1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Algorithm testing framework and tests. 4 * 5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 6 * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org> 7 * Copyright (c) 2007 Nokia Siemens Networks 8 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> 9 * Copyright (c) 2019 Google LLC 10 * 11 * Updated RFC4106 AES-GCM testing. 12 * Authors: Aidan O'Mahony (aidan.o.mahony@intel.com) 13 * Adrian Hoban <adrian.hoban@intel.com> 14 * Gabriele Paoloni <gabriele.paoloni@intel.com> 15 * Tadeusz Struk (tadeusz.struk@intel.com) 16 * Copyright (c) 2010, Intel Corporation. 17 */ 18 19 #include <crypto/aead.h> 20 #include <crypto/hash.h> 21 #include <crypto/skcipher.h> 22 #include <linux/err.h> 23 #include <linux/fips.h> 24 #include <linux/module.h> 25 #include <linux/once.h> 26 #include <linux/random.h> 27 #include <linux/scatterlist.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/uio.h> 31 #include <crypto/rng.h> 32 #include <crypto/drbg.h> 33 #include <crypto/akcipher.h> 34 #include <crypto/kpp.h> 35 #include <crypto/acompress.h> 36 #include <crypto/internal/cipher.h> 37 #include <crypto/internal/simd.h> 38 39 #include "internal.h" 40 41 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 42 43 static bool notests; 44 module_param(notests, bool, 0644); 45 MODULE_PARM_DESC(notests, "disable crypto self-tests"); 46 47 static bool panic_on_fail; 48 module_param(panic_on_fail, bool, 0444); 49 50 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 51 static bool noextratests; 52 module_param(noextratests, bool, 0644); 53 MODULE_PARM_DESC(noextratests, "disable expensive crypto self-tests"); 54 55 static unsigned int fuzz_iterations = 100; 56 module_param(fuzz_iterations, uint, 0644); 57 MODULE_PARM_DESC(fuzz_iterations, "number of fuzz test iterations"); 58 #endif 59 60 #ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS 61 62 /* a perfect nop */ 63 int alg_test(const char *driver, const char *alg, u32 type, u32 mask) 64 { 65 return 0; 66 } 67 68 #else 69 70 #include "testmgr.h" 71 72 /* 73 * Need slab memory for testing (size in number of pages). 74 */ 75 #define XBUFSIZE 8 76 77 /* 78 * Used by test_cipher() 79 */ 80 #define ENCRYPT 1 81 #define DECRYPT 0 82 83 struct aead_test_suite { 84 const struct aead_testvec *vecs; 85 unsigned int count; 86 87 /* 88 * Set if trying to decrypt an inauthentic ciphertext with this 89 * algorithm might result in EINVAL rather than EBADMSG, due to other 90 * validation the algorithm does on the inputs such as length checks. 91 */ 92 unsigned int einval_allowed : 1; 93 94 /* 95 * Set if this algorithm requires that the IV be located at the end of 96 * the AAD buffer, in addition to being given in the normal way. The 97 * behavior when the two IV copies differ is implementation-defined. 98 */ 99 unsigned int aad_iv : 1; 100 }; 101 102 struct cipher_test_suite { 103 const struct cipher_testvec *vecs; 104 unsigned int count; 105 }; 106 107 struct comp_test_suite { 108 struct { 109 const struct comp_testvec *vecs; 110 unsigned int count; 111 } comp, decomp; 112 }; 113 114 struct hash_test_suite { 115 const struct hash_testvec *vecs; 116 unsigned int count; 117 }; 118 119 struct cprng_test_suite { 120 const struct cprng_testvec *vecs; 121 unsigned int count; 122 }; 123 124 struct drbg_test_suite { 125 const struct drbg_testvec *vecs; 126 unsigned int count; 127 }; 128 129 struct akcipher_test_suite { 130 const struct akcipher_testvec *vecs; 131 unsigned int count; 132 }; 133 134 struct kpp_test_suite { 135 const struct kpp_testvec *vecs; 136 unsigned int count; 137 }; 138 139 struct alg_test_desc { 140 const char *alg; 141 const char *generic_driver; 142 int (*test)(const struct alg_test_desc *desc, const char *driver, 143 u32 type, u32 mask); 144 int fips_allowed; /* set if alg is allowed in fips mode */ 145 146 union { 147 struct aead_test_suite aead; 148 struct cipher_test_suite cipher; 149 struct comp_test_suite comp; 150 struct hash_test_suite hash; 151 struct cprng_test_suite cprng; 152 struct drbg_test_suite drbg; 153 struct akcipher_test_suite akcipher; 154 struct kpp_test_suite kpp; 155 } suite; 156 }; 157 158 static void hexdump(unsigned char *buf, unsigned int len) 159 { 160 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 161 16, 1, 162 buf, len, false); 163 } 164 165 static int __testmgr_alloc_buf(char *buf[XBUFSIZE], int order) 166 { 167 int i; 168 169 for (i = 0; i < XBUFSIZE; i++) { 170 buf[i] = (char *)__get_free_pages(GFP_KERNEL, order); 171 if (!buf[i]) 172 goto err_free_buf; 173 } 174 175 return 0; 176 177 err_free_buf: 178 while (i-- > 0) 179 free_pages((unsigned long)buf[i], order); 180 181 return -ENOMEM; 182 } 183 184 static int testmgr_alloc_buf(char *buf[XBUFSIZE]) 185 { 186 return __testmgr_alloc_buf(buf, 0); 187 } 188 189 static void __testmgr_free_buf(char *buf[XBUFSIZE], int order) 190 { 191 int i; 192 193 for (i = 0; i < XBUFSIZE; i++) 194 free_pages((unsigned long)buf[i], order); 195 } 196 197 static void testmgr_free_buf(char *buf[XBUFSIZE]) 198 { 199 __testmgr_free_buf(buf, 0); 200 } 201 202 #define TESTMGR_POISON_BYTE 0xfe 203 #define TESTMGR_POISON_LEN 16 204 205 static inline void testmgr_poison(void *addr, size_t len) 206 { 207 memset(addr, TESTMGR_POISON_BYTE, len); 208 } 209 210 /* Is the memory region still fully poisoned? */ 211 static inline bool testmgr_is_poison(const void *addr, size_t len) 212 { 213 return memchr_inv(addr, TESTMGR_POISON_BYTE, len) == NULL; 214 } 215 216 /* flush type for hash algorithms */ 217 enum flush_type { 218 /* merge with update of previous buffer(s) */ 219 FLUSH_TYPE_NONE = 0, 220 221 /* update with previous buffer(s) before doing this one */ 222 FLUSH_TYPE_FLUSH, 223 224 /* likewise, but also export and re-import the intermediate state */ 225 FLUSH_TYPE_REIMPORT, 226 }; 227 228 /* finalization function for hash algorithms */ 229 enum finalization_type { 230 FINALIZATION_TYPE_FINAL, /* use final() */ 231 FINALIZATION_TYPE_FINUP, /* use finup() */ 232 FINALIZATION_TYPE_DIGEST, /* use digest() */ 233 }; 234 235 /* 236 * Whether the crypto operation will occur in-place, and if so whether the 237 * source and destination scatterlist pointers will coincide (req->src == 238 * req->dst), or whether they'll merely point to two separate scatterlists 239 * (req->src != req->dst) that reference the same underlying memory. 