; 1483 struct scatterlist *pending_sgl; 1484 unsigned int pending_len; 1485 u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; 1486 int err; 1487 1488 /* Set the key, if specified */ 1489 if (vec->ksize) { 1490 err = do_setkey(crypto_ahash_setkey, tfm, vec->key, vec->ksize, 1491 cfg, 0); 1492 if (err) { 1493 if (err == vec->setkey_error) 1494 return 0; 1495 pr_err("alg: ahash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 1496 driver, vec_name, vec->setkey_error, err, 1497 crypto_ahash_get_flags(tfm)); 1498 return err; 1499 } 1500 if (vec->setkey_error) { 1501 pr_err("alg: ahash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 1502 driver, vec_name, vec->setkey_error); 1503 return -EINVAL; 1504 } 1505 } 1506 1507 /* Build the scatterlist for the source data */ 1508 err = build_hash_sglist(tsgl, vec, cfg, 0, divs); 1509 if (err) { 1510 pr_err("alg: ahash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", 1511 driver, vec_name, cfg->name); 1512 return err; 1513 } 1514 1515 /* Do the actual hashing */ 1516 1517 testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); 1518 testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); 1519 1520 if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || 1521 vec->digest_error) { 1522 /* Just using digest() */ 1523 ahash_request_set_callback(req, req_flags, crypto_req_done, 1524 &wait); 1525 ahash_request_set_crypt(req, tsgl->sgl, result, vec->psize); 1526 err = do_ahash_op(crypto_ahash_digest, req, &wait, cfg->nosimd); 1527 if (err) { 1528 if (err == vec->digest_error) 1529 return 0; 1530 pr_err("alg: ahash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 1531 driver, vec_name, vec->digest_error, err, 1532 cfg->name); 1533 return err; 1534 } 1535 if (vec->digest_error) { 1536 pr_err("alg: ahash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 1537 driver, vec_name, vec->digest_error, cfg->name); 1538 return -EINVAL; 1539 } 1540 goto result_ready; 1541 } 1542 1543 /* Using init(), zero or more update(), then final() or finup() */ 1544 1545 ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); 1546 ahash_request_set_crypt(req, NULL, result, 0); 1547 err = do_ahash_op(crypto_ahash_init, req, &wait, cfg->nosimd); 1548 err = check_nonfinal_ahash_op("init", err, result, digestsize, 1549 driver, vec_name, cfg); 1550 if (err) 1551 return err; 1552 1553 pending_sgl = NULL; 1554 pending_len = 0; 1555 for (i = 0; i < tsgl->nents; i++) { 1556 if (divs[i]->flush_type != FLUSH_TYPE_NONE && 1557 pending_sgl != NULL) { 1558 /* update() with the pending data */ 1559 ahash_request_set_callback(req, req_flags, 1560 crypto_req_done, &wait); 1561 ahash_request_set_crypt(req, pending_sgl, result, 1562 pending_len); 1563 err = do_ahash_op(crypto_ahash_update, req, &wait, 1564 divs[i]->nosimd); 1565 err = check_nonfinal_ahash_op("update", err, 1566 result, digestsize, 1567 driver, vec_name, cfg); 1568 if (err) 1569 return err; 1570 pending_sgl = NULL; 1571 pending_len = 0; 1572 } 1573 if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { 1574 /* Test ->export() and ->import() */ 1575 testmgr_poison(hashstate + statesize, 1576 TESTMGR_POISON_LEN); 1577 err = crypto_ahash_export(req, hashstate); 1578 err = check_nonfinal_ahash_op("export", err, 1579 result, digestsize, 1580 driver, vec_name, cfg); 1581 if (err) 1582 return err; 1583 if (!testmgr_is_poison(hashstate + statesize, 1584 TESTMGR_POISON_LEN)) { 1585 pr_err("alg: ahash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", 1586 driver, vec_name, cfg->name); 1587 return -EOVERFLOW; 1588 } 1589 1590 testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); 1591 err = crypto_ahash_import(req, hashstate); 1592 err = check_nonfinal_ahash_op("import", err, 1593 result, digestsize, 1594 driver, vec_name, cfg); 1595 if (err) 1596 return err; 1597 } 1598 if (pending_sgl == NULL) 1599 pending_sgl = &tsgl->sgl[i]; 1600 pending_len += tsgl->sgl[i].length; 1601 } 1602 1603 ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); 1604 ahash_request_set_crypt(req, pending_sgl, result, pending_len); 1605 if (cfg->finalization_type == FINALIZATION_TYPE_FINAL) { 1606 /* finish with update() and final() */ 1607 err = do_ahash_op(crypto_ahash_update, req, &wait, cfg->nosimd); 1608 err = check_nonfinal_ahash_op("update", err, result, digestsize, 1609 driver, vec_name, cfg); 1610 if (err) 1611 return err; 1612 err = do_ahash_op(crypto_ahash_final, req, &wait, cfg->nosimd); 1613 if (err) { 1614 pr_err("alg: ahash: %s final() failed with err %d on test vector %s, cfg=\"%s\"\n", 1615 driver, err, vec_name, cfg->name); 1616 return err; 1617 } 1618 } else { 1619 /* finish with finup() */ 1620 err = do_ahash_op(crypto_ahash_finup, req, &wait, cfg->nosimd); 1621 if (err) { 1622 pr_err("alg: ahash: %s finup() failed with err %d on test vector %s, cfg=\"%s\"\n", 1623 driver, err, vec_name, cfg->name); 1624 return err; 1625 } 1626 } 1627 1628 result_ready: 1629 return check_hash_result("ahash", result, digestsize, vec, vec_name, 1630 driver, cfg); 1631 } 1632 1633 static int test_hash_vec_cfg(const struct hash_testvec *vec, 1634 const char *vec_name, 1635 const struct testvec_config *cfg, 1636 struct ahash_request *req, 1637 struct shash_desc *desc, 1638 struct test_sglist *tsgl, 1639 u8 *hashstate) 1640 { 1641 int err; 1642 1643 /* 1644 * For algorithms implemented as "shash", most bugs will be detected by 1645 * both the shash and ahash tests. Test the shash API first so that the 1646 * failures involve less indirection, so are easier to debug. 1647 */ 1648 1649 if (desc) { 1650 err = test_shash_vec_cfg(vec, vec_name, cfg, desc, tsgl, 1651 hashstate); 1652 if (err) 1653 return err; 1654 } 1655 1656 return test_ahash_vec_cfg(vec, vec_name, cfg, req, tsgl, hashstate); 1657 } 1658 1659 static int test_hash_vec(const struct hash_testvec *vec, unsigned int vec_num, 1660 struct ahash_request *req, struct shash_desc *desc, 1661 struct test_sglist *tsgl, u8 *hashstate) 1662 { 1663 char vec_name[16]; 1664 unsigned int i; 1665 int err; 1666 1667 sprintf(vec_name, "%u", vec_num); 1668 1669 for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) { 1670 err = test_hash_vec_cfg(vec, vec_name, 1671 &default_hash_testvec_configs[i], 1672 req, desc, tsgl, hashstate); 1673 if (err) 1674 return err; 1675 } 1676 1677 if (!noslowtests) { 1678 struct rnd_state rng; 1679 struct testvec_config cfg; 1680 char cfgname[TESTVEC_CONFIG_NAMELEN]; 1681 1682 init_rnd_state(&rng); 1683 1684 for (i = 0; i < fuzz_iterations; i++) { 1685 generate_random_testvec_config(&rng, &cfg, cfgname, 1686 sizeof(cfgname)); 1687 err = test_hash_vec_cfg(vec, vec_name, &cfg, 1688 req, desc, tsgl, hashstate); 1689 if (err) 1690 return err; 1691 cond_resched(); 1692 } 1693 } 1694 return 0; 1695 } 1696 1697 /* 1698 * Generate a hash test vector from the given implementation. 1699 * Assumes the buffers in 'vec' were already allocated. 1700 */ 1701 static void generate_random_hash_testvec(struct rnd_state *rng, 1702 struct shash_desc *desc, 1703 struct hash_testvec *vec, 1704 unsigned int maxkeysize, 1705 unsigned int maxdatasize, 1706 char *name, size_t max_namelen) 1707 { 1708 /* Data */ 1709 vec->psize = generate_random_length(rng, maxdatasize); 1710 generate_random_bytes(rng, (u8 *)vec->plaintext, vec->psize); 1711 1712 /* 1713 * Key: length in range [1, maxkeysize], but usually choose maxkeysize. 1714 * If algorithm is unkeyed, then maxkeysize == 0 and set ksize = 0. 1715 */ 1716 vec->setkey_error = 0; 1717 vec->ksize = 0; 1718 if (maxkeysize) { 1719 vec->ksize = maxkeysize; 1720 if (prandom_u32_below(rng, 4) == 0) 1721 vec->ksize = prandom_u32_inclusive(rng, 1, maxkeysize); 1722 generate_random_bytes(rng, (u8 *)vec->key, vec->ksize); 1723 1724 vec->setkey_error = crypto_shash_setkey(desc->tfm, vec->key, 1725 vec->ksize); 1726 /* If the key couldn't be set, no need to continue to digest. */ 1727 if (vec->setkey_error) 1728 goto done; 1729 } 1730 1731 /* Digest */ 1732 vec->digest_error = crypto_shash_digest(desc, vec->plaintext, 1733 vec->psize, (u8 *)vec->digest); 1734 done: 1735 snprintf(name, max_namelen, "\"random: psize=%u ksize=%u\"", 1736 vec->psize, vec->ksize); 1737 } 1738 1739 /* 1740 * Test the hash algorithm represented by @req against the corresponding generic 1741 * implementation, if one is available. 1742 */ 1743 static int test_hash_vs_generic_impl(const char *generic_driver, 1744 unsigned int maxkeysize, 1745 struct ahash_request *req, 1746 struct shash_desc *desc, 1747 struct test_sglist *tsgl, 1748 u8 *hashstate) 1749 { 1750 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1751 const unsigned int digestsize = crypto_ahash_digestsize(tfm); 1752 const unsigned int blocksize = crypto_ahash_blocksize(tfm); 1753 const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 1754 const char *algname = crypto_hash_alg_common(tfm)->base.cra_name; 1755 const char *driver = crypto_ahash_driver_name(tfm); 1756 struct rnd_state rng; 1757 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 1758 struct crypto_shash *generic_tfm = NULL; 1759 struct shash_desc *generic_desc = NULL; 1760 unsigned int i; 1761 struct hash_testvec vec = { 0 }; 1762 char vec_name[64]; 1763 struct testvec_config *cfg; 1764 char cfgname[TESTVEC_CONFIG_NAMELEN]; 1765 int err; 1766 1767 if (noslowtests) 1768 return 0; 1769 1770 init_rnd_state(&rng); 1771 1772 if (!generic_driver) { /* Use default naming convention? */ 1773 err = build_generic_driver_name(algname, _generic_driver); 1774 if (err) 1775 return err; 1776 generic_driver = _generic_driver; 1777 } 1778 1779 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 1780 return 0; 1781 1782 generic_tfm = crypto_alloc_shash(generic_driver, 0, 0); 1783 if (IS_ERR(generic_tfm)) { 1784 err = PTR_ERR(generic_tfm); 1785 if (err == -ENOENT) { 1786 pr_warn("alg: hash: skipping comparison tests for %s because %s is unavailable\n", 1787 driver, generic_driver); 1788 return 0; 1789 } 1790 pr_err("alg: hash: error allocating %s (generic impl of %s): %d\n", 1791 generic_driver, algname, err); 1792 return err; 1793 } 1794 1795 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1796 if (!cfg) { 1797 err = -ENOMEM; 1798 goto out; 1799 } 1800 1801 generic_desc = kzalloc(sizeof(*desc) + 1802 crypto_shash_descsize(generic_tfm), GFP_KERNEL); 1803 if (!generic_desc) { 1804 err = -ENOMEM; 1805 goto out; 1806 } 1807 generic_desc->tfm = generic_tfm; 1808 1809 /* Check the algorithm properties for consistency. */ 1810 1811 if (digestsize != crypto_shash_digestsize(generic_tfm)) { 1812 pr_err("alg: hash: digestsize for %s (%u) doesn't match generic impl (%u)\n", 1813 driver, digestsize, 1814 crypto_shash_digestsize(generic_tfm)); 1815 err = -EINVAL; 1816 goto out; 1817 } 1818 1819 if (blocksize != crypto_shash_blocksize(generic_tfm)) { 1820 pr_err("alg: hash: blocksize for %s (%u) doesn't match generic impl (%u)\n", 1821 driver, blocksize, crypto_shash_blocksize(generic_tfm)); 1822 err = -EINVAL; 1823 goto out; 1824 } 1825 1826 /* 1827 * Now generate test vectors using the generic implementation, and test 1828 * the other implementation against them. 1829 */ 1830 1831 vec.key = kmalloc(maxkeysize, GFP_KERNEL); 1832 vec.plaintext = kmalloc(maxdatasize, GFP_KERNEL); 1833 vec.digest = kmalloc(digestsize, GFP_KERNEL); 1834 if (!vec.key || !vec.plaintext || !vec.digest) { 1835 err = -ENOMEM; 1836 goto out; 1837 } 1838 1839 for (i = 0; i < fuzz_iterations * 8; i++) { 1840 generate_random_hash_testvec(&rng, generic_desc, &vec, 1841 maxkeysize, maxdatasize, 1842 vec_name, sizeof(vec_name)); 1843 generate_random_testvec_config(&rng, cfg, cfgname, 1844 sizeof(cfgname)); 1845 1846 err = test_hash_vec_cfg(&vec, vec_name, cfg, 1847 req, desc, tsgl, hashstate); 1848 if (err) 1849 goto out; 1850 cond_resched(); 1851 } 1852 err = 0; 1853 out: 1854 kfree(cfg); 1855 kfree(vec.key); 1856 kfree(vec.plaintext); 1857 kfree(vec.digest); 1858 crypto_free_shash(generic_tfm); 1859 kfree_sensitive(generic_desc); 1860 return err; 1861 } 1862 1863 static int alloc_shash(const char *driver, u32 type, u32 mask, 1864 struct crypto_shash **tfm_ret, 1865 struct shash_desc **desc_ret) 1866 { 1867 struct crypto_shash *tfm; 1868 struct shash_desc *desc; 1869 1870 tfm = crypto_alloc_shash(driver, type, mask); 1871 if (IS_ERR(tfm)) { 1872 if (PTR_ERR(tfm) == -ENOENT) { 1873 /* 1874 * This algorithm is only available through the ahash 1875 * API, not the shash API, so skip the shash tests. 1876 */ 1877 return 0; 1878 } 1879 pr_err("alg: hash: failed to allocate shash transform for %s: %ld\n", 1880 driver, PTR_ERR(tfm)); 1881 return PTR_ERR(tfm); 1882 } 1883 1884 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL); 1885 if (!desc) { 1886 crypto_free_shash(tfm); 1887 return -ENOMEM; 1888 } 1889 desc->tfm = tfm; 1890 1891 *tfm_ret = tfm; 1892 *desc_ret = desc; 1893 return 0; 1894 } 1895 1896 static int __alg_test_hash(const struct hash_testvec *vecs, 1897 unsigned int num_vecs, const char *driver, 1898 u32 type, u32 mask, 1899 const char *generic_driver, unsigned int maxkeysize) 1900 { 1901 struct crypto_ahash *atfm = NULL; 1902 struct ahash_request *req = NULL; 1903 struct crypto_shash *stfm = NULL; 1904 struct shash_desc *desc = NULL; 1905 struct test_sglist *tsgl = NULL; 1906 u8 *hashstate = NULL; 1907 unsigned int statesize; 1908 unsigned int i; 1909 int err; 1910 1911 /* 1912 * Always test the ahash API. This works regardless of whether the 1913 * algorithm is implemented as ahash or shash. 1914 */ 1915 1916 atfm = crypto_alloc_ahash(driver, type, mask); 1917 if (IS_ERR(atfm)) { 1918 if (PTR_ERR(atfm) == -ENOENT) 1919 return 0; 1920 pr_err("alg: hash: failed to allocate transform for %s: %ld\n", 1921 driver, PTR_ERR(atfm)); 1922 return PTR_ERR(atfm); 1923 } 1924 driver = crypto_ahash_driver_name(atfm); 1925 1926 req = ahash_request_alloc(atfm, GFP_KERNEL); 1927 if (!req) { 1928 pr_err("alg: hash: failed to allocate request for %s\n", 1929 driver); 1930 err = -ENOMEM; 1931 goto out; 1932 } 1933 1934 /* 1935 * If available also test the shash API, to cover corner cases that may 1936 * be missed by testing the ahash API only. 1937 */ 1938 err = alloc_shash(driver, type, mask, &stfm, &desc); 1939 if (err) 1940 goto out; 1941 1942 tsgl = kmalloc(sizeof(*tsgl), GFP_KERNEL); 1943 if (!tsgl || init_test_sglist(tsgl) != 0) { 1944 pr_err("alg: hash: failed to allocate test buffers for %s\n", 1945 driver); 1946 kfree(tsgl); 1947 tsgl = NULL; 1948 err = -ENOMEM; 1949 goto out; 1950 } 1951 1952 statesize = crypto_ahash_statesize(atfm); 1953 if (stfm) 1954 statesize = max(statesize, crypto_shash_statesize(stfm)); 1955 hashstate = kmalloc(statesize + TESTMGR_POISON_LEN, GFP_KERNEL); 1956 if (!hashstate) { 1957 pr_err("alg: hash: failed to allocate hash state buffer for %s\n", 1958 driver); 1959 err = -ENOMEM; 1960 goto out; 1961 } 1962 1963 for (i = 0; i < num_vecs; i++) { 1964 if (fips_enabled && vecs[i].fips_skip) 1965 continue; 1966 1967 err = test_hash_vec(&vecs[i], i, req, desc, tsgl, hashstate); 1968 if (err) 1969 goto out; 1970 cond_resched(); 1971 } 1972 err = test_hash_vs_generic_impl(generic_driver, maxkeysize, req, 1973 desc, tsgl, hashstate); 1974 out: 1975 kfree(hashstate); 1976 if (tsgl) { 1977 destroy_test_sglist(tsgl); 1978 kfree(tsgl); 1979 } 1980 kfree(desc); 1981 crypto_free_shash(stfm); 1982 ahash_request_free(req); 1983 crypto_free_ahash(atfm); 1984 return err; 1985 } 1986 1987 static int alg_test_hash(const struct alg_test_desc *desc, const char *driver, 1988 u32 type, u32 mask) 1989 { 1990 const struct hash_testvec *template = desc->suite.hash.vecs; 1991 unsigned int tcount = desc->suite.hash.count; 1992 unsigned int nr_unkeyed, nr_keyed; 1993 unsigned int maxkeysize = 0; 1994 int err; 1995 1996 /* 1997 * For OPTIONAL_KEY algorithms, we have to do all the unkeyed tests 1998 * first, before setting a key on the tfm. To make this easier, we 1999 * require that the unkeyed test vectors (if any) are listed first. 