240 * 241 * This is only relevant for algorithm types that support in-place operation. 242 */ 243 enum inplace_mode { 244 OUT_OF_PLACE, 245 INPLACE_ONE_SGLIST, 246 INPLACE_TWO_SGLISTS, 247 }; 248 249 #define TEST_SG_TOTAL 10000 250 251 /** 252 * struct test_sg_division - description of a scatterlist entry 253 * 254 * This struct describes one entry of a scatterlist being constructed to check a 255 * crypto test vector. 256 * 257 * @proportion_of_total: length of this chunk relative to the total length, 258 * given as a proportion out of TEST_SG_TOTAL so that it 259 * scales to fit any test vector 260 * @offset: byte offset into a 2-page buffer at which this chunk will start 261 * @offset_relative_to_alignmask: if true, add the algorithm's alignmask to the 262 * @offset 263 * @flush_type: for hashes, whether an update() should be done now vs. 264 * continuing to accumulate data 265 * @nosimd: if doing the pending update(), do it with SIMD disabled? 266 */ 267 struct test_sg_division { 268 unsigned int proportion_of_total; 269 unsigned int offset; 270 bool offset_relative_to_alignmask; 271 enum flush_type flush_type; 272 bool nosimd; 273 }; 274 275 /** 276 * struct testvec_config - configuration for testing a crypto test vector 277 * 278 * This struct describes the data layout and other parameters with which each 279 * crypto test vector can be tested. 280 * 281 * @name: name of this config, logged for debugging purposes if a test fails 282 * @inplace_mode: whether and how to operate on the data in-place, if applicable 283 * @req_flags: extra request_flags, e.g. CRYPTO_TFM_REQ_MAY_SLEEP 284 * @src_divs: description of how to arrange the source scatterlist 285 * @dst_divs: description of how to arrange the dst scatterlist, if applicable 286 * for the algorithm type. Defaults to @src_divs if unset. 287 * @iv_offset: misalignment of the IV in the range [0..MAX_ALGAPI_ALIGNMASK+1], 288 * where 0 is aligned to a 2*(MAX_ALGAPI_ALIGNMASK+1) byte boundary 289 * @iv_offset_relative_to_alignmask: if true, add the algorithm's alignmask to 290 * the @iv_offset 291 * @key_offset: misalignment of the key, where 0 is default alignment 292 * @key_offset_relative_to_alignmask: if true, add the algorithm's alignmask to 293 * the @key_offset 294 * @finalization_type: what finalization function to use for hashes 295 * @nosimd: execute with SIMD disabled? Requires !CRYPTO_TFM_REQ_MAY_SLEEP. 296 * This applies to the parts of the operation that aren't controlled 297 * individually by @nosimd_setkey or @src_divs[].nosimd. 298 * @nosimd_setkey: set the key (if applicable) with SIMD disabled? Requires 299 * !CRYPTO_TFM_REQ_MAY_SLEEP. 300 */ 301 struct testvec_config { 302 const char *name; 303 enum inplace_mode inplace_mode; 304 u32 req_flags; 305 struct test_sg_division src_divs[XBUFSIZE]; 306 struct test_sg_division dst_divs[XBUFSIZE]; 307 unsigned int iv_offset; 308 unsigned int key_offset; 309 bool iv_offset_relative_to_alignmask; 310 bool key_offset_relative_to_alignmask; 311 enum finalization_type finalization_type; 312 bool nosimd; 313 bool nosimd_setkey; 314 }; 315 316 #define TESTVEC_CONFIG_NAMELEN 192 317 318 /* 319 * The following are the lists of testvec_configs to test for each algorithm 320 * type when the basic crypto self-tests are enabled, i.e. when 321 * CONFIG_CRYPTO_MANAGER_DISABLE_TESTS is unset. They aim to provide good test 322 * coverage, while keeping the test time much shorter than the full fuzz tests 323 * so that the basic tests can be enabled in a wider range of circumstances. 324 */ 325 326 /* Configs for skciphers and aeads */ 327 static const struct testvec_config default_cipher_testvec_configs[] = { 328 { 329 .name = "in-place (one sglist)", 330 .inplace_mode = INPLACE_ONE_SGLIST, 331 .src_divs = { { .proportion_of_total = 10000 } }, 332 }, { 333 .name = "in-place (two sglists)", 334 .inplace_mode = INPLACE_TWO_SGLISTS, 335 .src_divs = { { .proportion_of_total = 10000 } }, 336 }, { 337 .name = "out-of-place", 338 .inplace_mode = OUT_OF_PLACE, 339 .src_divs = { { .proportion_of_total = 10000 } }, 340 }, { 341 .name = "unaligned buffer, offset=1", 342 .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, 343 .iv_offset = 1, 344 .key_offset = 1, 345 }, { 346 .name = "buffer aligned only to alignmask", 347 .src_divs = { 348 { 349 .proportion_of_total = 10000, 350 .offset = 1, 351 .offset_relative_to_alignmask = true, 352 }, 353 }, 354 .iv_offset = 1, 355 .iv_offset_relative_to_alignmask = true, 356 .key_offset = 1, 357 .key_offset_relative_to_alignmask = true, 358 }, { 359 .name = "two even aligned splits", 360 .src_divs = { 361 { .proportion_of_total = 5000 }, 362 { .proportion_of_total = 5000 }, 363 }, 364 }, { 365 .name = "one src, two even splits dst", 366 .inplace_mode = OUT_OF_PLACE, 367 .src_divs = { { .proportion_of_total = 10000 } }, 368 .dst_divs = { 369 { .proportion_of_total = 5000 }, 370 { .proportion_of_total = 5000 }, 371 }, 372 }, { 373 .name = "uneven misaligned splits, may sleep", 374 .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, 375 .src_divs = { 376 { .proportion_of_total = 1900, .offset = 33 }, 377 { .proportion_of_total = 3300, .offset = 7 }, 378 { .proportion_of_total = 4800, .offset = 18 }, 379 }, 380 .iv_offset = 3, 381 .key_offset = 3, 382 }, { 383 .name = "misaligned splits crossing pages, inplace", 384 .inplace_mode = INPLACE_ONE_SGLIST, 385 .src_divs = { 386 { 387 .proportion_of_total = 7500, 388 .offset = PAGE_SIZE - 32 389 }, { 390 .proportion_of_total = 2500, 391 .offset = PAGE_SIZE - 7 392 }, 393 }, 394 } 395 }; 396 397 static const struct testvec_config default_hash_testvec_configs[] = { 398 { 399 .name = "init+update+final aligned buffer", 400 .src_divs = { { .proportion_of_total = 10000 } }, 401 .finalization_type = FINALIZATION_TYPE_FINAL, 402 }, { 403 .name = "init+finup aligned buffer", 404 .src_divs = { { .proportion_of_total = 10000 } }, 405 .finalization_type = FINALIZATION_TYPE_FINUP, 406 }, { 407 .name = "digest aligned buffer", 408 .src_divs = { { .proportion_of_total = 10000 } }, 409 .finalization_type = FINALIZATION_TYPE_DIGEST, 410 }, { 411 .name = "init+update+final misaligned buffer", 412 .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, 413 .finalization_type = FINALIZATION_TYPE_FINAL, 414 .key_offset = 1, 415 }, { 416 .name = "digest misaligned buffer", 417 .src_divs = { 418 { 419 .proportion_of_total = 10000, 420 .offset = 1, 421 }, 422 }, 423 .finalization_type = FINALIZATION_TYPE_DIGEST, 424 .key_offset = 1, 425 }, { 426 .name = "init+update+update+final two even splits", 427 .src_divs = { 428 { .proportion_of_total = 5000 }, 429 { 430 .proportion_of_total = 5000, 431 .flush_type = FLUSH_TYPE_FLUSH, 432 }, 433 }, 434 .finalization_type = FINALIZATION_TYPE_FINAL, 435 }, { 436 .name = "digest uneven misaligned splits, may sleep", 437 .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, 438 .src_divs = { 439 { .proportion_of_total = 1900, .offset = 33 }, 440 { .proportion_of_total = 3300, .offset = 7 }, 441 { .proportion_of_total = 4800, .offset = 18 }, 442 }, 443 .finalization_type = FINALIZATION_TYPE_DIGEST, 444 }, { 445 .name = "digest misaligned splits crossing pages", 446 .src_divs = { 447 { 448 .proportion_of_total = 7500, 449 .offset = PAGE_SIZE - 32, 450 }, { 451 .proportion_of_total = 2500, 452 .offset = PAGE_SIZE - 7, 453 }, 454 }, 455 .finalization_type = FINALIZATION_TYPE_DIGEST, 456 }, { 457 .name = "import/export", 458 .src_divs = { 459 { 460 .proportion_of_total = 6500, 461 .flush_type = FLUSH_TYPE_REIMPORT, 462 }, { 463 .proportion_of_total = 3500, 464 .flush_type = FLUSH_TYPE_REIMPORT, 465 }, 466 }, 467 .finalization_type = FINALIZATION_TYPE_FINAL, 468 } 469 }; 470 471 static unsigned int count_test_sg_divisions(const struct test_sg_division *divs) 472 { 473 unsigned int remaining = TEST_SG_TOTAL; 474 unsigned int ndivs = 0; 475 476 do { 477 remaining -= divs[ndivs++].proportion_of_total; 478 } while (remaining); 479 480 return ndivs; 481 } 482 483 #define SGDIVS_HAVE_FLUSHES BIT(0) 484 #define SGDIVS_HAVE_NOSIMD BIT(1) 485 486 static bool valid_sg_divisions(const struct test_sg_division *divs, 487 unsigned int count, int *flags_ret) 488 { 489 unsigned int total = 0; 490 unsigned int i; 491 492 for (i = 0; i < count && total != TEST_SG_TOTAL; i++) { 493 if (divs[i].proportion_of_total <= 0 || 494 divs[i].proportion_of_total > TEST_SG_TOTAL - total) 495 return false; 496 total += divs[i].proportion_of_total; 497 if (divs[i].flush_type != FLUSH_TYPE_NONE) 498 *flags_ret |= SGDIVS_HAVE_FLUSHES; 499 if (divs[i].nosimd) 500 *flags_ret |= SGDIVS_HAVE_NOSIMD; 501 } 502 return total == TEST_SG_TOTAL && 503 memchr_inv(&divs[i], 0, (count - i) * sizeof(divs[0])) == NULL; 504 } 505 506 /* 507 * Check whether the given testvec_config is valid. This isn't strictly needed 508 * since every testvec_config should be valid, but check anyway so that people 509 * don't unknowingly add broken configs that don't do what they wanted. 510 */ 511 static bool valid_testvec_config(const struct testvec_config *cfg) 512 { 513 int flags = 0; 514 515 if (cfg->name == NULL) 516 return false; 517 518 if (!valid_sg_divisions(cfg->src_divs, ARRAY_SIZE(cfg->src_divs), 519 &flags)) 520 return false; 521 522 if (cfg->dst_divs[0].proportion_of_total) { 523 if (!valid_sg_divisions(cfg->dst_divs, 524 ARRAY_SIZE(cfg->dst_divs), &flags)) 525 return false; 526 } else { 527 if (memchr_inv(cfg->dst_divs, 0, sizeof(cfg->dst_divs))) 528 return false; 529 /* defaults to dst_divs=src_divs */ 530 } 531 532 if (cfg->iv_offset + 533 (cfg->iv_offset_relative_to_alignmask ? MAX_ALGAPI_ALIGNMASK : 0) > 534 MAX_ALGAPI_ALIGNMASK + 1) 535 return false; 536 537 if ((flags & (SGDIVS_HAVE_FLUSHES | SGDIVS_HAVE_NOSIMD)) && 538 cfg->finalization_type == FINALIZATION_TYPE_DIGEST) 539 return false; 540 541 if ((cfg->nosimd || cfg->nosimd_setkey || 542 (flags & SGDIVS_HAVE_NOSIMD)) && 543 (cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP)) 544 return false; 545 546 return true; 547 } 548 549 struct test_sglist { 550 char *bufs[XBUFSIZE]; 551 struct scatterlist sgl[XBUFSIZE]; 552 struct scatterlist sgl_saved[XBUFSIZE]; 553 struct scatterlist *sgl_ptr; 554 unsigned int nents; 555 }; 556 557 static int init_test_sglist(struct test_sglist *tsgl) 558 { 559 return __testmgr_alloc_buf(tsgl->bufs, 1 /* two pages per buffer */); 560 } 561 562 static void destroy_test_sglist(struct test_sglist *tsgl) 563 { 564 return __testmgr_free_buf(tsgl->bufs, 1 /* two pages per buffer */); 565 } 566 567 /** 568 * build_test_sglist() - build a scatterlist for a crypto test 569 * 570 * @tsgl: the scatterlist to build. @tsgl->bufs[] contains an array of 2-page 571 * buffers which the scatterlist @tsgl->sgl[] will be made to point into. 572 * @divs: the layout specification on which the scatterlist will be based 573 * @alignmask: the algorithm's alignmask 574 * @total_len: the total length of the scatterlist to build in bytes 575 * @data: if non-NULL, the buffers will be filled with this data until it ends. 576 * Otherwise the buffers will be poisoned. In both cases, some bytes 577 * past the end of each buffer will be poisoned to help detect overruns. 578 * @out_divs: if non-NULL, the test_sg_division to which each scatterlist entry 579 * corresponds will be returned here. This will match @divs except 580 * that divisions resolving to a length of 0 are omitted as they are 581 * not included in the scatterlist. 