2000 */ 2001 2002 for (nr_unkeyed = 0; nr_unkeyed < tcount; nr_unkeyed++) { 2003 if (template[nr_unkeyed].ksize) 2004 break; 2005 } 2006 for (nr_keyed = 0; nr_unkeyed + nr_keyed < tcount; nr_keyed++) { 2007 if (!template[nr_unkeyed + nr_keyed].ksize) { 2008 pr_err("alg: hash: test vectors for %s out of order, " 2009 "unkeyed ones must come first\n", desc->alg); 2010 return -EINVAL; 2011 } 2012 maxkeysize = max_t(unsigned int, maxkeysize, 2013 template[nr_unkeyed + nr_keyed].ksize); 2014 } 2015 2016 err = 0; 2017 if (nr_unkeyed) { 2018 err = __alg_test_hash(template, nr_unkeyed, driver, type, mask, 2019 desc->generic_driver, maxkeysize); 2020 template += nr_unkeyed; 2021 } 2022 2023 if (!err && nr_keyed) 2024 err = __alg_test_hash(template, nr_keyed, driver, type, mask, 2025 desc->generic_driver, maxkeysize); 2026 2027 return err; 2028 } 2029 2030 static int test_aead_vec_cfg(int enc, const struct aead_testvec *vec, 2031 const char *vec_name, 2032 const struct testvec_config *cfg, 2033 struct aead_request *req, 2034 struct cipher_test_sglists *tsgls) 2035 { 2036 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2037 const unsigned int alignmask = crypto_aead_alignmask(tfm); 2038 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2039 const unsigned int authsize = vec->clen - vec->plen; 2040 const char *driver = crypto_aead_driver_name(tfm); 2041 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 2042 const char *op = enc ? "encryption" : "decryption"; 2043 DECLARE_CRYPTO_WAIT(wait); 2044 u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; 2045 u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + 2046 cfg->iv_offset + 2047 (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); 2048 struct kvec input[2]; 2049 int err; 2050 2051 /* Set the key */ 2052 if (vec->wk) 2053 crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2054 else 2055 crypto_aead_clear_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2056 2057 err = do_setkey(crypto_aead_setkey, tfm, vec->key, vec->klen, 2058 cfg, alignmask); 2059 if (err && err != vec->setkey_error) { 2060 pr_err("alg: aead: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 2061 driver, vec_name, vec->setkey_error, err, 2062 crypto_aead_get_flags(tfm)); 2063 return err; 2064 } 2065 if (!err && vec->setkey_error) { 2066 pr_err("alg: aead: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 2067 driver, vec_name, vec->setkey_error); 2068 return -EINVAL; 2069 } 2070 2071 /* Set the authentication tag size */ 2072 err = crypto_aead_setauthsize(tfm, authsize); 2073 if (err && err != vec->setauthsize_error) { 2074 pr_err("alg: aead: %s setauthsize failed on test vector %s; expected_error=%d, actual_error=%d\n", 2075 driver, vec_name, vec->setauthsize_error, err); 2076 return err; 2077 } 2078 if (!err && vec->setauthsize_error) { 2079 pr_err("alg: aead: %s setauthsize unexpectedly succeeded on test vector %s; expected_error=%d\n", 2080 driver, vec_name, vec->setauthsize_error); 2081 return -EINVAL; 2082 } 2083 2084 if (vec->setkey_error || vec->setauthsize_error) 2085 return 0; 2086 2087 /* The IV must be copied to a buffer, as the algorithm may modify it */ 2088 if (WARN_ON(ivsize > MAX_IVLEN)) 2089 return -EINVAL; 2090 if (vec->iv) 2091 memcpy(iv, vec->iv, ivsize); 2092 else 2093 memset(iv, 0, ivsize); 2094 2095 /* Build the src/dst scatterlists */ 2096 input[0].iov_base = (void *)vec->assoc; 2097 input[0].iov_len = vec->alen; 2098 input[1].iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; 2099 input[1].iov_len = enc ? vec->plen : vec->clen; 2100 err = build_cipher_test_sglists(tsgls, cfg, alignmask, 2101 vec->alen + (enc ? vec->plen : 2102 vec->clen), 2103 vec->alen + (enc ? vec->clen : 2104 vec->plen), 2105 input, 2); 2106 if (err) { 2107 pr_err("alg: aead: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", 2108 driver, op, vec_name, cfg->name); 2109 return err; 2110 } 2111 2112 /* Do the actual encryption or decryption */ 2113 testmgr_poison(req->__ctx, crypto_aead_reqsize(tfm)); 2114 aead_request_set_callback(req, req_flags, crypto_req_done, &wait); 2115 aead_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, 2116 enc ? vec->plen : vec->clen, iv); 2117 aead_request_set_ad(req, vec->alen); 2118 if (cfg->nosimd) 2119 crypto_disable_simd_for_test(); 2120 err = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); 2121 if (cfg->nosimd) 2122 crypto_reenable_simd_for_test(); 2123 err = crypto_wait_req(err, &wait); 2124 2125 /* Check that the algorithm didn't overwrite things it shouldn't have */ 2126 if (req->cryptlen != (enc ? vec->plen : vec->clen) || 2127 req->assoclen != vec->alen || 2128 req->iv != iv || 2129 req->src != tsgls->src.sgl_ptr || 2130 req->dst != tsgls->dst.sgl_ptr || 2131 crypto_aead_reqtfm(req) != tfm || 2132 req->base.complete != crypto_req_done || 2133 req->base.flags != req_flags || 2134 req->base.data != &wait) { 2135 pr_err("alg: aead: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", 2136 driver, op, vec_name, cfg->name); 2137 if (req->cryptlen != (enc ? vec->plen : vec->clen)) 2138 pr_err("alg: aead: changed 'req->cryptlen'\n"); 2139 if (req->assoclen != vec->alen) 2140 pr_err("alg: aead: changed 'req->assoclen'\n"); 2141 if (req->iv != iv) 2142 pr_err("alg: aead: changed 'req->iv'\n"); 2143 if (req->src != tsgls->src.sgl_ptr) 2144 pr_err("alg: aead: changed 'req->src'\n"); 2145 if (req->dst != tsgls->dst.sgl_ptr) 2146 pr_err("alg: aead: changed 'req->dst'\n"); 2147 if (crypto_aead_reqtfm(req) != tfm) 2148 pr_err("alg: aead: changed 'req->base.tfm'\n"); 2149 if (req->base.complete != crypto_req_done) 2150 pr_err("alg: aead: changed 'req->base.complete'\n"); 2151 if (req->base.flags != req_flags) 2152 pr_err("alg: aead: changed 'req->base.flags'\n"); 2153 if (req->base.data != &wait) 2154 pr_err("alg: aead: changed 'req->base.data'\n"); 2155 return -EINVAL; 2156 } 2157 if (is_test_sglist_corrupted(&tsgls->src)) { 2158 pr_err("alg: aead: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", 2159 driver, op, vec_name, cfg->name); 2160 return -EINVAL; 2161 } 2162 if (tsgls->dst.sgl_ptr != tsgls->src.sgl && 2163 is_test_sglist_corrupted(&tsgls->dst)) { 2164 pr_err("alg: aead: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", 2165 driver, op, vec_name, cfg->name); 2166 return -EINVAL; 2167 } 2168 2169 /* Check for unexpected success or failure, or wrong error code */ 2170 if ((err == 0 && vec->novrfy) || 2171 (err != vec->crypt_error && !(err == -EBADMSG && vec->novrfy))) { 2172 char expected_error[32]; 2173 2174 if (vec->novrfy && 2175 vec->crypt_error != 0 && vec->crypt_error != -EBADMSG) 2176 sprintf(expected_error, "-EBADMSG or %d", 2177 vec->crypt_error); 2178 else if (vec->novrfy) 2179 sprintf(expected_error, "-EBADMSG"); 2180 else 2181 sprintf(expected_error, "%d", vec->crypt_error); 2182 if (err) { 2183 pr_err("alg: aead: %s %s failed on test vector %s; expected_error=%s, actual_error=%d, cfg=\"%s\"\n", 2184 driver, op, vec_name, expected_error, err, 2185 cfg->name); 2186 return err; 2187 } 2188 pr_err("alg: aead: %s %s unexpectedly succeeded on test vector %s; expected_error=%s, cfg=\"%s\"\n", 2189 driver, op, vec_name, expected_error, cfg->name); 2190 return -EINVAL; 2191 } 2192 if (err) /* Expectedly failed. */ 2193 return 0; 2194 2195 /* Check for the correct output (ciphertext or plaintext) */ 2196 err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, 2197 enc ? vec->clen : vec->plen, 2198 vec->alen, 2199 enc || cfg->inplace_mode == OUT_OF_PLACE); 2200 if (err == -EOVERFLOW) { 2201 pr_err("alg: aead: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", 2202 driver, op, vec_name, cfg->name); 2203 return err; 2204 } 2205 if (err) { 2206 pr_err("alg: aead: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 2207 driver, op, vec_name, cfg->name); 2208 return err; 2209 } 2210 2211 return 0; 2212 } 2213 2214 static int test_aead_vec(int enc, const struct aead_testvec *vec, 2215 unsigned int vec_num, struct aead_request *req, 2216 struct cipher_test_sglists *tsgls) 2217 { 2218 char vec_name[16]; 2219 unsigned int i; 2220 int err; 2221 2222 if (enc && vec->novrfy) 2223 return 0; 2224 2225 sprintf(vec_name, "%u", vec_num); 2226 2227 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { 2228 err = test_aead_vec_cfg(enc, vec, vec_name, 2229 &default_cipher_testvec_configs[i], 2230 req, tsgls); 2231 if (err) 2232 return err; 2233 } 2234 2235 if (!noslowtests) { 2236 struct rnd_state rng; 2237 struct testvec_config cfg; 2238 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2239 2240 init_rnd_state(&rng); 2241 2242 for (i = 0; i < fuzz_iterations; i++) { 2243 generate_random_testvec_config(&rng, &cfg, cfgname, 2244 sizeof(cfgname)); 2245 err = test_aead_vec_cfg(enc, vec, vec_name, 2246 &cfg, req, tsgls); 2247 if (err) 2248 return err; 2249 cond_resched(); 2250 } 2251 } 2252 return 0; 2253 } 2254 2255 struct aead_slow_tests_ctx { 2256 struct rnd_state rng; 2257 struct aead_request *req; 2258 struct crypto_aead *tfm; 2259 const struct alg_test_desc *test_desc; 2260 struct cipher_test_sglists *tsgls; 2261 unsigned int maxdatasize; 2262 unsigned int maxkeysize; 2263 2264 struct aead_testvec vec; 2265 char vec_name[64]; 2266 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2267 struct testvec_config cfg; 2268 }; 2269 2270 /* 2271 * Make at least one random change to a (ciphertext, AAD) pair. "Ciphertext" 2272 * here means the full ciphertext including the authentication tag. The 2273 * authentication tag (and hence also the ciphertext) is assumed to be nonempty. 2274 */ 2275 static void mutate_aead_message(struct rnd_state *rng, 2276 struct aead_testvec *vec, bool aad_iv, 2277 unsigned int ivsize) 2278 { 2279 const unsigned int aad_tail_size = aad_iv ? ivsize : 0; 2280 const unsigned int authsize = vec->clen - vec->plen; 2281 2282 if (prandom_bool(rng) && vec->alen > aad_tail_size) { 2283 /* Mutate the AAD */ 2284 flip_random_bit(rng, (u8 *)vec->assoc, 2285 vec->alen - aad_tail_size); 2286 if (prandom_bool(rng)) 2287 return; 2288 } 2289 if (prandom_bool(rng)) { 2290 /* Mutate auth tag (assuming it's at the end of ciphertext) */ 2291 flip_random_bit(rng, (u8 *)vec->ctext + vec->plen, authsize); 2292 } else { 2293 /* Mutate any part of the ciphertext */ 2294 flip_random_bit(rng, (u8 *)vec->ctext, vec->clen); 2295 } 2296 } 2297 2298 /* 2299 * Minimum authentication tag size in bytes at which we assume that we can 2300 * reliably generate inauthentic messages, i.e. not generate an authentic 2301 * message by chance. 2302 */ 2303 #define MIN_COLLISION_FREE_AUTHSIZE 8 2304 2305 static void generate_aead_message(struct rnd_state *rng, 2306 struct aead_request *req, 2307 const struct aead_test_suite *suite, 2308 struct aead_testvec *vec, 2309 bool prefer_inauthentic) 2310 { 2311 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2312 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2313 const unsigned int authsize = vec->clen - vec->plen; 2314 const bool inauthentic = (authsize >= MIN_COLLISION_FREE_AUTHSIZE) && 2315 (prefer_inauthentic || 2316 prandom_u32_below(rng, 4) == 0); 2317 2318 /* Generate the AAD. */ 2319 generate_random_bytes(rng, (u8 *)vec->assoc, vec->alen); 2320 if (suite->aad_iv && vec->alen >= ivsize) 2321 /* Avoid implementation-defined behavior. */ 2322 memcpy((u8 *)vec->assoc + vec->alen - ivsize, vec->iv, ivsize); 2323 2324 if (inauthentic && prandom_bool(rng)) { 2325 /* Generate a random ciphertext. */ 2326 generate_random_bytes(rng, (u8 *)vec->ctext, vec->clen); 2327 } else { 2328 int i = 0; 2329 struct scatterlist src[2], dst; 2330 u8 iv[MAX_IVLEN]; 2331 DECLARE_CRYPTO_WAIT(wait); 2332 2333 /* Generate a random plaintext and encrypt it. */ 2334 sg_init_table(src, 2); 2335 if (vec->alen) 2336 sg_set_buf(&src[i++], vec->assoc, vec->alen); 2337 if (vec->plen) { 2338 generate_random_bytes(rng, (u8 *)vec->ptext, vec->plen); 2339 sg_set_buf(&src[i++], vec->ptext, vec->plen); 2340 } 2341 sg_init_one(&dst, vec->ctext, vec->alen + vec->clen); 2342 memcpy(iv, vec->iv, ivsize); 2343 aead_request_set_callback(req, 0, crypto_req_done, &wait); 2344 aead_request_set_crypt(req, src, &dst, vec->plen, iv); 2345 aead_request_set_ad(req, vec->alen); 2346 vec->crypt_error = crypto_wait_req(crypto_aead_encrypt(req), 2347 &wait); 2348 /* If encryption failed, we're done. */ 2349 if (vec->crypt_error != 0) 2350 return; 2351 memmove((u8 *)vec->ctext, vec->ctext + vec->alen, vec->clen); 2352 if (!inauthentic) 2353 return; 2354 /* 2355 * Mutate the authentic (ciphertext, AAD) pair to get an 2356 * inauthentic one. 2357 */ 2358 mutate_aead_message(rng, vec, suite->aad_iv, ivsize); 2359 } 2360 vec->novrfy = 1; 2361 if (suite->einval_allowed) 2362 vec->crypt_error = -EINVAL; 2363 } 2364 2365 /* 2366 * Generate an AEAD test vector 'vec' using the implementation specified by 2367 * 'req'. The buffers in 'vec' must already be allocated. 2368 * 2369 * If 'prefer_inauthentic' is true, then this function will generate inauthentic 2370 * test vectors (i.e. vectors with 'vec->novrfy=1') more often. 2371 */ 2372 static void generate_random_aead_testvec(struct rnd_state *rng, 2373 struct aead_request *req, 2374 struct aead_testvec *vec, 2375 const struct aead_test_suite *suite, 2376 unsigned int maxkeysize, 2377 unsigned int maxdatasize, 2378 char *name, size_t max_namelen, 2379 bool prefer_inauthentic) 2380 { 2381 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2382 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2383 const unsigned int maxauthsize = crypto_aead_maxauthsize(tfm); 2384 unsigned int authsize; 2385 unsigned int total_len; 2386 2387 /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ 2388 vec->klen = maxkeysize; 2389 if (prandom_u32_below(rng, 4) == 0) 2390 vec->klen = prandom_u32_below(rng, maxkeysize + 1); 2391 generate_random_bytes(rng, (u8 *)vec->key, vec->klen); 2392 vec->setkey_error = crypto_aead_setkey(tfm, vec->key, vec->klen); 2393 2394 /* IV */ 2395 generate_random_bytes(rng, (u8 *)vec->iv, ivsize); 2396 2397 /* Tag length: in [0, maxauthsize], but usually choose maxauthsize */ 2398 authsize = maxauthsize; 2399 if (prandom_u32_below(rng, 4) == 0) 2400 authsize = prandom_u32_below(rng, maxauthsize + 1); 2401 if (prefer_inauthentic && authsize < MIN_COLLISION_FREE_AUTHSIZE) 2402 authsize = MIN_COLLISION_FREE_AUTHSIZE; 2403 if (WARN_ON(authsize > maxdatasize)) 2404 authsize = maxdatasize; 2405 maxdatasize -= authsize; 2406 vec->setauthsize_error = crypto_aead_setauthsize(tfm, authsize); 2407 2408 /* AAD, plaintext, and ciphertext lengths */ 2409 total_len = generate_random_length(rng, maxdatasize); 2410 if (prandom_u32_below(rng, 4) == 0) 2411 vec->alen = 0; 2412 else 2413 vec->alen = generate_random_length(rng, total_len); 2414 vec->plen = total_len - vec->alen; 2415 vec->clen = vec->plen + authsize; 2416 2417 /* 2418 * Generate the AAD, plaintext, and ciphertext. Not applicable if the 2419 * key or the authentication tag size couldn't be set. 2420 */ 2421 vec->novrfy = 0; 2422 vec->crypt_error = 0; 2423 if (vec->setkey_error == 0 && vec->setauthsize_error == 0) 2424 generate_aead_message(rng, req, suite, vec, prefer_inauthentic); 2425 snprintf(name, max_namelen, 2426 "\"random: alen=%u plen=%u authsize=%u klen=%u novrfy=%d\"", 2427 vec->alen, vec->plen, authsize, vec->klen, vec->novrfy); 2428 } 2429 2430 static void try_to_generate_inauthentic_testvec(struct aead_slow_tests_ctx *ctx) 2431 { 2432 int i; 2433 2434 for (i = 0; i < 10; i++) { 2435 generate_random_aead_testvec(&ctx->rng, ctx->req, &ctx->vec, 2436 &ctx->test_desc->suite.aead, 2437 ctx->maxkeysize, ctx->maxdatasize, 2438 ctx->vec_name, 2439 sizeof(ctx->vec_name), true); 2440 if (ctx->vec.novrfy) 2441 return; 2442 } 2443 } 2444 2445 /* 2446 * Generate inauthentic test vectors (i.e. ciphertext, AAD pairs that aren't the 2447 * result of an encryption with the key) and verify that decryption fails. 