582 * 583 * Return: 0 or a -errno value 584 */ 585 static int build_test_sglist(struct test_sglist *tsgl, 586 const struct test_sg_division *divs, 587 const unsigned int alignmask, 588 const unsigned int total_len, 589 struct iov_iter *data, 590 const struct test_sg_division *out_divs[XBUFSIZE]) 591 { 592 struct { 593 const struct test_sg_division *div; 594 size_t length; 595 } partitions[XBUFSIZE]; 596 const unsigned int ndivs = count_test_sg_divisions(divs); 597 unsigned int len_remaining = total_len; 598 unsigned int i; 599 600 BUILD_BUG_ON(ARRAY_SIZE(partitions) != ARRAY_SIZE(tsgl->sgl)); 601 if (WARN_ON(ndivs > ARRAY_SIZE(partitions))) 602 return -EINVAL; 603 604 /* Calculate the (div, length) pairs */ 605 tsgl->nents = 0; 606 for (i = 0; i < ndivs; i++) { 607 unsigned int len_this_sg = 608 min(len_remaining, 609 (total_len * divs[i].proportion_of_total + 610 TEST_SG_TOTAL / 2) / TEST_SG_TOTAL); 611 612 if (len_this_sg != 0) { 613 partitions[tsgl->nents].div = &divs[i]; 614 partitions[tsgl->nents].length = len_this_sg; 615 tsgl->nents++; 616 len_remaining -= len_this_sg; 617 } 618 } 619 if (tsgl->nents == 0) { 620 partitions[tsgl->nents].div = &divs[0]; 621 partitions[tsgl->nents].length = 0; 622 tsgl->nents++; 623 } 624 partitions[tsgl->nents - 1].length += len_remaining; 625 626 /* Set up the sgl entries and fill the data or poison */ 627 sg_init_table(tsgl->sgl, tsgl->nents); 628 for (i = 0; i < tsgl->nents; i++) { 629 unsigned int offset = partitions[i].div->offset; 630 void *addr; 631 632 if (partitions[i].div->offset_relative_to_alignmask) 633 offset += alignmask; 634 635 while (offset + partitions[i].length + TESTMGR_POISON_LEN > 636 2 * PAGE_SIZE) { 637 if (WARN_ON(offset <= 0)) 638 return -EINVAL; 639 offset /= 2; 640 } 641 642 addr = &tsgl->bufs[i][offset]; 643 sg_set_buf(&tsgl->sgl[i], addr, partitions[i].length); 644 645 if (out_divs) 646 out_divs[i] = partitions[i].div; 647 648 if (data) { 649 size_t copy_len, copied; 650 651 copy_len = min(partitions[i].length, data->count); 652 copied = copy_from_iter(addr, copy_len, data); 653 if (WARN_ON(copied != copy_len)) 654 return -EINVAL; 655 testmgr_poison(addr + copy_len, partitions[i].length + 656 TESTMGR_POISON_LEN - copy_len); 657 } else { 658 testmgr_poison(addr, partitions[i].length + 659 TESTMGR_POISON_LEN); 660 } 661 } 662 663 sg_mark_end(&tsgl->sgl[tsgl->nents - 1]); 664 tsgl->sgl_ptr = tsgl->sgl; 665 memcpy(tsgl->sgl_saved, tsgl->sgl, tsgl->nents * sizeof(tsgl->sgl[0])); 666 return 0; 667 } 668 669 /* 670 * Verify that a scatterlist crypto operation produced the correct output. 671 * 672 * @tsgl: scatterlist containing the actual output 673 * @expected_output: buffer containing the expected output 674 * @len_to_check: length of @expected_output in bytes 675 * @unchecked_prefix_len: number of ignored bytes in @tsgl prior to real result 676 * @check_poison: verify that the poison bytes after each chunk are intact? 677 * 678 * Return: 0 if correct, -EINVAL if incorrect, -EOVERFLOW if buffer overrun. 679 */ 680 static int verify_correct_output(const struct test_sglist *tsgl, 681 const char *expected_output, 682 unsigned int len_to_check, 683 unsigned int unchecked_prefix_len, 684 bool check_poison) 685 { 686 unsigned int i; 687 688 for (i = 0; i < tsgl->nents; i++) { 689 struct scatterlist *sg = &tsgl->sgl_ptr[i]; 690 unsigned int len = sg->length; 691 unsigned int offset = sg->offset; 692 const char *actual_output; 693 694 if (unchecked_prefix_len) { 695 if (unchecked_prefix_len >= len) { 696 unchecked_prefix_len -= len; 697 continue; 698 } 699 offset += unchecked_prefix_len; 700 len -= unchecked_prefix_len; 701 unchecked_prefix_len = 0; 702 } 703 len = min(len, len_to_check); 704 actual_output = page_address(sg_page(sg)) + offset; 705 if (memcmp(expected_output, actual_output, len) != 0) 706 return -EINVAL; 707 if (check_poison && 708 !testmgr_is_poison(actual_output + len, TESTMGR_POISON_LEN)) 709 return -EOVERFLOW; 710 len_to_check -= len; 711 expected_output += len; 712 } 713 if (WARN_ON(len_to_check != 0)) 714 return -EINVAL; 715 return 0; 716 } 717 718 static bool is_test_sglist_corrupted(const struct test_sglist *tsgl) 719 { 720 unsigned int i; 721 722 for (i = 0; i < tsgl->nents; i++) { 723 if (tsgl->sgl[i].page_link != tsgl->sgl_saved[i].page_link) 724 return true; 725 if (tsgl->sgl[i].offset != tsgl->sgl_saved[i].offset) 726 return true; 727 if (tsgl->sgl[i].length != tsgl->sgl_saved[i].length) 728 return true; 729 } 730 return false; 731 } 732 733 struct cipher_test_sglists { 734 struct test_sglist src; 735 struct test_sglist dst; 736 }; 737 738 static struct cipher_test_sglists *alloc_cipher_test_sglists(void) 739 { 740 struct cipher_test_sglists *tsgls; 741 742 tsgls = kmalloc(sizeof(*tsgls), GFP_KERNEL); 743 if (!tsgls) 744 return NULL; 745 746 if (init_test_sglist(&tsgls->src) != 0) 747 goto fail_kfree; 748 if (init_test_sglist(&tsgls->dst) != 0) 749 goto fail_destroy_src; 750 751 return tsgls; 752 753 fail_destroy_src: 754 destroy_test_sglist(&tsgls->src); 755 fail_kfree: 756 kfree(tsgls); 757 return NULL; 758 } 759 760 static void free_cipher_test_sglists(struct cipher_test_sglists *tsgls) 761 { 762 if (tsgls) { 763 destroy_test_sglist(&tsgls->src); 764 destroy_test_sglist(&tsgls->dst); 765 kfree(tsgls); 766 } 767 } 768 769 /* Build the src and dst scatterlists for an skcipher or AEAD test */ 770 static int build_cipher_test_sglists(struct cipher_test_sglists *tsgls, 771 const struct testvec_config *cfg, 772 unsigned int alignmask, 773 unsigned int src_total_len, 774 unsigned int dst_total_len, 775 const struct kvec *inputs, 776 unsigned int nr_inputs) 777 { 778 struct iov_iter input; 779 int err; 780 781 iov_iter_kvec(&input, ITER_SOURCE, inputs, nr_inputs, src_total_len); 782 err = build_test_sglist(&tsgls->src, cfg->src_divs, alignmask, 783 cfg->inplace_mode != OUT_OF_PLACE ? 784 max(dst_total_len, src_total_len) : 785 src_total_len, 786 &input, NULL); 787 if (err) 788 return err; 789 790 /* 791 * In-place crypto operations can use the same scatterlist for both the 792 * source and destination (req->src == req->dst), or can use separate 793 * scatterlists (req->src != req->dst) which point to the same 794 * underlying memory. Make sure to test both cases. 795 */ 796 if (cfg->inplace_mode == INPLACE_ONE_SGLIST) { 797 tsgls->dst.sgl_ptr = tsgls->src.sgl; 798 tsgls->dst.nents = tsgls->src.nents; 799 return 0; 800 } 801 if (cfg->inplace_mode == INPLACE_TWO_SGLISTS) { 802 /* 803 * For now we keep it simple and only test the case where the 804 * two scatterlists have identical entries, rather than 805 * different entries that split up the same memory differently. 806 */ 807 memcpy(tsgls->dst.sgl, tsgls->src.sgl, 808 tsgls->src.nents * sizeof(tsgls->src.sgl[0])); 809 memcpy(tsgls->dst.sgl_saved, tsgls->src.sgl, 810 tsgls->src.nents * sizeof(tsgls->src.sgl[0])); 811 tsgls->dst.sgl_ptr = tsgls->dst.sgl; 812 tsgls->dst.nents = tsgls->src.nents; 813 return 0; 814 } 815 /* Out of place */ 816 return build_test_sglist(&tsgls->dst, 817 cfg->dst_divs[0].proportion_of_total ? 818 cfg->dst_divs : cfg->src_divs, 819 alignmask, dst_total_len, NULL, NULL); 820 } 821 822 /* 823 * Support for testing passing a misaligned key to setkey(): 824 * 825 * If cfg->key_offset is set, copy the key into a new buffer at that offset, 826 * optionally adding alignmask. Else, just use the key directly. 827 */ 828 static int prepare_keybuf(const u8 *key, unsigned int ksize, 829 const struct testvec_config *cfg, 830 unsigned int alignmask, 831 const u8 **keybuf_ret, const u8 **keyptr_ret) 832 { 833 unsigned int key_offset = cfg->key_offset; 834 u8 *keybuf = NULL, *keyptr = (u8 *)key; 835 836 if (key_offset != 0) { 837 if (cfg->key_offset_relative_to_alignmask) 838 key_offset += alignmask; 839 keybuf = kmalloc(key_offset + ksize, GFP_KERNEL); 840 if (!keybuf) 841 return -ENOMEM; 842 keyptr = keybuf + key_offset; 843 memcpy(keyptr, key, ksize); 844 } 845 *keybuf_ret = keybuf; 846 *keyptr_ret = keyptr; 847 return 0; 848 } 849 850 /* 851 * Like setkey_f(tfm, key, ksize), but sometimes misalign the key. 852 * In addition, run the setkey function in no-SIMD context if requested. 853 */ 854 #define do_setkey(setkey_f, tfm, key, ksize, cfg, alignmask) \ 855 ({ \ 856 const u8 *keybuf, *keyptr; \ 857 int err; \ 858 \ 859 err = prepare_keybuf((key), (ksize), (cfg), (alignmask), \ 860 &keybuf, &keyptr); \ 861 if (err == 0) { \ 862 if ((cfg)->nosimd_setkey) \ 863 crypto_disable_simd_for_test(); \ 864 err = setkey_f((tfm), keyptr, (ksize)); \ 865 if ((cfg)->nosimd_setkey) \ 866 crypto_reenable_simd_for_test(); \ 867 kfree(keybuf); \ 868 } \ 869 err; \ 870 }) 871 872 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 873 874 /* 875 * The fuzz tests use prandom instead of the normal Linux RNG since they don't 876 * need cryptographically secure random numbers. This greatly improves the 877 * performance of these tests, especially if they are run before the Linux RNG 878 * has been initialized or if they are run on a lockdep-enabled kernel. 879 */ 880 881 static inline void init_rnd_state(struct rnd_state *rng) 882 { 883 prandom_seed_state(rng, get_random_u64()); 884 } 885 886 static inline u8 prandom_u8(struct rnd_state *rng) 887 { 888 return prandom_u32_state(rng); 889 } 890 891 static inline u32 prandom_u32_below(struct rnd_state *rng, u32 ceil) 892 { 893 /* 894 * This is slightly biased for non-power-of-2 values of 'ceil', but this 895 * isn't important here. 896 */ 897 return prandom_u32_state(rng) % ceil; 898 } 899 900 static inline bool prandom_bool(struct rnd_state *rng) 901 { 902 return prandom_u32_below(rng, 2); 903 } 904 905 static inline u32 prandom_u32_inclusive(struct rnd_state *rng, 906 u32 floor, u32 ceil) 907 { 908 return floor + prandom_u32_below(rng, ceil - floor + 1); 909 } 910 911 /* Generate a random length in range [0, max_len], but prefer smaller values */ 912 static unsigned int generate_random_length(struct rnd_state *rng, 913 unsigned int max_len) 914 { 915 unsigned int len = prandom_u32_below(rng, max_len + 1); 916 917 switch (prandom_u32_below(rng, 4)) { 918 case 0: 919 len %= 64; 920 break; 921 case 1: 922 len %= 256; 923 break; 924 case 2: 925 len %= 1024; 926 break; 927 default: 928 break; 929 } 930 if (len && prandom_u32_below(rng, 4) == 0) 931 len = rounddown_pow_of_two(len); 932 return len; 933 } 934 935 /* Flip a random bit in the given nonempty data buffer */ 936 static void flip_random_bit(struct rnd_state *rng, u8 *buf, size_t size) 937 { 938 size_t bitpos; 939 940 bitpos = prandom_u32_below(rng, size * 8); 941 buf[bitpos / 8] ^= 1 << (bitpos % 8); 942 } 943 944 /* Flip a random byte in the given nonempty data buffer */ 945 static void flip_random_byte(struct rnd_state *rng, u8 *buf, size_t size) 946 { 947 buf[prandom_u32_below(rng, size)] ^= 0xff; 948 } 949 950 /* Sometimes make some random changes to the given nonempty data buffer */ 951 static void mutate_buffer(struct rnd_state *rng, u8 *buf, size_t size) 952 { 953 size_t num_flips; 954 size_t i; 955 956 /* Sometimes flip some bits */ 957 if (prandom_u32_below(rng, 4) == 0) { 958 num_flips = min_t(size_t, 1 << prandom_u32_below(rng, 8), 959 size * 8); 960 for (i = 0; i < num_flips; i++) 961 flip_random_bit(rng, buf, size); 962 } 963 964 /* Sometimes flip some bytes */ 965 if (prandom_u32_below(rng, 4) == 0) { 966 num_flips = min_t(size_t, 1 << prandom_u32_below(rng, 8), size); 967 for (i = 0; i < num_flips; i++) 968 flip_random_byte(rng, buf, size); 969 } 970 } 971 972 /* Randomly generate 'count' bytes, but sometimes make them "interesting" */ 973 static void generate_random_bytes(struct rnd_state *rng, u8 *buf, size_t count) 974 { 975 u8 b; 976 u8 increment; 977 size_t i; 978 979 if (count == 0) 980 return; 981 982 switch (prandom_u32_below(rng, 8)) { /* Choose a generation strategy */ 983 case 0: 984 case 1: 985 /* All the same byte, plus optional mutations */ 986 switch (prandom_u32_below(rng, 4)) { 987 case 0: 988 b = 0x00; 989 break; 990 case 1: 991 b = 0xff; 992 break; 993 default: 994 b = prandom_u8(rng); 995 break; 996 } 997 memset(buf, b, count); 998 mutate_buffer(rng, buf, count); 999 break; 1000 case 2: 1001 /* Ascending or descending bytes, plus optional mutations */ 1002 increment = prandom_u8(rng); 1003 b = prandom_u8(rng); 1004 for (i = 0; i < count; i++, b += increment) 1005 buf[i] = b; 1006 mutate_buffer(rng, buf, count); 1007 break; 1008 default: 1009 /* Fully random bytes */ 1010 prandom_bytes_state(rng, buf, count); 1011 } 1012 } 1013 1014 static char *generate_random_sgl_divisions(struct rnd_state *rng, 1015 struct test_sg_division *divs, 1016 size_t max_divs, char *p, char *end, 1017 bool gen_flushes, u32 req_flags) 1018 { 1019 struct test_sg_division *div = divs; 1020 unsigned int remaining = TEST_SG_TOTAL; 1021 1022 do { 1023 unsigned int this_len; 1024 const char *flushtype_str; 1025 1026 if (div == &divs[max_divs - 1] || prandom_bool(rng)) 1027 this_len = remaining; 1028 else if (prandom_u32_below(rng, 4) == 0) 1029 this_len = (remaining + 1) / 2; 1030 else 1031 this_len = prandom_u32_inclusive(rng, 1, remaining); 1032 div->proportion_of_total = this_len; 1033 1034 if (prandom_u32_below(rng, 4) == 0) 1035 div->offset = prandom_u32_inclusive(rng, 1036 PAGE_SIZE - 128, 1037 PAGE_SIZE - 1); 1038 else if (prandom_bool(rng)) 1039 div->offset = prandom_u32_below(rng, 32); 1040 else 1041 div->offset = prandom_u32_below(rng, PAGE_SIZE); 1042 if (prandom_u32_below(rng, 8) == 0) 1043 div->offset_relative_to_alignmask = true; 1044 1045 div->flush_type = FLUSH_TYPE_NONE; 1046 if (gen_flushes) { 1047 switch (prandom_u32_below(rng, 4)) { 1048 case 0: 1049 div->flush_type = FLUSH_TYPE_REIMPORT; 1050 break; 1051 case 1: 1052 div->flush_type = FLUSH_TYPE_FLUSH; 1053 break; 1054 } 1055 } 1056 1057 if (div->flush_type != FLUSH_TYPE_NONE && 1058 !