2448 */ 2449 static int test_aead_inauthentic_inputs(struct aead_slow_tests_ctx *ctx) 2450 { 2451 unsigned int i; 2452 int err; 2453 2454 for (i = 0; i < fuzz_iterations * 8; i++) { 2455 /* 2456 * Since this part of the tests isn't comparing the 2457 * implementation to another, there's no point in testing any 2458 * test vectors other than inauthentic ones (vec.novrfy=1) here. 2459 * 2460 * If we're having trouble generating such a test vector, e.g. 2461 * if the algorithm keeps rejecting the generated keys, don't 2462 * retry forever; just continue on. 2463 */ 2464 try_to_generate_inauthentic_testvec(ctx); 2465 if (ctx->vec.novrfy) { 2466 generate_random_testvec_config(&ctx->rng, &ctx->cfg, 2467 ctx->cfgname, 2468 sizeof(ctx->cfgname)); 2469 err = test_aead_vec_cfg(DECRYPT, &ctx->vec, 2470 ctx->vec_name, &ctx->cfg, 2471 ctx->req, ctx->tsgls); 2472 if (err) 2473 return err; 2474 } 2475 cond_resched(); 2476 } 2477 return 0; 2478 } 2479 2480 /* 2481 * Test the AEAD algorithm against the corresponding generic implementation, if 2482 * one is available. 2483 */ 2484 static int test_aead_vs_generic_impl(struct aead_slow_tests_ctx *ctx) 2485 { 2486 struct crypto_aead *tfm = ctx->tfm; 2487 const char *algname = crypto_aead_alg(tfm)->base.cra_name; 2488 const char *driver = crypto_aead_driver_name(tfm); 2489 const char *generic_driver = ctx->test_desc->generic_driver; 2490 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 2491 struct crypto_aead *generic_tfm = NULL; 2492 struct aead_request *generic_req = NULL; 2493 unsigned int i; 2494 int err; 2495 2496 if (!generic_driver) { /* Use default naming convention? */ 2497 err = build_generic_driver_name(algname, _generic_driver); 2498 if (err) 2499 return err; 2500 generic_driver = _generic_driver; 2501 } 2502 2503 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 2504 return 0; 2505 2506 generic_tfm = crypto_alloc_aead(generic_driver, 0, 0); 2507 if (IS_ERR(generic_tfm)) { 2508 err = PTR_ERR(generic_tfm); 2509 if (err == -ENOENT) { 2510 pr_warn("alg: aead: skipping comparison tests for %s because %s is unavailable\n", 2511 driver, generic_driver); 2512 return 0; 2513 } 2514 pr_err("alg: aead: error allocating %s (generic impl of %s): %d\n", 2515 generic_driver, algname, err); 2516 return err; 2517 } 2518 2519 generic_req = aead_request_alloc(generic_tfm, GFP_KERNEL); 2520 if (!generic_req) { 2521 err = -ENOMEM; 2522 goto out; 2523 } 2524 2525 /* Check the algorithm properties for consistency. */ 2526 2527 if (crypto_aead_maxauthsize(tfm) != 2528 crypto_aead_maxauthsize(generic_tfm)) { 2529 pr_err("alg: aead: maxauthsize for %s (%u) doesn't match generic impl (%u)\n", 2530 driver, crypto_aead_maxauthsize(tfm), 2531 crypto_aead_maxauthsize(generic_tfm)); 2532 err = -EINVAL; 2533 goto out; 2534 } 2535 2536 if (crypto_aead_ivsize(tfm) != crypto_aead_ivsize(generic_tfm)) { 2537 pr_err("alg: aead: ivsize for %s (%u) doesn't match generic impl (%u)\n", 2538 driver, crypto_aead_ivsize(tfm), 2539 crypto_aead_ivsize(generic_tfm)); 2540 err = -EINVAL; 2541 goto out; 2542 } 2543 2544 if (crypto_aead_blocksize(tfm) != crypto_aead_blocksize(generic_tfm)) { 2545 pr_err("alg: aead: blocksize for %s (%u) doesn't match generic impl (%u)\n", 2546 driver, crypto_aead_blocksize(tfm), 2547 crypto_aead_blocksize(generic_tfm)); 2548 err = -EINVAL; 2549 goto out; 2550 } 2551 2552 /* 2553 * Now generate test vectors using the generic implementation, and test 2554 * the other implementation against them. 2555 */ 2556 for (i = 0; i < fuzz_iterations * 8; i++) { 2557 generate_random_aead_testvec(&ctx->rng, generic_req, &ctx->vec, 2558 &ctx->test_desc->suite.aead, 2559 ctx->maxkeysize, ctx->maxdatasize, 2560 ctx->vec_name, 2561 sizeof(ctx->vec_name), false); 2562 generate_random_testvec_config(&ctx->rng, &ctx->cfg, 2563 ctx->cfgname, 2564 sizeof(ctx->cfgname)); 2565 if (!ctx->vec.novrfy) { 2566 err = test_aead_vec_cfg(ENCRYPT, &ctx->vec, 2567 ctx->vec_name, &ctx->cfg, 2568 ctx->req, ctx->tsgls); 2569 if (err) 2570 goto out; 2571 } 2572 if (ctx->vec.crypt_error == 0 || ctx->vec.novrfy) { 2573 err = test_aead_vec_cfg(DECRYPT, &ctx->vec, 2574 ctx->vec_name, &ctx->cfg, 2575 ctx->req, ctx->tsgls); 2576 if (err) 2577 goto out; 2578 } 2579 cond_resched(); 2580 } 2581 err = 0; 2582 out: 2583 crypto_free_aead(generic_tfm); 2584 aead_request_free(generic_req); 2585 return err; 2586 } 2587 2588 static int test_aead_slow(const struct alg_test_desc *test_desc, 2589 struct aead_request *req, 2590 struct cipher_test_sglists *tsgls) 2591 { 2592 struct aead_slow_tests_ctx *ctx; 2593 unsigned int i; 2594 int err; 2595 2596 if (noslowtests) 2597 return 0; 2598 2599 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2600 if (!ctx) 2601 return -ENOMEM; 2602 init_rnd_state(&ctx->rng); 2603 ctx->req = req; 2604 ctx->tfm = crypto_aead_reqtfm(req); 2605 ctx->test_desc = test_desc; 2606 ctx->tsgls = tsgls; 2607 ctx->maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 2608 ctx->maxkeysize = 0; 2609 for (i = 0; i < test_desc->suite.aead.count; i++) 2610 ctx->maxkeysize = max_t(unsigned int, ctx->maxkeysize, 2611 test_desc->suite.aead.vecs[i].klen); 2612 2613 ctx->vec.key = kmalloc(ctx->maxkeysize, GFP_KERNEL); 2614 ctx->vec.iv = kmalloc(crypto_aead_ivsize(ctx->tfm), GFP_KERNEL); 2615 ctx->vec.assoc = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2616 ctx->vec.ptext = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2617 ctx->vec.ctext = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2618 if (!ctx->vec.key || !ctx->vec.iv || !ctx->vec.assoc || 2619 !ctx->vec.ptext || !ctx->vec.ctext) { 2620 err = -ENOMEM; 2621 goto out; 2622 } 2623 2624 err = test_aead_vs_generic_impl(ctx); 2625 if (err) 2626 goto out; 2627 2628 err = test_aead_inauthentic_inputs(ctx); 2629 out: 2630 kfree(ctx->vec.key); 2631 kfree(ctx->vec.iv); 2632 kfree(ctx->vec.assoc); 2633 kfree(ctx->vec.ptext); 2634 kfree(ctx->vec.ctext); 2635 kfree(ctx); 2636 return err; 2637 } 2638 2639 static int test_aead(int enc, const struct aead_test_suite *suite, 2640 struct aead_request *req, 2641 struct cipher_test_sglists *tsgls) 2642 { 2643 unsigned int i; 2644 int err; 2645 2646 for (i = 0; i < suite->count; i++) { 2647 err = test_aead_vec(enc, &suite->vecs[i], i, req, tsgls); 2648 if (err) 2649 return err; 2650 cond_resched(); 2651 } 2652 return 0; 2653 } 2654 2655 static int alg_test_aead(const struct alg_test_desc *desc, const char *driver, 2656 u32 type, u32 mask) 2657 { 2658 const struct aead_test_suite *suite = &desc->suite.aead; 2659 struct crypto_aead *tfm; 2660 struct aead_request *req = NULL; 2661 struct cipher_test_sglists *tsgls = NULL; 2662 int err; 2663 2664 if (suite->count <= 0) { 2665 pr_err("alg: aead: empty test suite for %s\n", driver); 2666 return -EINVAL; 2667 } 2668 2669 tfm = crypto_alloc_aead(driver, type, mask); 2670 if (IS_ERR(tfm)) { 2671 if (PTR_ERR(tfm) == -ENOENT) 2672 return 0; 2673 pr_err("alg: aead: failed to allocate transform for %s: %ld\n", 2674 driver, PTR_ERR(tfm)); 2675 return PTR_ERR(tfm); 2676 } 2677 driver = crypto_aead_driver_name(tfm); 2678 2679 req = aead_request_alloc(tfm, GFP_KERNEL); 2680 if (!req) { 2681 pr_err("alg: aead: failed to allocate request for %s\n", 2682 driver); 2683 err = -ENOMEM; 2684 goto out; 2685 } 2686 2687 tsgls = alloc_cipher_test_sglists(); 2688 if (!tsgls) { 2689 pr_err("alg: aead: failed to allocate test buffers for %s\n", 2690 driver); 2691 err = -ENOMEM; 2692 goto out; 2693 } 2694 2695 err = test_aead(ENCRYPT, suite, req, tsgls); 2696 if (err) 2697 goto out; 2698 2699 err = test_aead(DECRYPT, suite, req, tsgls); 2700 if (err) 2701 goto out; 2702 2703 err = test_aead_slow(desc, req, tsgls); 2704 out: 2705 free_cipher_test_sglists(tsgls); 2706 aead_request_free(req); 2707 crypto_free_aead(tfm); 2708 return err; 2709 } 2710 2711 static int test_cipher(struct crypto_cipher *tfm, int enc, 2712 const struct cipher_testvec *template, 2713 unsigned int tcount) 2714 { 2715 const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm)); 2716 unsigned int i, j, k; 2717 char *q; 2718 const char *e; 2719 const char *input, *result; 2720 void *data; 2721 char *xbuf[XBUFSIZE]; 2722 int ret = -ENOMEM; 2723 2724 if (testmgr_alloc_buf(xbuf)) 2725 goto out_nobuf; 2726 2727 if (enc == ENCRYPT) 2728 e = "encryption"; 2729 else 2730 e = "decryption"; 2731 2732 j = 0; 2733 for (i = 0; i < tcount; i++) { 2734 2735 if (fips_enabled && template[i].fips_skip) 2736 continue; 2737 2738 input = enc ? template[i].ptext : template[i].ctext; 2739 result = enc ? template[i].ctext : template[i].ptext; 2740 j++; 2741 2742 ret = -EINVAL; 2743 if (WARN_ON(template[i].len > PAGE_SIZE)) 2744 goto out; 2745 2746 data = xbuf[0]; 2747 memcpy(data, input, template[i].len); 2748 2749 crypto_cipher_clear_flags(tfm, ~0); 2750 if (template[i].wk) 2751 crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2752 2753 ret = crypto_cipher_setkey(tfm, template[i].key, 2754 template[i].klen); 2755 if (ret) { 2756 if (ret == template[i].setkey_error) 2757 continue; 2758 pr_err("alg: cipher: %s setkey failed on test vector %u; expected_error=%d, actual_error=%d, flags=%#x\n", 2759 algo, j, template[i].setkey_error, ret, 2760 crypto_cipher_get_flags(tfm)); 2761 goto out; 2762 } 2763 if (template[i].setkey_error) { 2764 pr_err("alg: cipher: %s setkey unexpectedly succeeded on test vector %u; expected_error=%d\n", 2765 algo, j, template[i].setkey_error); 2766 ret = -EINVAL; 2767 goto out; 2768 } 2769 2770 for (k = 0; k < template[i].len; 2771 k += crypto_cipher_blocksize(tfm)) { 2772 if (enc) 2773 crypto_cipher_encrypt_one(tfm, data + k, 2774 data + k); 2775 else 2776 crypto_cipher_decrypt_one(tfm, data + k, 2777 data + k); 2778 } 2779 2780 q = data; 2781 if (memcmp(q, result, template[i].len)) { 2782 printk(KERN_ERR "alg: cipher: Test %d failed " 2783 "on %s for %s\n", j, e, algo); 2784 hexdump(q, template[i].len); 2785 ret = -EINVAL; 2786 goto out; 2787 } 2788 } 2789 2790 ret = 0; 2791 2792 out: 2793 testmgr_free_buf(xbuf); 2794 out_nobuf: 2795 return ret; 2796 } 2797 2798 static int test_skcipher_vec_cfg(int enc, const struct cipher_testvec *vec, 2799 const char *vec_name, 2800 const struct testvec_config *cfg, 2801 struct skcipher_request *req, 2802 struct cipher_test_sglists *tsgls) 2803 { 2804 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 2805 const unsigned int alignmask = crypto_skcipher_alignmask(tfm); 2806 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 2807 const char *driver = crypto_skcipher_driver_name(tfm); 2808 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 2809 const char *op = enc ? "encryption" : "decryption"; 2810 DECLARE_CRYPTO_WAIT(wait); 2811 u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; 2812 u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + 2813 cfg->iv_offset + 2814 (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); 2815 struct kvec input; 2816 int err; 2817 2818 /* Set the key */ 2819 if (vec->wk) 2820 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2821 else 2822 crypto_skcipher_clear_flags(tfm, 2823 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2824 err = do_setkey(crypto_skcipher_setkey, tfm, vec->key, vec->klen, 2825 cfg, alignmask); 2826 if (err) { 2827 if (err == vec->setkey_error) 2828 return 0; 2829 pr_err("alg: skcipher: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 2830 driver, vec_name, vec->setkey_error, err, 2831 crypto_skcipher_get_flags(tfm)); 2832 return err; 2833 } 2834 if (vec->setkey_error) { 2835 pr_err("alg: skcipher: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 2836 driver, vec_name, vec->setkey_error); 2837 return -EINVAL; 2838 } 2839 2840 /* The IV must be copied to a buffer, as the algorithm may modify it */ 2841 if (ivsize) { 2842 if (WARN_ON(ivsize > MAX_IVLEN)) 2843 return -EINVAL; 2844 if (vec->iv) 2845 memcpy(iv, vec->iv, ivsize); 2846 else 2847 memset(iv, 0, ivsize); 2848 } else { 2849 iv = NULL; 2850 } 2851 2852 /* Build the src/dst scatterlists */ 2853 input.iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; 2854 input.iov_len = vec->len; 2855 err = build_cipher_test_sglists(tsgls, cfg, alignmask, 2856 vec->len, vec->len, &input, 1); 2857 if (err) { 2858 pr_err("alg: skcipher: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", 2859 driver, op, vec_name, cfg->name); 2860 return err; 2861 } 2862 2863 /* Do the actual encryption or decryption */ 2864 testmgr_poison(req->__ctx, crypto_skcipher_reqsize(tfm)); 2865 skcipher_request_set_callback(req, req_flags, crypto_req_done, &wait); 2866 skcipher_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, 2867 vec->len, iv); 2868 if (cfg->nosimd) 2869 crypto_disable_simd_for_test(); 2870 err = enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req); 2871 if (cfg->nosimd) 2872 crypto_reenable_simd_for_test(); 2873 err = crypto_wait_req(err, &wait); 2874 2875 /* Check that the algorithm didn't overwrite things it shouldn't have */ 2876 if (req->cryptlen != vec->len || 2877 req->iv != iv || 2878 req->src != tsgls->src.sgl_ptr || 2879 req->dst != tsgls->dst.sgl_ptr || 2880 crypto_skcipher_reqtfm(req) != tfm || 2881 req->base.complete != crypto_req_done || 2882 req->base.flags != req_flags || 2883 req->base.data != &wait) { 2884 pr_err("alg: skcipher: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", 2885 driver, op, vec_name, cfg->name); 2886 if (req->cryptlen != vec->len) 2887 pr_err("alg: skcipher: changed 'req->cryptlen'\n"); 2888 if (req->iv != iv) 2889 pr_err("alg: skcipher: changed 'req->iv'\n"); 2890 if (req->src != tsgls->src.sgl_ptr) 2891 pr_err("alg: skcipher: changed 'req->src'\n"); 2892 if (req->dst != tsgls->dst.sgl_ptr) 2893 pr_err("alg: skcipher: changed 'req->dst'\n"); 2894 if (crypto_skcipher_reqtfm(req) != tfm) 2895 pr_err("alg: skcipher: changed 'req->base.tfm'\n"); 2896 if (req->base.complete != crypto_req_done) 2897 pr_err("alg: skcipher: changed 'req->base.complete'\n"); 2898 if (req->base.flags != req_flags) 2899 pr_err("alg: skcipher: changed 'req->base.flags'\n"); 2900 if (req->base.data != &wait) 2901 pr_err("alg: skcipher: changed 'req->base.data'\n"); 2902 return -EINVAL; 2903 } 2904 if (is_test_sglist_corrupted(&tsgls->src)) { 2905 pr_err("alg: skcipher: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", 2906 