(req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && 1059 prandom_bool(rng)) 1060 div->nosimd = true; 1061 1062 switch (div->flush_type) { 1063 case FLUSH_TYPE_FLUSH: 1064 if (div->nosimd) 1065 flushtype_str = "<flush,nosimd>"; 1066 else 1067 flushtype_str = "<flush>"; 1068 break; 1069 case FLUSH_TYPE_REIMPORT: 1070 if (div->nosimd) 1071 flushtype_str = "<reimport,nosimd>"; 1072 else 1073 flushtype_str = "<reimport>"; 1074 break; 1075 default: 1076 flushtype_str = ""; 1077 break; 1078 } 1079 1080 BUILD_BUG_ON(TEST_SG_TOTAL != 10000); /* for "%u.%u%%" */ 1081 p += scnprintf(p, end - p, "%s%u.%u%%@%s+%u%s", flushtype_str, 1082 this_len / 100, this_len % 100, 1083 div->offset_relative_to_alignmask ? 1084 "alignmask" : "", 1085 div->offset, this_len == remaining ? "" : ", "); 1086 remaining -= this_len; 1087 div++; 1088 } while (remaining); 1089 1090 return p; 1091 } 1092 1093 /* Generate a random testvec_config for fuzz testing */ 1094 static void generate_random_testvec_config(struct rnd_state *rng, 1095 struct testvec_config *cfg, 1096 char *name, size_t max_namelen) 1097 { 1098 char *p = name; 1099 char * const end = name + max_namelen; 1100 1101 memset(cfg, 0, sizeof(*cfg)); 1102 1103 cfg->name = name; 1104 1105 p += scnprintf(p, end - p, "random:"); 1106 1107 switch (prandom_u32_below(rng, 4)) { 1108 case 0: 1109 case 1: 1110 cfg->inplace_mode = OUT_OF_PLACE; 1111 break; 1112 case 2: 1113 cfg->inplace_mode = INPLACE_ONE_SGLIST; 1114 p += scnprintf(p, end - p, " inplace_one_sglist"); 1115 break; 1116 default: 1117 cfg->inplace_mode = INPLACE_TWO_SGLISTS; 1118 p += scnprintf(p, end - p, " inplace_two_sglists"); 1119 break; 1120 } 1121 1122 if (prandom_bool(rng)) { 1123 cfg->req_flags |= CRYPTO_TFM_REQ_MAY_SLEEP; 1124 p += scnprintf(p, end - p, " may_sleep"); 1125 } 1126 1127 switch (prandom_u32_below(rng, 4)) { 1128 case 0: 1129 cfg->finalization_type = FINALIZATION_TYPE_FINAL; 1130 p += scnprintf(p, end - p, " use_final"); 1131 break; 1132 case 1: 1133 cfg->finalization_type = FINALIZATION_TYPE_FINUP; 1134 p += scnprintf(p, end - p, " use_finup"); 1135 break; 1136 default: 1137 cfg->finalization_type = FINALIZATION_TYPE_DIGEST; 1138 p += scnprintf(p, end - p, " use_digest"); 1139 break; 1140 } 1141 1142 if (!(cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP)) { 1143 if (prandom_bool(rng)) { 1144 cfg->nosimd = true; 1145 p += scnprintf(p, end - p, " nosimd"); 1146 } 1147 if (prandom_bool(rng)) { 1148 cfg->nosimd_setkey = true; 1149 p += scnprintf(p, end - p, " nosimd_setkey"); 1150 } 1151 } 1152 1153 p += scnprintf(p, end - p, " src_divs=["); 1154 p = generate_random_sgl_divisions(rng, cfg->src_divs, 1155 ARRAY_SIZE(cfg->src_divs), p, end, 1156 (cfg->finalization_type != 1157 FINALIZATION_TYPE_DIGEST), 1158 cfg->req_flags); 1159 p += scnprintf(p, end - p, "]"); 1160 1161 if (cfg->inplace_mode == OUT_OF_PLACE && prandom_bool(rng)) { 1162 p += scnprintf(p, end - p, " dst_divs=["); 1163 p = generate_random_sgl_divisions(rng, cfg->dst_divs, 1164 ARRAY_SIZE(cfg->dst_divs), 1165 p, end, false, 1166 cfg->req_flags); 1167 p += scnprintf(p, end - p, "]"); 1168 } 1169 1170 if (prandom_bool(rng)) { 1171 cfg->iv_offset = prandom_u32_inclusive(rng, 1, 1172 MAX_ALGAPI_ALIGNMASK); 1173 p += scnprintf(p, end - p, " iv_offset=%u", cfg->iv_offset); 1174 } 1175 1176 if (prandom_bool(rng)) { 1177 cfg->key_offset = prandom_u32_inclusive(rng, 1, 1178 MAX_ALGAPI_ALIGNMASK); 1179 p += scnprintf(p, end - p, " key_offset=%u", cfg->key_offset); 1180 } 1181 1182 WARN_ON_ONCE(!valid_testvec_config(cfg)); 1183 } 1184 1185 static void crypto_disable_simd_for_test(void) 1186 { 1187 migrate_disable(); 1188 __this_cpu_write(crypto_simd_disabled_for_test, true); 1189 } 1190 1191 static void crypto_reenable_simd_for_test(void) 1192 { 1193 __this_cpu_write(crypto_simd_disabled_for_test, false); 1194 migrate_enable(); 1195 } 1196 1197 /* 1198 * Given an algorithm name, build the name of the generic implementation of that 1199 * algorithm, assuming the usual naming convention. Specifically, this appends 1200 * "-generic" to every part of the name that is not a template name. Examples: 1201 * 1202 * aes => aes-generic 1203 * cbc(aes) => cbc(aes-generic) 1204 * cts(cbc(aes)) => cts(cbc(aes-generic)) 1205 * rfc7539(chacha20,poly1305) => rfc7539(chacha20-generic,poly1305-generic) 1206 * 1207 * Return: 0 on success, or -ENAMETOOLONG if the generic name would be too long 1208 */ 1209 static int build_generic_driver_name(const char *algname, 1210 char driver_name[CRYPTO_MAX_ALG_NAME]) 1211 { 1212 const char *in = algname; 1213 char *out = driver_name; 1214 size_t len = strlen(algname); 1215 1216 if (len >= CRYPTO_MAX_ALG_NAME) 1217 goto too_long; 1218 do { 1219 const char *in_saved = in; 1220 1221 while (*in && *in != '(' && *in != ')' && *in != ',') 1222 *out++ = *in++; 1223 if (*in != '(' && in > in_saved) { 1224 len += 8; 1225 if (len >= CRYPTO_MAX_ALG_NAME) 1226 goto too_long; 1227 memcpy(out, "-generic", 8); 1228 out += 8; 1229 } 1230 } while ((*out++ = *in++) != '\0'); 1231 return 0; 1232 1233 too_long: 1234 pr_err("alg: generic driver name for \"%s\" would be too long\n", 1235 algname); 1236 return -ENAMETOOLONG; 1237 } 1238 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1239 static void crypto_disable_simd_for_test(void) 1240 { 