driver, op, vec_name, cfg->name); 2907 return -EINVAL; 2908 } 2909 if (tsgls->dst.sgl_ptr != tsgls->src.sgl && 2910 is_test_sglist_corrupted(&tsgls->dst)) { 2911 pr_err("alg: skcipher: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", 2912 driver, op, vec_name, cfg->name); 2913 return -EINVAL; 2914 } 2915 2916 /* Check for success or failure */ 2917 if (err) { 2918 if (err == vec->crypt_error) 2919 return 0; 2920 pr_err("alg: skcipher: %s %s failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 2921 driver, op, vec_name, vec->crypt_error, err, cfg->name); 2922 return err; 2923 } 2924 if (vec->crypt_error) { 2925 pr_err("alg: skcipher: %s %s unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 2926 driver, op, vec_name, vec->crypt_error, cfg->name); 2927 return -EINVAL; 2928 } 2929 2930 /* Check for the correct output (ciphertext or plaintext) */ 2931 err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, 2932 vec->len, 0, true); 2933 if (err == -EOVERFLOW) { 2934 pr_err("alg: skcipher: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", 2935 driver, op, vec_name, cfg->name); 2936 return err; 2937 } 2938 if (err) { 2939 pr_err("alg: skcipher: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 2940 driver, op, vec_name, cfg->name); 2941 return err; 2942 } 2943 2944 /* If applicable, check that the algorithm generated the correct IV */ 2945 if (vec->iv_out && memcmp(iv, vec->iv_out, ivsize) != 0) { 2946 pr_err("alg: skcipher: %s %s test failed (wrong output IV) on test vector %s, cfg=\"%s\"\n", 2947 driver, op, vec_name, cfg->name); 2948 hexdump(iv, ivsize); 2949 return -EINVAL; 2950 } 2951 2952 return 0; 2953 } 2954 2955 static int test_skcipher_vec(int enc, const struct cipher_testvec *vec, 2956 unsigned int vec_num, 2957 struct skcipher_request *req, 2958 struct cipher_test_sglists *tsgls) 2959 { 2960 char vec_name[16]; 2961 unsigned int i; 2962 int err; 2963 2964 if (fips_enabled && vec->fips_skip) 2965 return 0; 2966 2967 sprintf(vec_name, "%u", vec_num); 2968 2969 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { 2970 err = test_skcipher_vec_cfg(enc, vec, vec_name, 2971 &default_cipher_testvec_configs[i], 2972 req, tsgls); 2973 if (err) 2974 return err; 2975 } 2976 2977 if (!noslowtests) { 2978 struct rnd_state rng; 2979 struct testvec_config cfg; 2980 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2981 2982 init_rnd_state(&rng); 2983 2984 for (i = 0; i < fuzz_iterations; i++) { 2985 generate_random_testvec_config(&rng, &cfg, cfgname, 2986 sizeof(cfgname)); 2987 err = test_skcipher_vec_cfg(enc, vec, vec_name, 2988 &cfg, req, tsgls); 2989 if (err) 2990 return err; 2991 cond_resched(); 2992 } 2993 } 2994 return 0; 2995 } 2996 2997 /* 2998 * Generate a symmetric cipher test vector from the given implementation. 2999 * Assumes the buffers in 'vec' were already allocated. 3000 */ 3001 static void generate_random_cipher_testvec(struct rnd_state *rng, 3002 struct skcipher_request *req, 3003 struct cipher_testvec *vec, 3004 unsigned int maxdatasize, 3005 char *name, size_t max_namelen) 3006 { 3007 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 3008 const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); 3009 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 3010 struct scatterlist src, dst; 3011 u8 iv[MAX_IVLEN]; 3012 DECLARE_CRYPTO_WAIT(wait); 3013 3014 /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ 3015 vec->klen = maxkeysize; 3016 if (prandom_u32_below(rng, 4) == 0) 3017 vec->klen = prandom_u32_below(rng, maxkeysize + 1); 3018 generate_random_bytes(rng, (u8 *)vec->key, vec->klen); 3019 vec->setkey_error = crypto_skcipher_setkey(tfm, vec->key, vec->klen); 3020 3021 /* IV */ 3022 generate_random_bytes(rng, (u8 *)vec->iv, ivsize); 3023 3024 /* Plaintext */ 3025 vec->len = generate_random_length(rng, maxdatasize); 3026 generate_random_bytes(rng, (u8 *)vec->ptext, vec->len); 3027 3028 /* If the key couldn't be set, no need to continue to encrypt. */ 3029 if (vec->setkey_error) 3030 goto done; 3031 3032 /* Ciphertext */ 3033 sg_init_one(&src, vec->ptext, vec->len); 3034 sg_init_one(&dst, vec->ctext, vec->len); 3035 memcpy(iv, vec->iv, ivsize); 3036 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 3037 skcipher_request_set_crypt(req, &src, &dst, vec->len, iv); 3038 vec->crypt_error = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 3039 if (vec->crypt_error != 0) { 3040 /* 3041 * The only acceptable error here is for an invalid length, so 3042 * skcipher decryption should fail with the same error too. 3043 * We'll test for this. But to keep the API usage well-defined, 3044 * explicitly initialize the ciphertext buffer too. 3045 */ 3046 memset((u8 *)vec->ctext, 0, vec->len); 3047 } 3048 done: 3049 snprintf(name, max_namelen, "\"random: len=%u klen=%u\"", 3050 vec->len, vec->klen); 3051 } 3052 3053 /* 3054 * Test the skcipher algorithm represented by @req against the corresponding 3055 * generic implementation, if one is available. 3056 */ 3057 static int test_skcipher_vs_generic_impl(const char *generic_driver, 3058 struct skcipher_request *req, 3059 struct cipher_test_sglists *tsgls) 3060 { 3061 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 3062 const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); 3063 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 3064 const unsigned int blocksize = crypto_skcipher_blocksize(tfm); 3065 const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 3066 const char *algname = crypto_skcipher_alg(tfm)->base.cra_name; 3067 const char *driver = crypto_skcipher_driver_name(tfm); 3068 struct rnd_state rng; 3069 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 3070 struct crypto_skcipher *generic_tfm = NULL; 3071 struct skcipher_request *generic_req = NULL; 3072 unsigned int i; 3073 struct cipher_testvec vec = { 0 }; 3074 char vec_name[64]; 3075 struct testvec_config *cfg; 3076 char cfgname[TESTVEC_CONFIG_NAMELEN]; 3077 int err; 3078 3079 if (noslowtests) 3080 return 0; 3081 3082 init_rnd_state(&rng); 3083 3084 if (!generic_driver) { /* Use default naming convention? */ 3085 err = build_generic_driver_name(algname, _generic_driver); 3086 if (err) 3087 return err; 3088 generic_driver = _generic_driver; 3089 } 3090 3091 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 3092 return 0; 3093 3094 generic_tfm = crypto_alloc_skcipher(generic_driver, 0, 0); 3095 if (IS_ERR(generic_tfm)) { 3096 err = PTR_ERR(generic_tfm); 3097 if (err == -ENOENT) { 3098 pr_warn("alg: skcipher: skipping comparison tests for %s because %s is unavailable\n", 3099 driver, generic_driver); 3100 return 0; 3101 } 3102 pr_err("alg: skcipher: error allocating %s (generic impl of %s): %d\n", 3103 generic_driver, algname, err); 3104 return err; 3105 } 3106 3107 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 3108 if (!cfg) { 3109 err = -ENOMEM; 3110 goto out; 3111 } 3112 3113 generic_req = skcipher_request_alloc(generic_tfm, GFP_KERNEL); 3114 if (!generic_req) { 3115 err = -ENOMEM; 3116 goto out; 3117 } 3118 3119 /* Check the algorithm properties for consistency. */ 3120 3121 if (crypto_skcipher_min_keysize(tfm) != 3122 crypto_skcipher_min_keysize(generic_tfm)) { 3123 pr_err("alg: skcipher: min keysize for %s (%u) doesn't match generic impl (%u)\n", 3124 driver, crypto_skcipher_min_keysize(tfm), 3125 crypto_skcipher_min_keysize(generic_tfm)); 3126 err = -EINVAL; 3127 goto out; 3128 } 3129 3130 if (maxkeysize != crypto_skcipher_max_keysize(generic_tfm)) { 3131 pr_err("alg: skcipher: max keysize for %s (%u) doesn't match generic impl (%u)\n", 3132 driver, maxkeysize, 3133 crypto_skcipher_max_keysize(generic_tfm)); 3134 err = -EINVAL; 3135 goto out; 3136 } 3137 3138 if (ivsize != crypto_skcipher_ivsize(generic_tfm)) { 3139 pr_err("alg: skcipher: ivsize for %s (%u) doesn't match generic impl (%u)\n", 3140 driver, ivsize, crypto_skcipher_ivsize(generic_tfm)); 3141 err = -EINVAL; 3142 goto out; 3143 } 3144 3145 if (blocksize != crypto_skcipher_blocksize(generic_tfm)) { 3146 pr_err("alg: skcipher: blocksize for %s (%u) doesn't match generic impl (%u)\n", 3147 driver, blocksize, 3148 crypto_skcipher_blocksize(generic_tfm)); 3149 err = -EINVAL; 3150 goto out; 3151 } 3152 3153 /* 3154 * Now generate test vectors using the generic implementation, and test 3155 * the other implementation against them. 3156 */ 3157 3158 vec.key = kmalloc(maxkeysize, GFP_KERNEL); 3159 vec.iv = kmalloc(ivsize, GFP_KERNEL); 3160 vec.ptext = kmalloc(maxdatasize, GFP_KERNEL); 3161 vec.ctext = kmalloc(maxdatasize, GFP_KERNEL); 3162 if (!vec.key || !vec.iv || !vec.ptext || !vec.ctext) { 3163 err = -ENOMEM; 3164 goto out; 3165 } 3166 3167 for (i = 0; i < fuzz_iterations * 8; i++) { 3168 generate_random_cipher_testvec(&rng, generic_req, &vec, 3169 maxdatasize, 3170 vec_name, sizeof(vec_name)); 3171 generate_random_testvec_config(&rng, cfg, cfgname, 3172 sizeof(cfgname)); 3173 3174 err = test_skcipher_vec_cfg(ENCRYPT, &vec, vec_name, 3175 cfg, req, tsgls); 3176 if (err) 3177 goto out; 3178 err = test_skcipher_vec_cfg(DECRYPT, &vec, vec_name, 3179 cfg, req, tsgls); 3180 if (err) 3181 goto out; 3182 cond_resched(); 3183 } 3184 err = 0; 3185 out: 3186 kfree(cfg); 3187 kfree(vec.key); 3188 kfree(vec.iv); 3189 kfree(vec.ptext); 3190 kfree(vec.ctext); 3191 crypto_free_skcipher(generic_tfm); 3192 skcipher_request_free(generic_req); 3193 return err; 3194 } 3195 3196 static int test_skcipher(int enc, const struct cipher_test_suite *suite, 3197 struct skcipher_request *req, 3198 struct cipher_test_sglists *tsgls) 3199 { 3200 unsigned int i; 3201 int err; 3202 3203 for (i = 0; i < suite->count; i++) { 3204 err = test_skcipher_vec(enc, &suite->vecs[i], i, req, tsgls); 3205 if (err) 3206 return err; 3207 cond_resched(); 3208 } 3209 return 0; 3210 } 3211 3212 static int alg_test_skcipher(const struct alg_test_desc *desc, 3213 const char *driver, u32 type, u32 mask) 3214 { 3215 const struct cipher_test_suite *suite = &desc->suite.cipher; 3216 struct crypto_skcipher *tfm; 3217 struct skcipher_request *req = NULL; 3218 struct cipher_test_sglists *tsgls = NULL; 3219 int err; 3220 3221 if (suite->count <= 0) { 3222 pr_err("alg: skcipher: empty test suite for %s\n", driver); 3223 return -EINVAL; 3224 } 3225 3226 tfm = crypto_alloc_skcipher(driver, type, mask); 3227 if (IS_ERR(tfm)) { 3228 if (PTR_ERR(tfm) == -ENOENT) 3229 return 0; 3230 pr_err("alg: skcipher: failed to allocate transform for %s: %ld\n", 3231 driver, PTR_ERR(tfm)); 3232 return PTR_ERR(tfm); 3233 } 3234 driver = crypto_skcipher_driver_name(tfm); 3235 3236 req = skcipher_request_alloc(tfm, GFP_KERNEL); 3237 if (!req) { 3238 pr_err("alg: skcipher: failed to allocate request for %s\n", 3239 driver); 3240 err = -ENOMEM; 3241 goto out; 3242 } 3243 3244 tsgls = alloc_cipher_test_sglists(); 3245 if (!tsgls) { 3246 pr_err("alg: skcipher: failed to allocate test buffers for %s\n", 3247 driver); 3248 err = -ENOMEM; 3249 goto out; 3250 } 3251 3252 err = test_skcipher(ENCRYPT, suite, req, tsgls); 3253 if (err) 3254 goto out; 3255 3256 err = test_skcipher(DECRYPT, suite, req, tsgls); 3257 if (err) 3258 goto out; 3259 3260 err = test_skcipher_vs_generic_impl(desc->generic_driver, req, tsgls); 3261 out: 3262 free_cipher_test_sglists(tsgls); 3263 skcipher_request_free(req); 3264 crypto_free_skcipher(tfm); 3265 return err; 3266 } 3267 3268 static int test_acomp(struct crypto_acomp *tfm, 3269 const struct comp_testvec *ctemplate, 3270 const struct comp_testvec *dtemplate, 3271 int ctcount, int dtcount) 3272 { 3273 const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm)); 3274 unsigned int i; 3275 char *output, *decomp_out; 3276 int ret; 3277 struct scatterlist src, dst; 3278 struct acomp_req *req; 3279 struct crypto_wait wait; 3280 3281 output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3282 if (!output) 3283 return -ENOMEM; 3284 3285 decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3286 if (!decomp_out) { 3287 kfree(output); 3288 return -ENOMEM; 3289 } 3290 3291 for (i = 0; i < ctcount; i++) { 3292 unsigned int dlen = COMP_BUF_SIZE; 3293 int ilen = ctemplate[i].inlen; 3294 void *input_vec; 3295 3296 input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL); 3297 if (!input_vec) { 3298 ret = -ENOMEM; 3299 goto out; 3300 } 3301 3302 memset(output, 0, dlen); 3303 crypto_init_wait(&wait); 3304 sg_init_one(&src, input_vec, ilen); 3305 sg_init_one(&dst, output, dlen); 3306 3307 req = acomp_request_alloc(tfm); 3308 if (!req) { 3309 pr_err("alg: acomp: request alloc failed for %s\n", 3310 algo); 3311 kfree(input_vec); 3312 ret = -ENOMEM; 3313 goto out; 3314 } 3315 3316 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3317 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3318 crypto_req_done, &wait); 3319 3320 ret = crypto_wait_req(crypto_acomp_compress(req), &wait); 3321 if (ret) { 3322 pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", 3323 i + 1, algo, -ret); 3324 kfree(input_vec); 3325 acomp_request_free(req); 3326 goto out; 3327 } 3328 3329 ilen = req->dlen; 3330 dlen = COMP_BUF_SIZE; 3331 sg_init_one(&src, output, ilen); 3332 sg_init_one(&dst, decomp_out, dlen); 3333 crypto_init_wait(&wait); 3334 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3335 3336 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3337 if (ret) { 3338 pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", 3339 i + 1, algo, -ret); 3340 kfree(input_vec); 3341 acomp_request_free(req); 3342 goto out; 3343 } 3344 3345 if (req->dlen != ctemplate[i].inlen) { 3346 pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n", 3347 i + 1, algo, req->dlen); 3348 ret = -EINVAL; 3349 kfree(input_vec); 3350 acomp_request_free(req); 3351 goto out; 3352 } 3353 3354 if (memcmp(input_vec, decomp_out, req->dlen)) { 3355 pr_err("alg: acomp: Compression test %d failed for %s\n", 3356 i + 1, algo); 3357 hexdump(output, req->dlen); 3358 ret = -EINVAL; 3359 kfree(input_vec); 3360 acomp_request_free(req); 3361 goto out; 3362 } 3363 3364 kfree(input_vec); 3365 acomp_request_free(req); 3366 } 3367 3368 for (i = 0; i < dtcount; i++) { 3369 unsigned int dlen = COMP_BUF_SIZE; 3370 int ilen = dtemplate[i].inlen; 3371 void *input_vec; 3372 3373 input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL); 3374 if (!input_vec) { 3375 ret = -ENOMEM; 3376 goto out; 3377 } 3378 3379 memset(output, 0, dlen); 3380 crypto_init_wait(&wait); 3381 sg_init_one(&src, input_vec, ilen); 3382 sg_init_one(&dst, output, dlen); 3383 3384 req = acomp_request_alloc(tfm); 3385 if (!req) { 3386 pr_err("alg: acomp: request alloc failed for %s\n", 3387 algo); 3388 kfree(input_vec); 3389 ret = -ENOMEM; 3390 goto out; 3391 } 3392 3393 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3394 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3395 crypto_req_done, &wait); 3396 3397 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3398 if (ret) { 3399 pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n", 3400 i + 1, algo, -ret); 3401 kfree(input_vec); 3402 acomp_request_free(req); 3403 goto out; 3404 } 3405 3406 if (req->dlen != dtemplate[i].outlen) { 3407 pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n", 3408 i + 1, algo, req->dlen); 3409 ret = -EINVAL; 3410 kfree(input_vec); 3411 acomp_request_free(req); 3412 goto out; 3413 } 3414 3415 if (memcmp(output, dtemplate[i].output, req->dlen)) { 3416 pr_err("alg: acomp: Decompression test %d failed for %s\n", 3417 i + 1, algo); 3418 hexdump(output, req->dlen); 3419 ret = -EINVAL; 3420 kfree(input_vec); 3421 acomp_request_free(req); 3422 goto out; 3423 } 3424 3425 kfree(input_vec); 3426 acomp_request_free(req); 3427 } 3428 3429 ret = 0; 3430 3431 out: 3432 kfree(decomp_out); 3433 kfree(output); 3434 return ret; 3435 } 3436 3437 static int test_cprng(struct crypto_rng *tfm, 3438 const struct cprng_testvec *template, 3439 unsigned int tcount) 3440 { 3441 const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm)); 3442 int err = 0, i, j, seedsize; 3443 u8 *seed; 3444 char result[32]; 3445 3446 seedsize = crypto_rng_seedsize(tfm); 3447 3448 seed = kmalloc(seedsize, GFP_KERNEL); 3449 if (!seed) { 3450 printk(KERN_ERR "alg: cprng: Failed to allocate seed space " 3451 "for %s\n", algo); 3452 return -ENOMEM; 3453 } 3454 3455 for (i = 0; i < tcount; i++) { 3456 memset(result, 0, 32); 3457 3458 memcpy(seed, template[i].v, template[i].vlen); 3459 memcpy(seed + template[i].vlen, template[i].key, 3460 template[i].klen); 3461 memcpy(seed + template[i].vlen + template[i].klen, 3462 template[i].dt, template[i].dtlen); 3463 3464 err = crypto_rng_reset(tfm, seed, seedsize); 3465 if (err) { 3466 printk(KERN_ERR "alg: cprng: Failed to reset rng " 3467 "for %s\n", algo); 3468 goto out; 3469 } 3470 3471 for (j = 0; j < template[i].loops; j++) { 3472 err = crypto_rng_get_bytes(tfm, result, 3473 template[i].rlen); 3474 if (err < 0) { 3475 printk(KERN_ERR "alg: cprng: Failed to obtain " 3476 "the correct amount of random data for " 3477 "%s (requested %d)\n", algo, 3478 template[i].rlen); 3479 goto out; 3480 } 3481 } 3482 3483 err = memcmp(result, template[i].result, 3484 template[i].rlen); 3485 if (err) { 3486 printk(KERN_ERR "alg: cprng: Test %d failed for %s\n", 3487 i, algo); 3488 hexdump(result, template[i].rlen); 3489 err = -EINVAL; 3490 goto out; 3491 } 3492 } 3493 3494 out: 3495 kfree(seed); 3496 return err; 3497 } 3498 3499 static int alg_test_cipher(const struct alg_test_desc *desc, 3500 const char *driver, u32 type, u32 mask) 3501 { 3502 const struct cipher_test_suite *suite = &desc->suite.cipher; 3503 struct crypto_cipher *tfm; 3504 int err; 3505 3506 tfm = crypto_alloc_cipher(driver, type, mask); 3507 if (IS_ERR(tfm)) { 3508 if (PTR_ERR(tfm) == -ENOENT) 3509 return 0; 3510 printk(KERN_ERR "alg: cipher: Failed to load transform for " 3511 "%s: %ld\n", driver, PTR_ERR(tfm)); 3512 return PTR_ERR(tfm); 3513 } 3514 3515 err = test_cipher(tfm, ENCRYPT, suite->vecs, suite->count); 3516 if (!err) 3517 err = test_cipher(tfm, DECRYPT, suite->vecs, suite->count); 3518 3519 crypto_free_cipher(tfm); 3520 return err; 3521 } 3522 3523 static int alg_test_comp(const struct alg_test_desc *desc, const char *driver, 3524 u32 type, u32 mask) 3525 { 3526 struct crypto_acomp *acomp; 3527 int err; 3528 3529 acomp = crypto_alloc_acomp(driver, type, mask); 3530 if (IS_ERR(acomp)) { 3531 if (PTR_ERR(acomp) == -ENOENT) 3532 return 0; 3533 pr_err("alg: acomp: Failed to load transform for %s: %ld\n", 3534 driver, PTR_ERR(acomp)); 3535 return PTR_ERR(acomp); 3536 } 3537 err = test_acomp(acomp, desc->suite.comp.comp.vecs, 3538 desc->suite.comp.decomp.vecs, 3539 desc->suite.comp.comp.count, 3540 desc->suite.comp.decomp.count); 3541 crypto_free_acomp(acomp); 3542 return err; 3543 } 3544 3545 static int alg_test_crc32c(const struct alg_test_desc *desc, 3546 const char *driver, u32 type, u32 mask) 3547 { 3548 struct crypto_shash *tfm; 3549 __le32 val; 3550 int err; 3551 3552 err = alg_test_hash(desc, driver, type, mask); 3553 if (err) 3554 return err; 3555 3556 tfm = crypto_alloc_shash(driver, type, mask); 3557 if (IS_ERR(tfm)) { 3558 if (PTR_ERR(tfm) == -ENOENT) { 3559 /* 3560 * This crc32c implementation is only available through 3561 * ahash API, not the shash API, so the remaining part 3562 * of the test is not applicable to it. 3563 */ 3564 return 0; 3565 } 3566 printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: " 3567 "%ld\n", driver, PTR_ERR(tfm)); 3568 return PTR_ERR(tfm); 3569 } 3570 driver = crypto_shash_driver_name(tfm); 3571 3572 do { 3573 SHASH_DESC_ON_STACK(shash, tfm); 3574 u32 *ctx = (u32 *)shash_desc_ctx(shash); 3575 3576 shash->tfm = tfm; 3577 3578 *ctx = 420553207; 3579 err = crypto_shash_final(shash, (u8 *)&val); 3580 if (err) { 3581 printk(KERN_ERR "alg: crc32c: Operation failed for " 3582 "%s: %d\n", driver, err); 3583 break; 3584 } 3585 3586 if (val != cpu_to_le32(~420553207)) { 3587 pr_err("alg: crc32c: Test failed for %s: %u\n", 3588 driver, le32_to_cpu(val)); 3589 err = -EINVAL; 3590 } 3591 } while (0); 3592 3593 crypto_free_shash(tfm); 3594 3595 return err; 3596 } 3597 3598 static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver, 3599 u32 type, u32 mask) 3600 { 3601 struct crypto_rng *rng; 3602 int err; 3603 3604 rng = crypto_alloc_rng(driver, type, mask); 3605 if (IS_ERR(rng)) { 3606 if (PTR_ERR(rng) == -ENOENT) 3607 return 0; 3608 printk(KERN_ERR "alg: cprng: Failed to load transform for %s: " 3609 "%ld\n", driver, PTR_ERR(rng)); 3610 return PTR_ERR(rng); 3611 } 3612 3613 err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count); 3614 3615 crypto_free_rng(rng); 3616 3617 return err; 3618 } 3619 3620 3621 static int drbg_cavs_test(const struct drbg_testvec *test, int pr, 3622 const char *driver, u32 type, u32 mask) 3623 { 3624 int ret = -EAGAIN; 3625 struct crypto_rng *drng; 3626 struct drbg_test_data test_data; 3627 struct drbg_string addtl, pers, testentropy; 3628 unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL); 3629 3630 if (!buf) 3631 return -ENOMEM; 3632 3633 drng = crypto_alloc_rng(driver, type, mask); 3634 if (IS_ERR(drng)) { 3635 kfree_sensitive(buf); 3636 if (PTR_ERR(drng) == -ENOENT) 3637 return 0; 3638 printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for " 3639 "%s\n", driver); 3640 return PTR_ERR(drng); 3641 } 3642 3643 test_data.testentropy = &testentropy; 3644 drbg_string_fill(&testentropy, test->entropy, test->entropylen); 3645 drbg_string_fill(&pers, test->pers, test->perslen); 3646 ret = crypto_drbg_reset_test(drng, &pers, &test_data); 3647 if (ret) { 3648 printk(KERN_ERR "alg: drbg: Failed to reset rng\n"); 3649 goto outbuf; 3650 } 3651 3652 drbg_string_fill(&addtl, test->addtla, test->addtllen); 3653 if (pr) { 3654 drbg_string_fill(&testentropy, test->entpra, test->entprlen); 3655 ret = crypto_drbg_get_bytes_addtl_test(drng, 3656 buf, test->expectedlen, &addtl, &test_data); 3657 } else { 3658 ret = crypto_drbg_get_bytes_addtl(drng, 3659 buf, test->expectedlen, &addtl); 3660 } 3661 if (ret < 0) { 3662 printk(KERN_ERR "alg: drbg: could not obtain random data for " 3663 "driver %s\n", driver); 3664 goto outbuf; 3665 } 3666 3667 drbg_string_fill(&addtl, test->addtlb, test->addtllen); 3668 if (pr) { 3669 drbg_string_fill(&testentropy, test->entprb, test->entprlen); 3670 ret = crypto_drbg_get_bytes_addtl_test(drng, 3671 buf, test->expectedlen, &addtl, &test_data); 3672 } else { 3673 ret = crypto_drbg_get_bytes_addtl(drng, 3674 buf, test->expectedlen, &addtl); 3675 } 3676 if (ret < 0) { 3677 printk(KERN_ERR "alg: drbg: could not obtain random data for " 3678 "driver %s\n", driver); 3679 goto outbuf; 3680 } 3681 3682 ret = memcmp(test->expected, buf, test->expectedlen); 3683 3684 outbuf: 3685 crypto_free_rng(drng); 3686 kfree_sensitive(buf); 3687 return ret; 3688 } 3689 3690 3691 static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver, 3692 u32 type, u32 mask) 3693 { 3694 int err = 0; 3695 int pr = 0; 3696 int i = 0; 3697 const struct drbg_testvec *template = desc->suite.drbg.vecs; 3698 unsigned int tcount = desc->suite.drbg.count; 3699 3700 if (0 == memcmp(driver, "drbg_pr_", 8)) 3701 pr = 1; 3702 3703 for (i = 0; i < tcount; i++) { 3704 err = drbg_cavs_test(&template[i], pr, driver, type, mask); 3705 if (err) { 3706 printk(KERN_ERR "alg: drbg: Test %d failed for %s\n", 3707 i, driver); 3708 err = -EINVAL; 3709 break; 3710 } 3711 } 3712 return err; 3713 3714 } 3715 3716 static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec, 3717 const char *alg) 3718 { 3719 struct kpp_request *req; 3720 void *input_buf = NULL; 3721 void *output_buf = NULL; 3722 void *a_public = NULL; 3723 void *a_ss = NULL; 3724 void *shared_secret = NULL; 3725 struct crypto_wait wait; 3726 unsigned int out_len_max; 3727 int err = -ENOMEM; 3728 struct scatterlist src, dst; 3729 3730 req = kpp_request_alloc(tfm, GFP_KERNEL); 3731 if (!req) 3732 return err; 3733 3734 crypto_init_wait(&wait); 3735 3736 err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size); 3737 if (err < 0) 3738 goto free_req; 3739 3740 out_len_max = crypto_kpp_maxsize(tfm); 3741 output_buf = kzalloc(out_len_max, GFP_KERNEL); 3742 if (!output_buf) { 3743 err = -ENOMEM; 3744 goto free_req; 3745 } 3746 3747 /* Use appropriate parameter as base */ 3748 kpp_request_set_input(req, NULL, 0); 3749 sg_init_one(&dst, output_buf, out_len_max); 3750 kpp_request_set_output(req, &dst, out_len_max); 3751 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3752 crypto_req_done, &wait); 3753 3754 /* Compute party A's public key */ 3755 err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait); 3756 if (err) { 3757 pr_err("alg: %s: Party A: generate public key test failed. err %d\n", 3758 alg, err); 3759 goto free_output; 3760 } 3761 3762 if (vec->genkey) { 3763 /* Save party A's public key */ 3764 a_public = kmemdup(sg_virt(req->dst), out_len_max, GFP_KERNEL); 3765 if (!a_public) { 3766 err = -ENOMEM; 3767 goto free_output; 3768 } 3769 } else { 3770 /* Verify calculated public key */ 3771 if (memcmp(vec->expected_a_public, sg_virt(req->dst), 3772 vec->expected_a_public_size)) { 3773 pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n", 3774 alg); 3775 err = -EINVAL; 3776 goto free_output; 3777 } 3778 } 3779 3780 /* Calculate shared secret key by using counter part (b) public key. */ 3781 input_buf = kmemdup(vec->b_public, vec->b_public_size, GFP_KERNEL); 3782 if (!input_buf) { 3783 err = -ENOMEM; 3784 goto free_output; 3785 } 3786 3787 sg_init_one(&src, input_buf, vec->b_public_size); 3788 sg_init_one(&dst, output_buf, out_len_max); 3789 kpp_request_set_input(req, &src, vec->b_public_size); 3790 kpp_request_set_output(req, &dst, out_len_max); 3791 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3792 crypto_req_done, &wait); 3793 err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); 3794 if (err) { 3795 pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n", 3796 alg, err); 3797 goto free_all; 3798 } 3799 3800 if (vec->genkey) { 3801 /* Save the shared secret obtained by party A */ 3802 a_ss = kmemdup(sg_virt(req->dst), vec->expected_ss_size, GFP_KERNEL); 3803 if (!a_ss) { 3804 err = -ENOMEM; 3805 goto free_all; 3806 } 3807 3808 /* 3809 * Calculate party B's shared secret by using party A's 3810 * public key. 3811 */ 3812 err = crypto_kpp_set_secret(tfm, vec->b_secret, 3813 vec->b_secret_size); 3814 if (err < 0) 3815 goto free_all; 3816 3817 sg_init_one(&src, a_public, vec->expected_a_public_size); 3818 sg_init_one(&dst, output_buf, out_len_max); 3819 kpp_request_set_input(req, &src, vec->expected_a_public_size); 3820 kpp_request_set_output(req, &dst, out_len_max); 3821 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3822 crypto_req_done, &wait); 3823 err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), 3824 &wait); 3825 if (err) { 3826 pr_err("alg: %s: Party B: compute shared secret failed. err %d\n", 3827 alg, err); 3828 goto free_all; 3829 } 3830 3831 shared_secret = a_ss; 3832 } else { 3833 shared_secret = (void *)vec->expected_ss; 3834 } 3835 3836 /* 3837 * verify shared secret from which the user will derive 3838 * secret key by executing whatever hash it has chosen 3839 */ 3840 if (memcmp(shared_secret, sg_virt(req->dst), 3841 vec->expected_ss_size)) { 3842 pr_err("alg: %s: compute shared secret test failed. Invalid output\n", 3843 alg); 3844 err = -EINVAL; 3845 } 3846 3847 free_all: 3848 kfree(a_ss); 3849 kfree(input_buf); 3850 free_output: 3851 kfree(a_public); 3852 kfree(output_buf); 3853 free_req: 3854 kpp_request_free(req); 3855 return err; 3856 } 3857 3858 static int test_kpp(struct crypto_kpp *tfm, const char *alg, 3859 const struct kpp_testvec *vecs, unsigned int tcount) 3860 { 3861 int ret, i; 3862 3863 for (i = 0; i < tcount; i++) { 3864 ret = do_test_kpp(tfm, vecs++, alg); 3865 if (ret) { 3866 pr_err("alg: %s: test failed on vector %d, err=%d\n", 3867 alg, i + 1, ret); 3868 return ret; 3869 } 3870 } 3871 return 0; 3872 } 3873 3874 static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver, 3875 u32 type, u32 mask) 3876 { 3877 struct crypto_kpp *tfm; 3878 int err = 0; 3879 3880 tfm = crypto_alloc_kpp(driver, type, mask); 3881 if (IS_ERR(tfm)) { 3882 if (PTR_ERR(tfm) == -ENOENT) 3883 return 0; 3884 pr_err("alg: kpp: Failed to load tfm for %s: %ld\n", 3885 driver, PTR_ERR(tfm)); 3886 return PTR_ERR(tfm); 3887 } 3888 if (desc->suite.kpp.vecs) 3889 err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs, 3890 desc->suite.kpp.count); 3891 3892 crypto_free_kpp(tfm); 3893 return err; 3894 } 3895 3896 static u8 *test_pack_u32(u8 *dst, u32 val) 3897 { 3898 memcpy(dst, &val, sizeof(val)); 3899 return dst + sizeof(val); 3900 } 3901 3902 static int test_akcipher_one(struct crypto_akcipher *tfm, 3903 const struct akcipher_testvec *vecs) 3904 { 3905 char *xbuf[XBUFSIZE]; 3906 struct akcipher_request *req; 3907 void *outbuf_enc = NULL; 3908 void *outbuf_dec = NULL; 3909 struct crypto_wait wait; 3910 unsigned int out_len_max, out_len = 0; 3911 int err = -ENOMEM; 3912 struct scatterlist src, dst, src_tab[2]; 3913 const char *c; 3914 unsigned int c_size; 3915 3916 if (testmgr_alloc_buf(xbuf)) 3917 return err; 3918 3919 req = akcipher_request_alloc(tfm, GFP_KERNEL); 3920 if (!req) 3921 goto free_xbuf; 3922 3923 crypto_init_wait(&wait); 3924 3925 if (vecs->public_key_vec) 3926 err = crypto_akcipher_set_pub_key(tfm, vecs->key, 3927 vecs->key_len); 3928 else 3929 err = crypto_akcipher_set_priv_key(tfm, vecs->key, 3930 vecs->key_len); 3931 if (err) 3932 goto free_req; 3933 3934 /* First run encrypt test which does not require a private key */ 3935 err = -ENOMEM; 3936 out_len_max = crypto_akcipher_maxsize(tfm); 3937 outbuf_enc = kzalloc(out_len_max, GFP_KERNEL); 3938 if (!outbuf_enc) 3939 goto free_req; 3940 3941 c = vecs->c; 3942 c_size = vecs->c_size; 3943 3944 err = -E2BIG; 3945 if (WARN_ON(vecs->m_size > PAGE_SIZE)) 3946 goto free_all; 3947 memcpy(xbuf[0], vecs->m, vecs->m_size); 3948 3949 sg_init_table(src_tab, 2); 3950 sg_set_buf(&src_tab[0], xbuf[0], 8); 3951 sg_set_buf(&src_tab[1], xbuf[0] + 8, vecs->m_size - 8); 3952 sg_init_one(&dst, outbuf_enc, out_len_max); 3953 akcipher_request_set_crypt(req, src_tab, &dst, vecs->m_size, 3954 out_len_max); 3955 akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3956 crypto_req_done, &wait); 3957 3958 err = crypto_wait_req(crypto_akcipher_encrypt(req), &wait); 3959 if (err) { 3960 pr_err("alg: akcipher: encrypt test failed. err %d\n", err); 3961 goto free_all; 3962 } 3963 if (c) { 3964 if (req->dst_len != c_size) { 3965 pr_err("alg: akcipher: encrypt test failed. Invalid output len\n"); 3966 err = -EINVAL; 3967 goto free_all; 3968 } 3969 /* verify that encrypted message is equal to expected */ 3970 if (memcmp(c, outbuf_enc, c_size) != 0) { 3971 pr_err("alg: akcipher: encrypt test failed. Invalid output\n"); 