1241 } 1242 1243 static void crypto_reenable_simd_for_test(void) 1244 { 1245 } 1246 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1247 1248 static int build_hash_sglist(struct test_sglist *tsgl, 1249 const struct hash_testvec *vec, 1250 const struct testvec_config *cfg, 1251 unsigned int alignmask, 1252 const struct test_sg_division *divs[XBUFSIZE]) 1253 { 1254 struct kvec kv; 1255 struct iov_iter input; 1256 1257 kv.iov_base = (void *)vec->plaintext; 1258 kv.iov_len = vec->psize; 1259 iov_iter_kvec(&input, ITER_SOURCE, &kv, 1, vec->psize); 1260 return build_test_sglist(tsgl, cfg->src_divs, alignmask, vec->psize, 1261 &input, divs); 1262 } 1263 1264 static int check_hash_result(const char *type, 1265 const u8 *result, unsigned int digestsize, 1266 const struct hash_testvec *vec, 1267 const char *vec_name, 1268 const char *driver, 1269 const struct testvec_config *cfg) 1270 { 1271 if (memcmp(result, vec->digest, digestsize) != 0) { 1272 pr_err("alg: %s: %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 1273 type, driver, vec_name, cfg->name); 1274 return -EINVAL; 1275 } 1276 if (!testmgr_is_poison(&result[digestsize], TESTMGR_POISON_LEN)) { 1277 pr_err("alg: %s: %s overran result buffer on test vector %s, cfg=\"%s\"\n", 1278 type, driver, vec_name, cfg->name); 1279 return -EOVERFLOW; 1280 } 1281 return 0; 1282 } 1283 1284 static inline int check_shash_op(const char *op, int err, 1285 const char *driver, const char *vec_name, 1286 const struct testvec_config *cfg) 1287 { 1288 if (err) 1289 pr_err("alg: shash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", 1290 driver, op, err, vec_name, cfg->name); 1291 return err; 1292 } 1293 1294 /* Test one hash test vector in one configuration, using the shash API */ 1295 static int test_shash_vec_cfg(const struct hash_testvec *vec, 1296 const char *vec_name, 1297 const struct testvec_config *cfg, 1298 struct shash_desc *desc, 1299 struct test_sglist *tsgl, 1300 u8 *hashstate) 1301 { 1302 struct crypto_shash *tfm = desc->tfm; 1303 const unsigned int digestsize = crypto_shash_digestsize(tfm); 1304 const unsigned int statesize = crypto_shash_statesize(tfm); 1305 const char *driver = crypto_shash_driver_name(tfm); 1306 const struct test_sg_division *divs[XBUFSIZE]; 1307 unsigned int i; 1308 u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; 1309 int err; 1310 1311 /* Set the key, if specified */ 1312 if (vec->ksize) { 1313 err = do_setkey(crypto_shash_setkey, tfm, vec->key, vec->ksize, 1314 cfg, 0); 1315 if (err) { 1316 if (err == vec->setkey_error) 1317 return 0; 1318 pr_err("alg: shash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 1319 driver, vec_name, vec->setkey_error, err, 1320 crypto_shash_get_flags(tfm)); 1321 return err; 1322 } 1323 if (vec->setkey_error) { 1324 pr_err("alg: shash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 1325 driver, vec_name, vec->setkey_error); 1326 return -EINVAL; 1327 } 1328 } 1329 1330 /* Build the scatterlist for the source data */ 1331 err = build_hash_sglist(tsgl, vec, cfg, 0, divs); 1332 if (err) { 1333 pr_err("alg: shash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", 1334 driver, vec_name, cfg->name); 1335 return err; 1336 } 1337 1338 /* Do the actual hashing */ 1339 1340 testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); 1341 testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); 1342 1343 if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || 1344 vec->digest_error) { 1345 /* Just using digest() */ 1346 if (tsgl->nents != 1) 1347 return 0; 1348 if (cfg->nosimd) 1349 crypto_disable_simd_for_test(); 1350 err = crypto_shash_digest(desc, sg_virt(&tsgl->sgl[0]), 1351 tsgl->sgl[0].length, result); 1352 if (cfg->nosimd) 1353 crypto_reenable_simd_for_test(); 1354 if (err) { 1355 if (err == vec->digest_error) 1356 return 0; 1357 pr_err("alg: shash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 1358 driver, vec_name, vec->digest_error, err, 1359 cfg->name); 1360 return err; 1361 } 1362 if (vec->digest_error) { 1363 pr_err("alg: shash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 1364 driver, vec_name, vec->digest_error, cfg->name); 1365 return -EINVAL; 1366 } 1367 goto result_ready; 1368 } 1369 1370 /* Using init(), zero or more update(), then final() or finup() */ 1371 1372 if (cfg->nosimd) 1373 crypto_disable_simd_for_test(); 1374 err = crypto_shash_init(desc); 1375 if (cfg->nosimd) 1376 crypto_reenable_simd_for_test(); 1377 err = check_shash_op("init", err, driver, vec_name, cfg); 1378 if (err) 1379 return err; 1380 1381 for (i = 0; i < tsgl->nents; i++) { 1382 if (i + 1 == tsgl->nents && 1383 cfg->finalization_type == FINALIZATION_TYPE_FINUP) { 1384 if (divs[i]->nosimd) 1385 crypto_disable_simd_for_test(); 1386 err = crypto_shash_finup(desc, sg_virt(&tsgl->sgl[i]), 1387 tsgl->sgl[i].length, result); 1388 if (divs[i]->nosimd) 1389 crypto_reenable_simd_for_test(); 1390 err = check_shash_op("finup", err, driver, vec_name, 1391 cfg); 1392 if (err) 1393 return err; 1394 goto result_ready; 1395 } 1396 if (divs[i]->nosimd) 1397 crypto_disable_simd_for_test(); 1398 err = crypto_shash_update(desc, sg_virt(&tsgl->sgl[i]), 1399 tsgl->sgl[i].length); 1400 if (divs[i]->nosimd) 1401 crypto_reenable_simd_for_test(); 1402 err = check_shash_op("update", err, driver, vec_name, cfg); 1403 if (err) 1404 return err; 1405 if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { 1406 /* Test ->export() and ->import() */ 1407 testmgr_poison(hashstate + statesize, 1408 TESTMGR_POISON_LEN); 1409 err = crypto_shash_export(desc, hashstate); 1410 err = check_shash_op("export", err, driver, vec_name, 1411 cfg); 1412 if (err) 1413 return err; 1414 if (!testmgr_is_poison(hashstate + statesize, 1415 TESTMGR_POISON_LEN)) { 1416 pr_err("alg: shash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", 1417 driver, vec_name, cfg->name); 1418 return -EOVERFLOW; 1419 } 1420 testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); 1421 err = crypto_shash_import(desc, hashstate); 1422 err = check_shash_op("import", err, driver, vec_name, 1423 cfg); 1424 if (err) 1425 return err; 1426 } 1427 } 1428 1429 if (cfg->nosimd) 1430 crypto_disable_simd_for_test(); 