3972 hexdump(outbuf_enc, c_size); 3973 err = -EINVAL; 3974 goto free_all; 3975 } 3976 } 3977 3978 /* 3979 * Don't invoke decrypt test which requires a private key 3980 * for vectors with only a public key. 3981 */ 3982 if (vecs->public_key_vec) { 3983 err = 0; 3984 goto free_all; 3985 } 3986 outbuf_dec = kzalloc(out_len_max, GFP_KERNEL); 3987 if (!outbuf_dec) { 3988 err = -ENOMEM; 3989 goto free_all; 3990 } 3991 3992 if (!c) { 3993 c = outbuf_enc; 3994 c_size = req->dst_len; 3995 } 3996 3997 err = -E2BIG; 3998 if (WARN_ON(c_size > PAGE_SIZE)) 3999 goto free_all; 4000 memcpy(xbuf[0], c, c_size); 4001 4002 sg_init_one(&src, xbuf[0], c_size); 4003 sg_init_one(&dst, outbuf_dec, out_len_max); 4004 crypto_init_wait(&wait); 4005 akcipher_request_set_crypt(req, &src, &dst, c_size, out_len_max); 4006 4007 err = crypto_wait_req(crypto_akcipher_decrypt(req), &wait); 4008 if (err) { 4009 pr_err("alg: akcipher: decrypt test failed. err %d\n", err); 4010 goto free_all; 4011 } 4012 out_len = req->dst_len; 4013 if (out_len < vecs->m_size) { 4014 pr_err("alg: akcipher: decrypt test failed. Invalid output len %u\n", 4015 out_len); 4016 err = -EINVAL; 4017 goto free_all; 4018 } 4019 /* verify that decrypted message is equal to the original msg */ 4020 if (memchr_inv(outbuf_dec, 0, out_len - vecs->m_size) || 4021 memcmp(vecs->m, outbuf_dec + out_len - vecs->m_size, 4022 vecs->m_size)) { 4023 pr_err("alg: akcipher: decrypt test failed. Invalid output\n"); 4024 hexdump(outbuf_dec, out_len); 4025 err = -EINVAL; 4026 } 4027 free_all: 4028 kfree(outbuf_dec); 4029 kfree(outbuf_enc); 4030 free_req: 4031 akcipher_request_free(req); 4032 free_xbuf: 4033 testmgr_free_buf(xbuf); 4034 return err; 4035 } 4036 4037 static int test_akcipher(struct crypto_akcipher *tfm, const char *alg, 4038 const struct akcipher_testvec *vecs, 4039 unsigned int tcount) 4040 { 4041 const char *algo = 4042 crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm)); 4043 int ret, i; 4044 4045 for (i = 0; i < tcount; i++) { 4046 ret = test_akcipher_one(tfm, vecs++); 4047 if (!ret) 4048 continue; 4049 4050 pr_err("alg: akcipher: test %d failed for %s, err=%d\n", 4051 i + 1, algo, ret); 4052 return ret; 4053 } 4054 return 0; 4055 } 4056 4057 static int alg_test_akcipher(const struct alg_test_desc *desc, 4058 const char *driver, u32 type, u32 mask) 4059 { 4060 struct crypto_akcipher *tfm; 4061 int err = 0; 4062 4063 tfm = crypto_alloc_akcipher(driver, type, mask); 4064 if (IS_ERR(tfm)) { 4065 if (PTR_ERR(tfm) == -ENOENT) 4066 return 0; 4067 pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n", 4068 driver, PTR_ERR(tfm)); 4069 return PTR_ERR(tfm); 4070 } 4071 if (desc->suite.akcipher.vecs) 4072 err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs, 4073 desc->suite.akcipher.count); 4074 4075 crypto_free_akcipher(tfm); 4076 return err; 4077 } 4078 4079 static int test_sig_one(struct crypto_sig *tfm, const struct sig_testvec *vecs) 4080 { 4081 u8 *ptr, *key __free(kfree); 4082 int err, sig_size; 4083 4084 key = kmalloc(vecs->key_len + 2 * sizeof(u32) + vecs->param_len, 4085 GFP_KERNEL); 4086 if (!key) 4087 return -ENOMEM; 4088 4089 /* ecrdsa expects additional parameters appended to the key */ 4090 memcpy(key, vecs->key, vecs->key_len); 4091 ptr = key + vecs->key_len; 4092 ptr = test_pack_u32(ptr, vecs->algo); 4093 ptr = test_pack_u32(ptr, vecs->param_len); 4094 memcpy(ptr, vecs->params, vecs->param_len); 4095 4096 if (vecs->public_key_vec) 4097 err = crypto_sig_set_pubkey(tfm, key, vecs->key_len); 4098 else 4099 err = crypto_sig_set_privkey(tfm, key, vecs->key_len); 4100 if (err) 4101 return err; 4102 4103 /* 4104 * Run asymmetric signature verification first 4105 * (which does not require a private key) 4106 */ 4107 err = crypto_sig_verify(tfm, vecs->c, vecs->c_size, 4108 vecs->m, vecs->m_size); 4109 if (err) { 4110 pr_err("alg: sig: verify test failed: err %d\n", err); 4111 return err; 4112 } 4113 4114 /* 4115 * Don't invoke sign test (which requires a private key) 4116 * for vectors with only a public key. 4117 */ 4118 if (vecs->public_key_vec) 4119 return 0; 4120 4121 sig_size = crypto_sig_maxsize(tfm); 4122 if (sig_size < vecs->c_size) { 4123 pr_err("alg: sig: invalid maxsize %u\n", sig_size); 4124 return -EINVAL; 4125 } 4126 4127 u8 *sig __free(kfree) = kzalloc(sig_size, GFP_KERNEL); 4128 if (!sig) 4129 return -ENOMEM; 4130 4131 /* Run asymmetric signature generation */ 4132 err = crypto_sig_sign(tfm, vecs->m, vecs->m_size, sig, sig_size); 4133 if (err < 0) { 4134 pr_err("alg: sig: sign test failed: err %d\n", err); 4135 return err; 4136 } 4137 4138 /* Verify that generated signature equals cooked signature */ 4139 if (err != vecs->c_size || 4140 memcmp(sig, vecs->c, vecs->c_size) || 4141 memchr_inv(sig + vecs->c_size, 0, sig_size - vecs->c_size)) { 4142 pr_err("alg: sig: sign test failed: invalid output\n"); 4143 hexdump(sig, sig_size); 4144 return -EINVAL; 4145 } 4146 4147 return 0; 4148 } 4149 4150 static int test_sig(struct crypto_sig *tfm, const char *alg, 4151 const struct sig_testvec *vecs, unsigned int tcount) 4152 { 4153 const char *algo = crypto_tfm_alg_driver_name(crypto_sig_tfm(tfm)); 4154 int ret, i; 4155 4156 for (i = 0; i < tcount; i++) { 4157 ret = test_sig_one(tfm, vecs++); 4158 if (ret) { 4159 pr_err("alg: sig: test %d failed for %s: err %d\n", 4160 i + 1, algo, ret); 4161 return ret; 4162 } 4163 } 4164 return 0; 4165 } 4166 4167 static int alg_test_sig(const struct alg_test_desc *desc, const char *driver, 4168 u32 type, u32 mask) 4169 { 4170 struct crypto_sig *tfm; 4171 int err = 0; 4172 4173 tfm = crypto_alloc_sig(driver, type, mask); 4174 if (IS_ERR(tfm)) { 4175 pr_err("alg: sig: Failed to load tfm for %s: %ld\n", 4176 driver, PTR_ERR(tfm)); 4177 return PTR_ERR(tfm); 4178 } 4179 if (desc->suite.sig.vecs) 4180 err = test_sig(tfm, desc->alg, desc->suite.sig.vecs, 4181 desc->suite.sig.count); 4182 4183 crypto_free_sig(tfm); 4184 return err; 4185 } 4186 4187 static int alg_test_null(const struct alg_test_desc *desc, 4188 const char *driver, u32 type, u32 mask) 4189 { 4190 return 0; 4191 } 4192 4193 #define ____VECS(tv) .vecs = tv, .count = ARRAY_SIZE(tv) 4194 #define __VECS(tv) { ____VECS(tv) } 4195 4196 /* Please keep this list sorted by algorithm name. */ 4197 static const struct alg_test_desc alg_test_descs[] = { 4198 { 4199 .alg = "adiantum(xchacha12,aes)", 4200 .generic_driver = "adiantum(xchacha12-generic,aes-generic,nhpoly1305-generic)", 4201 .test = alg_test_skcipher, 4202 .suite = { 4203 .cipher = __VECS(adiantum_xchacha12_aes_tv_template) 4204 }, 4205 }, { 4206 .alg = "adiantum(xchacha20,aes)", 4207 .generic_driver = "adiantum(xchacha20-generic,aes-generic,nhpoly1305-generic)", 4208 .test = alg_test_skcipher, 4209 .suite = { 4210 .cipher = __VECS(adiantum_xchacha20_aes_tv_template) 4211 }, 4212 }, { 4213 .alg = "aegis128", 4214 .test = alg_test_aead, 4215 .suite = { 4216 .aead = __VECS(aegis128_tv_template) 4217 } 4218 }, { 4219 .alg = "ansi_cprng", 4220 .test = alg_test_cprng, 4221 .suite = { 4222 .cprng = __VECS(ansi_cprng_aes_tv_template) 4223 } 4224 }, { 4225 .alg = "authenc(hmac(md5),ecb(cipher_null))", 4226 .test = alg_test_aead, 4227 .suite = { 4228 .aead = __VECS(hmac_md5_ecb_cipher_null_tv_template) 4229 } 4230 }, { 4231 .alg = "authenc(hmac(sha1),cbc(aes))", 4232 .test = alg_test_aead, 4233 .fips_allowed = 1, 4234 .suite = { 4235 .aead = __VECS(hmac_sha1_aes_cbc_tv_temp) 4236 } 4237 }, { 4238 .alg = "authenc(hmac(sha1),cbc(des))", 4239 .test = alg_test_aead, 4240 .suite = { 4241 .aead = __VECS(hmac_sha1_des_cbc_tv_temp) 4242 } 4243 }, { 4244 .alg = "authenc(hmac(sha1),cbc(des3_ede))", 4245 .test = alg_test_aead, 4246 .suite = { 4247 .aead = __VECS(hmac_sha1_des3_ede_cbc_tv_temp) 4248 } 4249 }, { 4250 .alg = "authenc(hmac(sha1),ctr(aes))", 4251 .test = alg_test_null, 4252 .fips_allowed = 1, 4253 }, { 4254 .alg = "authenc(hmac(sha1),ecb(cipher_null))", 4255 .test = alg_test_aead, 4256 .suite = { 4257 .aead = __VECS(hmac_sha1_ecb_cipher_null_tv_temp) 4258 } 4259 }, { 4260 .alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))", 4261 .test = alg_test_null, 4262 .fips_allowed = 1, 4263 }, { 4264 .alg = "authenc(hmac(sha224),cbc(des))", 4265 .test = alg_test_aead, 4266 .suite = { 4267 .aead = __VECS(hmac_sha224_des_cbc_tv_temp) 4268 } 4269 }, { 4270 .alg = "authenc(hmac(sha224),cbc(des3_ede))", 4271 .test = alg_test_aead, 4272 .suite = { 4273 .aead = __VECS(hmac_sha224_des3_ede_cbc_tv_temp) 4274 } 4275 }, { 4276 .alg = "authenc(hmac(sha256),cbc(aes))", 4277 .test = alg_test_aead, 4278 .fips_allowed = 1, 4279 .suite = { 4280 .aead = __VECS(hmac_sha256_aes_cbc_tv_temp) 4281 } 4282 }, { 4283 .alg = "authenc(hmac(sha256),cbc(des))", 4284 .test = alg_test_aead, 4285 .suite = { 4286 .aead = __VECS(hmac_sha256_des_cbc_tv_temp) 4287 } 4288 }, { 4289 .alg = "authenc(hmac(sha256),cbc(des3_ede))", 4290 .test = alg_test_aead, 4291 .suite = { 4292 .aead = __VECS(hmac_sha256_des3_ede_cbc_tv_temp) 4293 } 4294 }, { 4295 .alg = "authenc(hmac(sha256),ctr(aes))", 4296 .test = alg_test_null, 4297 .fips_allowed = 1, 4298 }, { 4299 .alg = "authenc(hmac(sha256),cts(cbc(aes)))", 4300 .test = alg_test_aead, 4301 .suite = { 4302 .aead = __VECS(krb5_test_aes128_cts_hmac_sha256_128) 4303 } 4304 }, { 4305 .alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))", 4306 .test = alg_test_null, 4307 .fips_allowed = 1, 4308 }, { 4309 .alg = "authenc(hmac(sha384),cbc(des))", 4310 .test = alg_test_aead, 4311 .suite = { 4312 .aead = __VECS(hmac_sha384_des_cbc_tv_temp) 4313 } 4314 }, { 4315 .alg = "authenc(hmac(sha384),cbc(des3_ede))", 4316 .test = alg_test_aead, 4317 .suite = { 4318 .aead = __VECS(hmac_sha384_des3_ede_cbc_tv_temp) 4319 } 4320 }, { 4321 .alg = "authenc(hmac(sha384),ctr(aes))", 4322 .test = alg_test_null, 4323 .fips_allowed = 1, 4324 }, { 4325 .alg = "authenc(hmac(sha384),cts(cbc(aes)))", 4326 .test = alg_test_aead, 4327 .suite = { 4328 .aead = __VECS(krb5_test_aes256_cts_hmac_sha384_192) 4329 } 4330 }, { 4331 .alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))", 4332 .test = alg_test_null, 4333 .fips_allowed = 1, 4334 }, { 4335 .alg = "authenc(hmac(sha512),cbc(aes))", 4336 .fips_allowed = 1, 4337 .test = alg_test_aead, 4338 .suite = { 4339 .aead = __VECS(hmac_sha512_aes_cbc_tv_temp) 4340 } 4341 }, { 4342 .alg = "authenc(hmac(sha512),cbc(des))", 4343 .test = alg_test_aead, 4344 .suite = { 4345 .aead = __VECS(hmac_sha512_des_cbc_tv_temp) 4346 } 4347 }, { 4348 .alg = "authenc(hmac(sha512),cbc(des3_ede))", 4349 .test = alg_test_aead, 4350 .suite = { 4351 .aead = __VECS(hmac_sha512_des3_ede_cbc_tv_temp) 4352 } 4353 }, { 4354 .alg = "authenc(hmac(sha512),ctr(aes))", 4355 .test = alg_test_null, 4356 .fips_allowed = 1, 4357 }, { 4358 .alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))", 4359 .test = alg_test_null, 4360 .fips_allowed = 1, 4361 }, { 4362 .alg = "blake2b-160", 4363 .test = alg_test_hash, 4364 .fips_allowed = 0, 4365 .suite = { 4366 .hash = __VECS(blake2b_160_tv_template) 4367 } 4368 }, { 4369 .alg = "blake2b-256", 4370 .test = alg_test_hash, 4371 .fips_allowed = 0, 4372 .suite = { 4373 .hash = __VECS(blake2b_256_tv_template) 4374 } 4375 }, { 4376 .alg = "blake2b-384", 4377 .test = alg_test_hash, 4378 .fips_allowed = 0, 4379 .suite = { 4380 .hash = __VECS(blake2b_384_tv_template) 4381 } 4382 }, { 4383 .alg = "blake2b-512", 4384 .test = alg_test_hash, 4385 .fips_allowed = 0, 4386 .suite = { 4387 .hash = __VECS(blake2b_512_tv_template) 4388 } 4389 }, { 4390 .alg = "cbc(aes)", 4391 .test = alg_test_skcipher, 4392 .fips_allowed = 1, 4393 .suite = { 4394 .cipher = __VECS(aes_cbc_tv_template) 4395 }, 4396 }, { 4397 .alg = "cbc(anubis)", 4398 .test = alg_test_skcipher, 4399 .suite = { 4400 .cipher = __VECS(anubis_cbc_tv_template) 4401 }, 4402 }, { 4403 .alg = "cbc(aria)", 4404 .test = alg_test_skcipher, 4405 .suite = { 4406 .cipher = __VECS(aria_cbc_tv_template) 4407 }, 4408 }, { 4409 .alg = "cbc(blowfish)", 4410 .test = alg_test_skcipher, 4411 .suite = { 4412 .cipher = __VECS(bf_cbc_tv_template) 4413 }, 4414 }, { 4415 .alg = "cbc(camellia)", 4416 .test = alg_test_skcipher, 4417 .suite = { 4418 .cipher = __VECS(camellia_cbc_tv_template) 4419 }, 4420 }, { 4421 .alg = "cbc(cast5)", 4422 .test = alg_test_skcipher, 4423 .suite = { 4424 .cipher = __VECS(cast5_cbc_tv_template) 4425 }, 4426 }, { 4427 .alg = "cbc(cast6)", 4428 .test = alg_test_skcipher, 4429 .suite = { 4430 .cipher = __VECS(cast6_cbc_tv_template) 4431 }, 4432 }, { 4433 .alg = "cbc(des)", 4434 .test = alg_test_skcipher, 4435 .suite = { 4436 .cipher = __VECS(des_cbc_tv_template) 4437 }, 4438 }, { 4439 .alg = "cbc(des3_ede)", 4440 .test = alg_test_skcipher, 4441 .suite = { 4442 .cipher = __VECS(des3_ede_cbc_tv_template) 4443 }, 4444 }, { 4445 /* Same as cbc(aes) except the key is stored in 4446 * hardware secure memory which we reference by index 4447 */ 4448 .alg = "cbc(paes)", 4449 .test = alg_test_null, 4450 .fips_allowed = 1, 4451 }, { 4452 /* Same as cbc(sm4) except the key is stored in 4453 * hardware secure memory which we reference by index 4454 */ 4455 .alg = "cbc(psm4)", 4456 .test = alg_test_null, 4457 }, { 4458 .alg = "cbc(serpent)", 4459 .test = alg_test_skcipher, 4460 .suite = { 4461 .cipher = __VECS(serpent_cbc_tv_template) 4462 }, 4463 }, { 4464 .alg = "cbc(sm4)", 4465 .test = alg_test_skcipher, 4466 .suite = { 4467 .cipher = __VECS(sm4_cbc_tv_template) 4468 } 4469 }, { 4470 .alg = "cbc(twofish)", 4471 .test = alg_test_skcipher, 4472 .suite = { 4473 .cipher = __VECS(tf_cbc_tv_template) 4474 }, 4475 }, { 4476 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4477 .alg = "cbc-paes-s390", 4478 .fips_allowed = 1, 4479 .test = alg_test_skcipher, 4480 .suite = { 4481 .cipher = __VECS(aes_cbc_tv_template) 4482 } 4483 }, { 4484 #endif 4485 .alg = "cbcmac(aes)", 4486 .test = alg_test_hash, 4487 .suite = { 4488 .hash = __VECS(aes_cbcmac_tv_template) 4489 } 4490 }, { 4491 .alg = "cbcmac(sm4)", 4492 .test = alg_test_hash, 4493 .suite = { 4494 .hash = __VECS(sm4_cbcmac_tv_template) 4495 } 4496 }, { 4497 .alg = "ccm(aes)", 4498 .generic_driver = "ccm_base(ctr(aes-generic),cbcmac(aes-generic))", 4499 .test = alg_test_aead, 4500 .fips_allowed = 1, 4501 .suite = { 4502 .aead = { 4503 ____VECS(aes_ccm_tv_template), 4504 .einval_allowed = 1, 4505 } 4506 } 4507 }, { 4508 .alg = "ccm(sm4)", 4509 .generic_driver = "ccm_base(ctr(sm4-generic),cbcmac(sm4-generic))", 4510 .test = alg_test_aead, 4511 .suite = { 4512 .aead = { 4513 ____VECS(sm4_ccm_tv_template), 4514 .einval_allowed = 1, 4515 } 4516 } 4517 }, { 4518 .alg = "chacha20", 4519 .test = alg_test_skcipher, 4520 .suite = { 4521 .cipher = __VECS(chacha20_tv_template) 4522 }, 4523 }, { 4524 .alg = "cmac(aes)", 4525 .fips_allowed = 1, 4526 .test = alg_test_hash, 4527 .suite = { 4528 .hash = __VECS(aes_cmac128_tv_template) 4529 } 4530 }, { 4531 .alg = "cmac(camellia)", 4532 .test = alg_test_hash, 4533 .suite = { 4534 .hash = __VECS(camellia_cmac128_tv_template) 4535 } 4536 }, { 4537 .alg = "cmac(des3_ede)", 4538 .test = alg_test_hash, 4539 .suite = { 4540 .hash = __VECS(des3_ede_cmac64_tv_template) 4541 } 4542 }, { 4543 .alg = "cmac(sm4)", 4544 .test = alg_test_hash, 4545 .suite = { 4546 .hash = __VECS(sm4_cmac128_tv_template) 4547 } 4548 }, { 4549 .alg = "crc32", 4550 .test = alg_test_hash, 4551 .fips_allowed = 1, 4552 .suite = { 4553 .hash = __VECS(crc32_tv_template) 4554 } 4555 }, { 4556 .alg = "crc32c", 4557 .test = alg_test_crc32c, 4558 .fips_allowed = 1, 4559 .suite = { 4560 .hash = __VECS(crc32c_tv_template) 4561 } 4562 }, { 4563 .alg = "ctr(aes)", 4564 .test = alg_test_skcipher, 4565 .fips_allowed = 1, 4566 .suite = { 4567 .cipher = __VECS(aes_ctr_tv_template) 4568 } 4569 }, { 4570 .alg = "ctr(aria)", 4571 .test = alg_test_skcipher, 4572 .suite = { 4573 .cipher = __VECS(aria_ctr_tv_template) 4574 } 4575 }, { 4576 .alg = "ctr(blowfish)", 4577 .test = alg_test_skcipher, 4578 .suite = { 4579 .cipher = __VECS(bf_ctr_tv_template) 4580 } 4581 }, { 4582 .alg = "ctr(camellia)", 4583 .test = alg_test_skcipher, 4584 .suite = { 4585 .cipher = __VECS(camellia_ctr_tv_template) 4586 } 4587 }, { 4588 .alg = "ctr(cast5)", 4589 .test = alg_test_skcipher, 4590 .suite = { 4591 .cipher = __VECS(cast5_ctr_tv_template) 4592 } 4593 }, { 4594 .alg = "ctr(cast6)", 4595 .test = alg_test_skcipher, 4596 .suite = { 4597 .cipher = __VECS(cast6_ctr_tv_template) 4598 } 4599 }, { 4600 .alg = "ctr(des)", 4601 .test = alg_test_skcipher, 4602 .suite = { 4603 .cipher = __VECS(des_ctr_tv_template) 4604 } 4605 }, { 4606 .alg = "ctr(des3_ede)", 4607 .test = alg_test_skcipher, 4608 .suite = { 4609 .cipher = __VECS(des3_ede_ctr_tv_template) 4610 } 4611 }, { 4612 /* Same as ctr(aes) except the key is stored in 4613 * hardware secure memory which we reference by index 4614 */ 4615 .alg = "ctr(paes)", 4616 .test = alg_test_null, 4617 .fips_allowed = 1, 4618 }, { 4619 4620 /* Same as ctr(sm4) except the key is stored in 4621 * hardware secure memory which we reference by index 4622 */ 4623 .alg = "ctr(psm4)", 4624 .test = alg_test_null, 4625 }, { 4626 .alg = "ctr(serpent)", 4627 .test = alg_test_skcipher, 4628 .suite = { 4629 .cipher = __VECS(serpent_ctr_tv_template) 4630 } 4631 }, { 4632 .alg = "ctr(sm4)", 4633 .test = alg_test_skcipher, 4634 .suite = { 4635 .cipher = __VECS(sm4_ctr_tv_template) 4636 } 4637 }, { 4638 .alg = "ctr(twofish)", 4639 .test = alg_test_skcipher, 4640 .suite = { 4641 .cipher = __VECS(tf_ctr_tv_template) 4642 } 4643 }, { 4644 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4645 .alg = "ctr-paes-s390", 4646 .fips_allowed = 1, 4647 .test = alg_test_skcipher, 4648 .suite = { 4649 .cipher = __VECS(aes_ctr_tv_template) 4650 } 4651 }, { 4652 #endif 4653 .alg = "cts(cbc(aes))", 4654 .test = alg_test_skcipher, 4655 .fips_allowed = 1, 4656 .suite = { 4657 .cipher = __VECS(cts_mode_tv_template) 4658 } 4659 }, { 4660 /* Same as cts(cbc((aes)) except the key is stored in 4661 * hardware secure memory which we reference by index 4662 */ 4663 .alg = "cts(cbc(paes))", 4664 .test = alg_test_null, 4665 .fips_allowed = 1, 4666 }, { 4667 .alg = "cts(cbc(sm4))", 4668 .test = alg_test_skcipher, 4669 .suite = { 4670 .cipher = __VECS(sm4_cts_tv_template) 4671 } 4672 }, { 4673 .alg = "curve25519", 4674 .test = alg_test_kpp, 4675 .suite = { 4676 .kpp = __VECS(curve25519_tv_template) 4677 } 4678 }, { 4679 .alg = "deflate", 4680 .test = alg_test_comp, 4681 .fips_allowed = 1, 4682 .suite = { 4683 .comp = { 4684 .comp = __VECS(deflate_comp_tv_template), 4685 .decomp = __VECS(deflate_decomp_tv_template) 4686 } 4687 } 4688 }, { 4689 .alg = "deflate-iaa", 4690 .test = alg_test_comp, 4691 .fips_allowed = 1, 4692 .suite = { 4693 .comp = { 4694 .comp = __VECS(deflate_comp_tv_template), 4695 .decomp = __VECS(deflate_decomp_tv_template) 4696 } 4697 } 4698 }, { 4699 .alg = "dh", 4700 .test = alg_test_kpp, 4701 .suite = { 4702 .kpp = __VECS(dh_tv_template) 4703 } 4704 }, { 4705 .alg = "digest_null", 4706 .test = alg_test_null, 4707 }, { 4708 .alg = "drbg_nopr_ctr_aes128", 4709 .test = alg_test_drbg, 4710 .fips_allowed = 1, 4711 .suite = { 4712 .drbg = __VECS(drbg_nopr_ctr_aes128_tv_template) 4713 } 4714 }, { 4715 .alg = "drbg_nopr_ctr_aes192", 4716 .test = alg_test_drbg, 4717 .fips_allowed = 1, 4718 .suite = { 4719 .drbg = __VECS(drbg_nopr_ctr_aes192_tv_template) 4720 } 4721 }, { 4722 .alg = "drbg_nopr_ctr_aes256", 4723 .test = alg_test_drbg, 4724 .fips_allowed = 1, 4725 .suite = { 4726 .drbg = __VECS(drbg_nopr_ctr_aes256_tv_template) 4727 } 4728 }, { 4729 .alg = "drbg_nopr_hmac_sha256", 4730 .test = alg_test_drbg, 4731 .fips_allowed = 1, 4732 .suite = { 4733 .drbg = __VECS(drbg_nopr_hmac_sha256_tv_template) 4734 } 4735 }, { 4736 /* 4737 * There is no need to specifically test the DRBG with every 4738 * backend cipher -- covered by drbg_nopr_hmac_sha512 test 4739 */ 4740 .alg = "drbg_nopr_hmac_sha384", 4741 .test = alg_test_null, 4742 }, { 4743 .alg = "drbg_nopr_hmac_sha512", 4744 .test = alg_test_drbg, 4745 .fips_allowed = 1, 4746 .suite = { 4747 .drbg = __VECS(drbg_nopr_hmac_sha512_tv_template) 4748 } 4749 }, { 4750 .alg = "drbg_nopr_sha256", 4751 .test = alg_test_drbg, 4752 .fips_allowed = 1, 4753 .suite = { 4754 .drbg = __VECS(drbg_nopr_sha256_tv_template) 4755 } 4756 }, { 4757 /* covered by drbg_nopr_sha256 test */ 4758 .alg = "drbg_nopr_sha384", 4759 .test = alg_test_null, 4760 }, { 4761 .alg = "drbg_nopr_sha512", 4762 .fips_allowed = 1, 4763 .test = alg_test_null, 4764 }, { 4765 .alg = "drbg_pr_ctr_aes128", 4766 .test = alg_test_drbg, 4767 .fips_allowed = 1, 4768 .suite = { 4769 .drbg = __VECS(drbg_pr_ctr_aes128_tv_template) 4770 } 4771 }, { 4772 /* covered by drbg_pr_ctr_aes128 test */ 4773 .alg = "drbg_pr_ctr_aes192", 4774 .fips_allowed = 1, 4775 .test = alg_test_null, 4776 }, { 4777 .alg = "drbg_pr_ctr_aes256", 4778 .fips_allowed = 1, 4779 .test = alg_test_null, 4780 }, { 4781 .alg = "drbg_pr_hmac_sha256", 4782 .test = alg_test_drbg, 4783 .fips_allowed = 1, 4784 .suite = { 4785 .drbg = __VECS(drbg_pr_hmac_sha256_tv_template) 4786 } 4787 }, { 4788 /* covered by drbg_pr_hmac_sha256 test */ 4789 .alg = "drbg_pr_hmac_sha384", 4790 .test = alg_test_null, 4791 }, { 4792 .alg = "drbg_pr_hmac_sha512", 4793 .test = alg_test_null, 4794 .fips_allowed = 1, 4795 }, { 4796 .alg = "drbg_pr_sha256", 4797 .test = alg_test_drbg, 4798 .fips_allowed = 1, 4799 .suite = { 4800 .drbg = __VECS(drbg_pr_sha256_tv_template) 4801 } 4802 }, { 4803 /* covered by drbg_pr_sha256 test */ 4804 .alg = "drbg_pr_sha384", 4805 .test = alg_test_null, 4806 }, { 4807 .alg = "drbg_pr_sha512", 4808 .fips_allowed = 1, 4809 .test = alg_test_null, 4810 }, { 4811 .alg = "ecb(aes)", 4812 .test = alg_test_skcipher, 4813 .fips_allowed = 1, 4814 .suite = { 4815 .cipher = __VECS(aes_tv_template) 4816 } 4817 }, { 4818 .alg = "ecb(anubis)", 4819 .test = alg_test_skcipher, 4820 .suite = { 4821 .cipher = __VECS(anubis_tv_template) 4822 } 4823 }, { 4824 .alg = "ecb(arc4)", 4825 .generic_driver = "arc4-generic", 4826 .test = alg_test_skcipher, 4827 .suite = { 4828 .cipher = __VECS(arc4_tv_template) 4829 } 4830 }, { 4831 .alg = "ecb(aria)", 4832 .test = alg_test_skcipher, 4833 .suite = { 4834 .cipher = __VECS(aria_tv_template) 4835 } 4836 }, { 4837 .alg = "ecb(blowfish)", 4838 .test = alg_test_skcipher, 4839 .suite = { 4840 .cipher = __VECS(bf_tv_template) 4841 } 4842 }, { 4843 .alg = "ecb(camellia)", 4844 .test = alg_test_skcipher, 4845 .suite = { 4846 .cipher = __VECS(camellia_tv_template) 4847 } 4848 }, { 4849 .alg = "ecb(cast5)", 4850 .test = alg_test_skcipher, 4851 .suite = { 4852 .cipher = __VECS(cast5_tv_template) 4853 } 4854 }, { 4855 .alg = "ecb(cast6)", 4856 .test = alg_test_skcipher, 4857 .suite = { 4858 .cipher = __VECS(cast6_tv_template) 4859 } 4860 }, { 4861 .alg = "ecb(cipher_null)", 4862 .test = alg_test_null, 4863 .fips_allowed = 1, 4864 }, { 4865 .alg = "ecb(des)", 4866 .test = alg_test_skcipher, 4867 .suite = { 4868 .cipher = __VECS(des_tv_template) 4869 } 4870 }, { 4871 .alg = "ecb(des3_ede)", 4872 .test = alg_test_skcipher, 4873 .suite = { 4874 .cipher = __VECS(des3_ede_tv_template) 4875 } 4876 }, { 4877 .alg = "ecb(fcrypt)", 4878 .test = alg_test_skcipher, 4879 .suite = { 4880 .cipher = { 4881 .vecs = fcrypt_pcbc_tv_template, 4882 .count = 1 4883 } 4884 } 4885 }, { 4886 .alg = "ecb(khazad)", 4887 .test = alg_test_skcipher, 4888 .suite = { 4889 .cipher = __VECS(khazad_tv_template) 4890 } 4891 }, { 4892 /* Same as ecb(aes) except the key is stored in 4893 * hardware secure memory which we reference by index 4894 */ 4895 .alg = "ecb(paes)", 4896 .test = alg_test_null, 4897 .fips_allowed = 1, 4898 }, { 4899 .alg = "ecb(seed)", 4900 .test = alg_test_skcipher, 4901 .suite = { 4902 .cipher = __VECS(seed_tv_template) 4903 } 4904 }, { 4905 .alg = "ecb(serpent)", 4906 .test = alg_test_skcipher, 4907 .suite = { 4908 .cipher = __VECS(serpent_tv_template) 4909 } 4910 }, { 4911 .alg = "ecb(sm4)", 4912 .test = alg_test_skcipher, 4913 .suite = { 4914 .cipher = __VECS(sm4_tv_template) 4915 } 4916 }, { 4917 .alg = "ecb(tea)", 4918 .test = alg_test_skcipher, 4919 .suite = { 4920 .cipher = __VECS(tea_tv_template) 4921 } 4922 }, { 4923 .alg = "ecb(twofish)", 4924 .test = alg_test_skcipher, 4925 .suite = { 4926 .cipher = __VECS(tf_tv_template) 4927 } 4928 }, { 4929 .alg = "ecb(xeta)", 4930 .test = alg_test_skcipher, 4931 .suite = { 4932 .cipher = __VECS(xeta_tv_template) 4933 } 4934 }, { 4935 .alg = "ecb(xtea)", 4936 .test = alg_test_skcipher, 4937 .suite = { 4938 .cipher = __VECS(xtea_tv_template) 4939 } 4940 }, { 4941 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4942 .alg = "ecb-paes-s390", 4943 .fips_allowed = 1, 4944 .test = alg_test_skcipher, 4945 .suite = { 4946 .cipher = __VECS(aes_tv_template) 4947 } 4948 }, { 4949 #endif 4950 .alg = "ecdh-nist-p192", 4951 .test = alg_test_kpp, 4952 .suite = { 4953 .kpp = __VECS(ecdh_p192_tv_template) 4954 } 4955 }, { 4956 .alg = "ecdh-nist-p256", 4957 .test = alg_test_kpp, 4958 .fips_allowed = 1, 4959 .suite = { 4960 .kpp = __VECS(ecdh_p256_tv_template) 4961 } 4962 }, { 4963 .alg = "ecdh-nist-p384", 4964 .test = alg_test_kpp, 4965 .fips_allowed = 1, 4966 .suite = { 4967 .kpp = __VECS(ecdh_p384_tv_template) 4968 } 4969 }, { 4970 .alg = "ecdsa-nist-p192", 4971 .test = alg_test_sig, 4972 .suite = { 4973 .sig = __VECS(ecdsa_nist_p192_tv_template) 4974 } 4975 }, { 4976 .alg = "ecdsa-nist-p256", 4977 .test = alg_test_sig, 4978 .fips_allowed = 1, 4979 .suite = { 4980 .sig = __VECS(ecdsa_nist_p256_tv_template) 4981 } 4982 }, { 4983 .alg = "ecdsa-nist-p384", 4984 .test = alg_test_sig, 4985 .fips_allowed = 1, 4986 .suite = { 4987 .sig = __VECS(ecdsa_nist_p384_tv_template) 4988 } 4989 }, { 4990 .alg = "ecdsa-nist-p521", 4991 .test = alg_test_sig, 4992 .fips_allowed = 1, 4993 .suite = { 4994 .sig = __VECS(ecdsa_nist_p521_tv_template) 4995 } 4996 }, { 4997 .alg = "ecrdsa", 4998 .test = alg_test_sig, 4999 .suite = { 5000 .sig = __VECS(ecrdsa_tv_template) 5001 } 5002 }, { 5003 .alg = "essiv(authenc(hmac(sha256),cbc(aes)),sha256)", 5004 .test = alg_test_aead, 5005 .fips_allowed = 1, 5006 .suite = { 5007 .aead = __VECS(essiv_hmac_sha256_aes_cbc_tv_temp) 5008 } 5009 }, { 5010 .alg = "essiv(cbc(aes),sha256)", 5011 .test = alg_test_skcipher, 5012 .fips_allowed = 1, 5013 .suite = { 5014 .cipher = __VECS(essiv_aes_cbc_tv_template) 5015 } 5016 }, { 5017 #if IS_ENABLED(CONFIG_CRYPTO_DH_RFC7919_GROUPS) 5018 .alg = "ffdhe2048(dh)", 5019 .test = alg_test_kpp, 5020 .fips_allowed = 1, 5021 .suite = { 5022 .kpp = __VECS(ffdhe2048_dh_tv_template) 5023 } 5024 }, { 5025 .alg = "ffdhe3072(dh)", 5026 .test = alg_test_kpp, 5027 .fips_allowed = 1, 5028 .suite = { 5029 .kpp = __VECS(ffdhe3072_dh_tv_template) 5030 } 5031 }, { 5032 .alg = "ffdhe4096(dh)", 5033 .test = alg_test_kpp, 5034 .fips_allowed = 1, 5035 .suite = { 5036 .kpp = __VECS(ffdhe4096_dh_tv_template) 5037 } 5038 }, { 5039 .alg = "ffdhe6144(dh)", 5040 .test = alg_test_kpp, 5041 .fips_allowed = 1, 5042 .suite = { 5043 .kpp = __VECS(ffdhe6144_dh_tv_template) 5044 } 5045 }, { 5046 .alg = "ffdhe8192(dh)", 5047 .test = alg_test_kpp, 5048 .fips_allowed = 1, 5049 .suite = { 5050 .kpp = __VECS(ffdhe8192_dh_tv_template) 5051 } 5052 }, { 5053 #endif /* CONFIG_CRYPTO_DH_RFC7919_GROUPS */ 5054 .alg = "gcm(aes)", 5055 .generic_driver = "gcm_base(ctr(aes-generic),ghash-generic)", 5056 .test = alg_test_aead, 5057 .fips_allowed = 1, 5058 .suite = { 5059 .aead = __VECS(aes_gcm_tv_template) 5060 } 5061 }, { 5062 .alg = "gcm(aria)", 5063 .generic_driver = "gcm_base(ctr(aria-generic),ghash-generic)", 5064 .test = alg_test_aead, 5065 .suite = { 5066 .aead = __VECS(aria_gcm_tv_template) 5067 } 5068 }, { 5069 .alg = "gcm(sm4)", 5070 .generic_driver = "gcm_base(ctr(sm4-generic),ghash-generic)", 5071 .test = alg_test_aead, 5072 .suite = { 5073 .aead = __VECS(sm4_gcm_tv_template) 5074 } 5075 }, { 5076 .alg = "ghash", 5077 .test = alg_test_hash, 5078 .suite = { 5079 .hash = __VECS(ghash_tv_template) 5080 } 5081 }, { 5082 .alg = "hctr2(aes)", 5083 .generic_driver = 5084 "hctr2_base(xctr(aes-generic),polyval-generic)", 5085 .test = alg_test_skcipher, 5086 .suite = { 5087 .cipher = __VECS(aes_hctr2_tv_template) 5088 } 5089 }, { 5090 .alg = "hmac(md5)", 5091 .test = alg_test_hash, 5092 .suite = { 5093 .hash = __VECS(hmac_md5_tv_template) 5094 } 5095 }, { 5096 .alg = "hmac(rmd160)", 5097 .test = alg_test_hash, 5098 .suite = { 5099 .hash = __VECS(hmac_rmd160_tv_template) 5100 } 5101 }, { 5102 .alg = "hmac(sha1)", 5103 .test = alg_test_hash, 5104 .fips_allowed = 1, 5105 .suite = { 5106 .hash = __VECS(hmac_sha1_tv_template) 5107 } 5108 }, { 5109 .alg = "hmac(sha224)", 5110 .test = alg_test_hash, 5111 .fips_allowed = 1, 5112 .suite = { 5113 .hash = __VECS(hmac_sha224_tv_template) 5114 } 5115 }, { 5116 .alg = "hmac(sha256)", 5117 .test = alg_test_hash, 5118 .fips_allowed = 1, 5119 .suite = { 5120 .hash = __VECS(hmac_sha256_tv_template) 5121 } 5122 }, { 5123 .alg = "hmac(sha3-224)", 5124 .test = alg_test_hash, 5125 .fips_allowed = 1, 5126 .suite = { 5127 .hash = __VECS(hmac_sha3_224_tv_template) 5128 } 5129 }, { 5130 .alg = "hmac(sha3-256)", 5131 .test = alg_test_hash, 5132 .fips_allowed = 1, 5133 .suite = { 5134 .hash = __VECS(hmac_sha3_256_tv_template) 5135 } 5136 }, { 5137 .alg = "hmac(sha3-384)", 5138 .test = alg_test_hash, 5139 .fips_allowed = 1, 5140 .suite = { 5141 .hash = __VECS(hmac_sha3_384_tv_template) 5142 } 5143 }, { 5144 .alg = "hmac(sha3-512)", 5145 .test = alg_test_hash, 5146 .fips_allowed = 1, 5147 .suite = { 5148 .hash = __VECS(hmac_sha3_512_tv_template) 5149 } 5150 }, { 5151 .alg = "hmac(sha384)", 5152 .test = alg_test_hash, 5153 .fips_allowed = 1, 5154 .suite = { 5155 .hash = __VECS(hmac_sha384_tv_template) 5156 } 5157 }, { 5158 .alg = "hmac(sha512)", 5159 .test = alg_test_hash, 5160 .fips_allowed = 1, 5161 .suite = { 5162 .hash = __VECS(hmac_sha512_tv_template) 5163 } 5164 }, { 5165 .alg = "hmac(sm3)", 5166 .test = alg_test_hash, 5167 .suite = { 5168 .hash = __VECS(hmac_sm3_tv_template) 5169 } 5170 }, { 5171 .alg = "hmac(streebog256)", 5172 .test = alg_test_hash, 5173 .suite = { 5174 .hash = __VECS(hmac_streebog256_tv_template) 5175 } 5176 }, { 5177 .alg = "hmac(streebog512)", 5178 .test = alg_test_hash, 5179 .suite = { 5180 .hash = __VECS(hmac_streebog512_tv_template) 5181 } 5182 }, { 5183 .alg = "jitterentropy_rng", 5184 .fips_allowed = 1, 5185 .test = alg_test_null, 5186 }, { 5187 .alg = "krb5enc(cmac(camellia),cts(cbc(camellia)))", 5188 .test = alg_test_aead, 5189 .suite.aead = __VECS(krb5_test_camellia_cts_cmac) 5190 }, { 5191 .alg = "lrw(aes)", 5192 .generic_driver = "lrw(ecb(aes-generic))", 5193 .test = alg_test_skcipher, 5194 .suite = { 5195 .cipher = __VECS(aes_lrw_tv_template) 5196 } 5197 }, { 5198 .alg = "lrw(camellia)", 5199 .generic_driver = "lrw(ecb(camellia-generic))", 5200 .test = alg_test_skcipher, 5201 .suite = { 5202 .cipher = __VECS(camellia_lrw_tv_template) 5203 } 5204 }, { 5205 .alg = "lrw(cast6)", 5206 .generic_driver = "lrw(ecb(cast6-generic))", 5207 .test = alg_test_skcipher, 5208 .suite = { 5209 .cipher = __VECS(cast6_lrw_tv_template) 5210 } 5211 }, { 5212 .alg = "lrw(serpent)", 5213 .generic_driver = "lrw(ecb(serpent-generic))", 5214 .test = alg_test_skcipher, 5215 .suite = { 5216 .cipher = __VECS(serpent_lrw_tv_template) 5217 } 5218 }, { 5219 .alg = "lrw(twofish)", 5220 .generic_driver = "lrw(ecb(twofish-generic))", 5221 .test = alg_test_skcipher, 5222 .suite = { 5223 .cipher = __VECS(tf_lrw_tv_template) 5224 } 5225 }, { 5226 .alg = "lz4", 5227 .test = alg_test_comp, 5228 .fips_allowed = 1, 5229 .suite = { 5230 .comp = { 5231 .comp = __VECS(lz4_comp_tv_template), 5232 .decomp = __VECS(lz4_decomp_tv_template) 5233 } 5234 } 5235 }, { 5236 .alg = "lz4hc", 5237 .test = alg_test_comp, 5238 .fips_allowed = 1, 5239 .suite = { 5240 .comp = { 5241 .comp = __VECS(lz4hc_comp_tv_template), 5242 .decomp = __VECS(lz4hc_decomp_tv_template) 5243 } 5244 } 5245 }, { 5246 .alg = "lzo", 5247 .test = alg_test_comp, 5248 .fips_allowed = 1, 5249 .suite = { 5250 .comp = { 5251 .comp = __VECS(lzo_comp_tv_template), 5252 .decomp = __VECS(lzo_decomp_tv_template) 5253 } 5254 } 5255 }, { 5256 .alg = "lzo-rle", 5257 .test = alg_test_comp, 5258 .fips_allowed = 1, 5259 .suite = { 5260 .comp = { 5261 .comp = __VECS(lzorle_comp_tv_template), 5262 .decomp = __VECS(lzorle_decomp_tv_template) 5263 } 5264 } 5265 }, { 5266 .alg = "md4", 5267 .test = alg_test_hash, 5268 .suite = { 5269 .hash = __VECS(md4_tv_template) 5270 } 5271 }, { 5272 .alg = "md5", 5273 .test = alg_test_hash, 5274 .suite = { 5275 .hash = __VECS(md5_tv_template) 5276 } 5277 }, { 5278 .alg = "michael_mic", 5279 .test = alg_test_hash, 5280 .suite = { 5281 .hash = __VECS(michael_mic_tv_template) 5282 } 5283 }, { 5284 .alg = "nhpoly1305", 5285 .test = alg_test_hash, 5286 .suite = { 5287 .hash = __VECS(nhpoly1305_tv_template) 5288 } 5289 }, { 5290 .alg = "p1363(ecdsa-nist-p192)", 5291 .test = alg_test_null, 5292 }, { 5293 .alg = "p1363(ecdsa-nist-p256)", 5294 .test = alg_test_sig, 5295 .fips_allowed = 1, 5296 .suite = { 5297 .sig = __VECS(p1363_ecdsa_nist_p256_tv_template) 5298 } 5299 }, { 5300 .alg = "p1363(ecdsa-nist-p384)", 5301 .test = alg_test_null, 5302 .fips_allowed = 1, 5303 }, { 5304 .alg = "p1363(ecdsa-nist-p521)", 5305 .test = alg_test_null, 5306 .fips_allowed = 1, 5307 }, { 5308 .alg = "pcbc(fcrypt)", 5309 .test = alg_test_skcipher, 5310 .suite = { 5311 .cipher = __VECS(fcrypt_pcbc_tv_template) 5312 } 5313 }, { 5314 .alg = "pkcs1(rsa,none)", 5315 .test = alg_test_sig, 5316 .suite = { 5317 .sig = __VECS(pkcs1_rsa_none_tv_template) 5318 } 5319 }, { 5320 .alg = "pkcs1(rsa,sha224)", 5321 .test = alg_test_null, 5322 .fips_allowed = 1, 5323 }, { 5324 .alg = "pkcs1(rsa,sha256)", 5325 .test = alg_test_sig, 5326 .fips_allowed = 1, 5327 .suite = { 5328 .sig = __VECS(pkcs1_rsa_tv_template) 5329 } 5330 }, { 5331 .alg = "pkcs1(rsa,sha3-256)", 5332 .test = alg_test_null, 5333 .fips_allowed = 1, 5334 }, { 5335 .alg = "pkcs1(rsa,sha3-384)", 5336 .test = alg_test_null, 5337 .fips_allowed = 1, 5338 }, { 5339 .alg = "pkcs1(rsa,sha3-512)", 5340 .test = alg_test_null, 5341 .fips_allowed = 1, 5342 }, { 5343 .alg = "pkcs1(rsa,sha384)", 5344 .test = alg_test_null, 5345 .fips_allowed = 1, 5346 }, { 5347 .alg = "pkcs1(rsa,sha512)", 5348 .test = alg_test_null, 5349 .fips_allowed = 1, 5350 }, { 5351 .alg = "pkcs1pad(rsa)", 5352 .test = alg_test_null, 5353 .fips_allowed = 1, 5354 }, { 5355 .alg = "polyval", 5356 .test = alg_test_hash, 5357 .suite = { 5358 .hash = __VECS(polyval_tv_template) 5359 } 5360 }, { 5361 .alg = "rfc3686(ctr(aes))", 5362 .test = alg_test_skcipher, 5363 .fips_allowed = 1, 5364 .suite = { 5365 .cipher = __VECS(aes_ctr_rfc3686_tv_template) 5366 } 5367 }, { 5368 .alg = "rfc3686(ctr(sm4))", 5369 .test = alg_test_skcipher, 5370 .suite = { 5371 .cipher = __VECS(sm4_ctr_rfc3686_tv_template) 5372 } 5373 }, { 5374 .alg = "rfc4106(gcm(aes))", 5375 .generic_driver = "rfc4106(gcm_base(ctr(aes-generic),ghash-generic))", 5376 .test = alg_test_aead, 5377 .fips_allowed = 1, 5378 .suite = { 5379 .aead = { 5380 ____VECS(aes_gcm_rfc4106_tv_template), 5381 .einval_allowed = 1, 5382 .aad_iv = 1, 5383 } 5384 } 5385 }, { 5386 .alg = "rfc4309(ccm(aes))", 5387 .generic_driver = "rfc4309(ccm_base(ctr(aes-generic),cbcmac(aes-generic)))", 5388 .test = alg_test_aead, 5389 .fips_allowed = 1, 5390 .suite = { 5391 .aead = { 5392 ____VECS(aes_ccm_rfc4309_tv_template), 5393 .einval_allowed = 1, 5394 .aad_iv = 1, 5395 } 5396 } 5397 }, { 5398 .alg = "rfc4543(gcm(aes))", 5399 .generic_driver = "rfc4543(gcm_base(ctr(aes-generic),ghash-generic))", 5400 .test = alg_test_aead, 5401 .suite = { 5402 .aead = { 5403 ____VECS(aes_gcm_rfc4543_tv_template), 5404 .einval_allowed = 1, 5405 .aad_iv = 1, 5406 } 5407 } 5408 }, { 5409 .alg = "rfc7539(chacha20,poly1305)", 5410 .test = alg_test_aead, 5411 .suite = { 5412 .aead = __VECS(rfc7539_tv_template) 5413 } 5414 }, { 5415 .alg = "rfc7539esp(chacha20,poly1305)", 5416 .test = alg_test_aead, 5417 .suite = { 5418 .aead = { 5419 ____VECS(rfc7539esp_tv_template), 5420 .einval_allowed = 1, 5421 .aad_iv = 1, 5422 } 5423 } 5424 }, { 5425 .alg = "rmd160", 5426 .test = alg_test_hash, 5427 .suite = { 5428 .hash = __VECS(rmd160_tv_template) 5429 } 5430 }, { 5431 .alg = "rsa", 5432 .test = alg_test_akcipher, 5433 .fips_allowed = 1, 5434 .suite = { 5435 .akcipher = __VECS(rsa_tv_template) 5436 } 5437 }, { 5438 .alg = "sha1", 5439 .test = alg_test_hash, 5440 .fips_allowed = 1, 5441 .suite = { 5442 .hash = __VECS(sha1_tv_template) 5443 } 5444 }, { 5445 .alg = "sha224", 5446 .test = alg_test_hash, 5447 .fips_allowed = 1, 5448 .suite = { 5449 .hash = __VECS(sha224_tv_template) 5450 } 5451 }, { 5452 .alg = "sha256", 5453 .test = alg_test_hash, 5454 .fips_allowed = 1, 5455 .suite = { 5456 .hash = __VECS(sha256_tv_template) 5457 } 5458 }, { 5459 .alg = "sha3-224", 5460 .test = alg_test_hash, 5461 .fips_allowed = 1, 5462 .suite = { 5463 .hash = __VECS(sha3_224_tv_template) 5464 } 5465 }, { 5466 .alg = "sha3-256", 5467 .test = alg_test_hash, 5468 .fips_allowed = 1, 5469 .suite = { 5470 .hash = __VECS(sha3_256_tv_template) 5471 } 5472 }, { 5473 .alg = "sha3-384", 5474 .test = alg_test_hash, 5475 .fips_allowed = 1, 5476 .suite = { 5477 .hash = __VECS(sha3_384_tv_template) 5478 } 5479 }, { 5480 .alg = "sha3-512", 5481 .test = alg_test_hash, 5482 .fips_allowed = 1, 5483 .suite = { 5484 .hash = __VECS(sha3_512_tv_template) 5485 } 5486 }, { 5487 .alg = "sha384", 5488 .test = alg_test_hash, 5489 .fips_allowed = 1, 5490 .suite = { 5491 .hash = __VECS(sha384_tv_template) 5492 } 5493 }, { 5494 .alg = "sha512", 5495 .test = alg_test_hash, 5496 .fips_allowed = 1, 5497 .suite = { 5498 .hash = __VECS(sha512_tv_template) 5499 } 5500 }, { 5501 .alg = "sm3", 5502 .test = alg_test_hash, 5503 .suite = { 5504 .hash = __VECS(sm3_tv_template) 5505 } 5506 }, { 5507 .alg = "streebog256", 5508 .test = alg_test_hash, 5509 .suite = { 5510 .hash = __VECS(streebog256_tv_template) 5511 } 5512 }, { 5513 .alg = "streebog512", 5514 .test = alg_test_hash, 5515 .suite = { 5516 .hash = __VECS(streebog512_tv_template) 5517 } 5518 }, { 5519 .alg = "wp256", 5520 .test = alg_test_hash, 5521 .suite = { 5522 .hash = __VECS(wp256_tv_template) 5523 } 5524 }, { 5525 .alg = "wp384", 5526 .test = alg_test_hash, 5527 .suite = { 5528 .hash = __VECS(wp384_tv_template) 5529 } 5530 }, { 5531 .alg = "wp512", 5532 .test = alg_test_hash, 5533 .suite = { 5534 .hash = __VECS(wp512_tv_template) 5535 } 5536 }, { 5537 .alg = "x962(ecdsa-nist-p192)", 5538 .test = alg_test_sig, 5539 .suite = { 5540 .sig = __VECS(x962_ecdsa_nist_p192_tv_template) 5541 } 5542 }, { 5543 .alg = "x962(ecdsa-nist-p256)", 5544 .test = alg_test_sig, 5545 .fips_allowed = 1, 5546 .suite = { 5547 .sig = __VECS(x962_ecdsa_nist_p256_tv_template) 5548 } 5549 }, { 5550 .alg = "x962(ecdsa-nist-p384)", 5551 .test = alg_test_sig, 5552 .fips_allowed = 1, 5553 .suite = { 5554 .sig = __VECS(x962_ecdsa_nist_p384_tv_template) 5555 } 5556 }, { 5557 .alg = "x962(ecdsa-nist-p521)", 5558 .test = alg_test_sig, 5559 .fips_allowed = 1, 5560 .suite = { 5561 .sig = __VECS(x962_ecdsa_nist_p521_tv_template) 5562 } 5563 }, { 5564 .alg = "xcbc(aes)", 5565 .test = alg_test_hash, 5566 .suite = { 5567 .hash = __VECS(aes_xcbc128_tv_template) 5568 } 5569 }, { 5570 .alg = "xcbc(sm4)", 5571 .test = alg_test_hash, 5572 .suite = { 5573 .hash = __VECS(sm4_xcbc128_tv_template) 5574 } 5575 }, { 5576 .alg = "xchacha12", 5577 .test = alg_test_skcipher, 5578 .suite = { 5579 .cipher = __VECS(xchacha12_tv_template) 5580 }, 5581 }, { 5582 .alg = "xchacha20", 5583 .test = alg_test_skcipher, 5584 .suite = { 5585 .cipher = __VECS(xchacha20_tv_template) 5586 }, 5587 }, { 5588 .alg = "xctr(aes)", 5589 .test = alg_test_skcipher, 5590 .suite = { 5591 .cipher = __VECS(aes_xctr_tv_template) 5592 } 5593 }, { 5594 .alg = "xts(aes)", 5595 .generic_driver = "xts(ecb(aes-generic))", 5596 .test = alg_test_skcipher, 5597 .fips_allowed = 1, 5598 .suite = { 5599 .cipher = __VECS(aes_xts_tv_template) 5600 } 5601 }, { 5602 .alg = "xts(camellia)", 5603 .generic_driver = "xts(ecb(camellia-generic))", 5604 .test = alg_test_skcipher, 5605 .suite = { 5606 .cipher = __VECS(camellia_xts_tv_template) 5607 } 5608 }, { 5609 .alg = "xts(cast6)", 5610 .generic_driver = "xts(ecb(cast6-generic))", 5611 .test = alg_test_skcipher, 5612 .suite = { 5613 .cipher = __VECS(cast6_xts_tv_template) 5614 } 5615 }, { 5616 /* Same as xts(aes) except the key is stored in 5617 * hardware secure memory which we reference by index 5618 */ 5619 .alg = "xts(paes)", 5620 .test = alg_test_null, 5621 .fips_allowed = 1, 5622 }, { 5623 .alg = "xts(serpent)", 5624 .generic_driver = "xts(ecb(serpent-generic))", 5625 .test = alg_test_skcipher, 5626 .suite = { 5627 .cipher = __VECS(serpent_xts_tv_template) 5628 } 5629 }, { 5630 .alg = "xts(sm4)", 5631 .generic_driver = "xts(ecb(sm4-generic))", 5632 .test = alg_test_skcipher, 5633 .suite = { 5634 .cipher = __VECS(sm4_xts_tv_template) 5635 } 5636 }, { 5637 .alg = "xts(twofish)", 5638 .generic_driver = "xts(ecb(twofish-generic))", 5639 .test = alg_test_skcipher, 5640 .suite = { 5641 .cipher = __VECS(tf_xts_tv_template) 5642 } 5643 }, { 5644 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 5645 .alg = "xts-paes-s390", 5646 .fips_allowed = 1, 5647 .test = alg_test_skcipher, 5648 .suite = { 5649 .cipher = __VECS(aes_xts_tv_template) 5650 } 5651 }, { 5652 #endif 5653 .alg = "xxhash64", 5654 .test = alg_test_hash, 5655 .fips_allowed = 1, 5656 .suite = { 5657 .hash = __VECS(xxhash64_tv_template) 5658 } 5659 }, { 5660 .alg = "zstd", 5661 .test = alg_test_comp, 5662 .fips_allowed = 1, 5663 .suite = { 5664 .comp = { 5665 .comp = __VECS(zstd_comp_tv_template), 5666 .decomp = __VECS(zstd_decomp_tv_template) 5667 } 5668 } 5669 } 5670 }; 5671 5672 static void alg_check_test_descs_order(void) 5673 { 5674 int i; 5675 5676 for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) { 5677 int diff = strcmp(alg_test_descs[i - 1].alg, 5678 alg_test_descs[i].alg); 5679 5680 if (WARN_ON(diff > 0)) { 5681 pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n", 5682 alg_test_descs[i - 1].alg, 5683 alg_test_descs[i].alg); 5684 } 5685 5686 if (WARN_ON(diff == 0)) { 5687 pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n", 5688 alg_test_descs[i].alg); 5689 } 5690 } 5691 } 5692 5693 static void alg_check_testvec_configs(void) 5694 { 5695 int i; 5696 5697 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) 5698 WARN_ON(!valid_testvec_config( 5699 &default_cipher_testvec_configs[i])); 5700 5701 for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) 5702 WARN_ON(!valid_testvec_config( 5703 &default_hash_testvec_configs[i])); 5704 } 5705 5706 static void testmgr_onetime_init(void) 5707 { 5708 alg_check_test_descs_order(); 5709 alg_check_testvec_configs(); 5710 5711 if (!noslowtests) 5712 pr_warn("alg: full crypto tests enabled. This is intended for developer use only.\n"); 5713 } 5714 5715 static int alg_find_test(const char *alg) 5716 { 5717 int start = 0; 5718 int end = ARRAY_SIZE(alg_test_descs); 5719 5720 while (start < end) { 5721 int i = (start + end) / 2; 5722 int diff = strcmp(alg_test_descs[i].alg, alg); 5723 5724 if (diff > 0) { 5725 end = i; 5726 continue; 5727 } 5728 5729 if (diff < 0) { 5730 start = i + 1; 5731 continue; 5732 } 5733 5734 return i; 5735 } 5736 5737 return -1; 5738 } 5739 5740 static int alg_fips_disabled(const char *driver, const char *alg) 5741 { 5742 pr_info("alg: %s (%s) is disabled due to FIPS\n", alg, driver); 5743 5744 return -ECANCELED; 5745 } 5746 5747 int alg_test(const char *driver, const char *alg, u32 type, u32 mask) 5748 { 5749 int i; 5750 int j; 5751 int rc; 5752 5753 if (!fips_enabled && notests) { 5754 printk_once(KERN_INFO "alg: self-tests disabled\n"); 5755 return 0; 5756 } 5757 5758 DO_ONCE(testmgr_onetime_init); 5759 5760 if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) { 5761 char nalg[CRYPTO_MAX_ALG_NAME]; 5762 5763 if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= 5764 sizeof(nalg)) 5765 return -ENAMETOOLONG; 5766 5767 i = alg_find_test(nalg); 5768 if (i < 0) 5769 goto notest; 5770 5771 if (fips_enabled && !alg_test_descs[i].fips_allowed) 5772 goto non_fips_alg; 5773 5774 rc = alg_test_cipher(alg_test_descs + i, driver, type, mask); 5775 goto test_done; 5776 } 5777 5778 i = alg_find_test(alg); 5779 j = alg_find_test(driver); 5780 if (i < 0 && j < 0) 5781 goto notest; 5782 5783 if (fips_enabled) { 5784 if (j >= 0 && !alg_test_descs[j].fips_allowed) 5785 return -EINVAL; 5786 5787 if (i >= 0 && !alg_test_descs[i].fips_allowed) 5788 goto non_fips_alg; 5789 } 5790 5791 rc = 0; 5792 if (i >= 0) 5793 rc |= alg_test_descs[i].test(alg_test_descs + i, driver, 5794 type, mask); 5795 if (j >= 0 && j != i) 5796 rc |= alg_test_descs[j].test(alg_test_descs + j, driver, 5797 type, mask); 5798 5799 test_done: 5800 if (rc) { 5801 if (fips_enabled) { 5802 fips_fail_notify(); 5803 panic("alg: self-tests for %s (%s) failed in fips mode!\n", 5804 driver, alg); 5805 } 5806 pr_warn("alg: self-tests for %s using %s failed (rc=%d)", 5807 alg, driver, rc); 5808 WARN(rc != -ENOENT, 5809 "alg: self-tests for %s using %s failed (rc=%d)", 5810 alg, driver, rc); 5811 } else { 5812 if (fips_enabled) 5813 pr_info("alg: self-tests for %s (%s) passed\n", 5814 driver, alg); 5815 } 5816 5817 return rc; 5818 5819 notest: 5820 if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_LSKCIPHER) { 5821 char nalg[CRYPTO_MAX_ALG_NAME]; 5822 5823 if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= 5824 sizeof(nalg)) 5825 goto notest2; 5826 5827 i = alg_find_test(nalg); 5828 if (i < 0) 5829 goto notest2; 5830 5831 if (fips_enabled && !alg_test_descs[i].fips_allowed) 5832 goto non_fips_alg; 5833 5834 rc = alg_test_skcipher(alg_test_descs + i, driver, type, mask); 5835 goto test_done; 5836 } 5837 5838 notest2: 5839 printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver); 5840 5841 if (type & CRYPTO_ALG_FIPS_INTERNAL) 5842 return alg_fips_disabled(driver, alg); 5843 5844 return 0; 5845 non_fips_alg: 5846 return alg_fips_disabled(driver, alg); 5847 } 5848 5849 #endif /* CONFIG_CRYPTO_SELFTESTS */ 5850 5851 EXPORT_SYMBOL_GPL(alg_test); 5852