1431 err = crypto_shash_final(desc, result); 1432 if (cfg->nosimd) 1433 crypto_reenable_simd_for_test(); 1434 err = check_shash_op("final", err, driver, vec_name, cfg); 1435 if (err) 1436 return err; 1437 result_ready: 1438 return check_hash_result("shash", result, digestsize, vec, vec_name, 1439 driver, cfg); 1440 } 1441 1442 static int do_ahash_op(int (*op)(struct ahash_request *req), 1443 struct ahash_request *req, 1444 struct crypto_wait *wait, bool nosimd) 1445 { 1446 int err; 1447 1448 if (nosimd) 1449 crypto_disable_simd_for_test(); 1450 1451 err = op(req); 1452 1453 if (nosimd) 1454 crypto_reenable_simd_for_test(); 1455 1456 return crypto_wait_req(err, wait); 1457 } 1458 1459 static int check_nonfinal_ahash_op(const char *op, int err, 1460 u8 *result, unsigned int digestsize, 1461 const char *driver, const char *vec_name, 1462 const struct testvec_config *cfg) 1463 { 1464 if (err) { 1465 pr_err("alg: ahash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", 1466 driver, op, err, vec_name, cfg->name); 1467 return err; 1468 } 1469 if (!testmgr_is_poison(result, digestsize)) { 1470 pr_err("alg: ahash: %s %s() used result buffer on test vector %s, cfg=\"%s\"\n", 1471 driver, op, vec_name, cfg->name); 1472 return -EINVAL; 1473 } 1474 return 0; 1475 } 1476 1477 /* Test one hash test vector in one configuration, using the ahash API */ 1478 static int test_ahash_vec_cfg(const struct hash_testvec *vec, 1479 const char *vec_name, 1480 const struct testvec_config *cfg, 1481 struct ahash_request *req, 1482 struct test_sglist *tsgl, 1483 u8 *hashstate) 1484 { 1485 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1486 const unsigned int digestsize = crypto_ahash_digestsize(tfm); 1487 const unsigned int statesize = crypto_ahash_statesize(tfm); 1488 const char *driver = crypto_ahash_driver_name(tfm); 1489 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 1490 const struct test_sg_division *divs[XBUFSIZE]; 1491 DECLARE_CRYPTO_WAIT(wait); 1492 unsigned int i; 1493 struct scatterlist *pending_sgl; 1494 unsigned int pending_len; 1495 u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; 1496 int err; 1497 1498 /* Set the key, if specified */ 1499 if (vec->ksize) { 1500 err = do_setkey(crypto_ahash_setkey, tfm, vec->key, vec->ksize, 1501 cfg, 0); 1502 if (err) { 1503 if (err == vec->setkey_error) 1504 return 0; 1505 pr_err("alg: ahash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 1506 driver, vec_name, vec->setkey_error, err, 1507 crypto_ahash_get_flags(tfm)); 1508 return err; 1509 } 1510 if (vec->setkey_error) { 1511 pr_err("alg: ahash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 1512 driver, vec_name, vec->setkey_error); 1513 return -EINVAL; 1514 } 1515 } 1516 1517 /* Build the scatterlist for the source data */ 1518 err = build_hash_sglist(tsgl, vec, cfg, 0, divs); 1519 if (err) { 1520 pr_err("alg: ahash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", 1521 driver, vec_name, cfg->name); 1522 return err; 1523 } 1524 1525 /* Do the actual hashing */ 1526 1527 testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); 1528 testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); 1529 1530 if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || 1531 vec->digest_error) { 1532 /* Just using digest() */ 1533 ahash_request_set_callback(req, req_flags, crypto_req_done, 1534 &wait); 1535 ahash_request_set_crypt(req, tsgl->sgl, result, vec->psize); 1536 err = do_ahash_op(crypto_ahash_digest, req, &wait, cfg->nosimd); 1537 if (err) { 1538 if (err == vec->digest_error) 1539 return 0; 1540 pr_err("alg: ahash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 1541 driver, vec_name, vec->digest_error, err, 1542 cfg->name); 1543 return err; 1544 } 1545 if (vec->digest_error) { 1546 pr_err("alg: ahash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 1547 driver, vec_name, vec->digest_error, cfg->name); 1548 return -EINVAL; 1549 } 1550 goto result_ready; 1551 } 1552 1553 /* Using init(), zero or more update(), then final() or finup() */ 1554 1555 ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); 1556 ahash_request_set_crypt(req, NULL, result, 0); 1557 err = do_ahash_op(crypto_ahash_init, req, &wait, cfg->nosimd); 1558 err = check_nonfinal_ahash_op("init", err, result, digestsize, 1559 driver, vec_name, cfg); 1560 if (err) 1561 return err; 1562 1563 pending_sgl = NULL; 1564 pending_len = 0; 1565 for (i = 0; i < tsgl->nents; i++) { 1566 if (divs[i]->flush_type != FLUSH_TYPE_NONE && 1567 pending_sgl != NULL) { 1568 /* update() with the pending data */ 1569 ahash_request_set_callback(req, req_flags, 1570 crypto_req_done, &wait); 1571 ahash_request_set_crypt(req, pending_sgl, result, 1572 pending_len); 1573 err = do_ahash_op(crypto_ahash_update, req, &wait, 1574 divs[i]->nosimd); 1575 err = check_nonfinal_ahash_op("update", err, 1576 result, digestsize, 1577 driver, vec_name, cfg); 1578 if (err) 1579 return err; 1580 pending_sgl = NULL; 1581 pending_len = 0; 1582 } 1583 if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { 1584 /* Test ->export() and ->import() */ 1585 testmgr_poison(hashstate + statesize, 1586 TESTMGR_POISON_LEN); 1587 err = crypto_ahash_export(req, hashstate); 1588 err = check_nonfinal_ahash_op("export", err, 1589 result, digestsize, 1590 driver, vec_name, cfg); 1591 if (err) 1592 return err; 1593 if (!testmgr_is_poison(hashstate + statesize, 1594 TESTMGR_POISON_LEN)) { 1595 pr_err("alg: ahash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", 1596 driver, vec_name, cfg->name); 1597 return -EOVERFLOW; 1598 } 1599 1600 testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); 1601 err = crypto_ahash_import(req, hashstate); 1602 err = check_nonfinal_ahash_op("import", err, 1603 result, digestsize, 1604 driver, vec_name, cfg); 1605 if (err) 1606 return err; 1607 } 1608 if (pending_sgl == NULL) 1609 pending_sgl = &tsgl->sgl[i]; 1610 pending_len += tsgl->sgl[i].length; 1611 } 1612 1613 ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); 1614 ahash_request_set_crypt(req, pending_sgl, result, pending_len); 1615 if (cfg->finalization_type == FINALIZATION_TYPE_FINAL) { 1616 /* finish with update() and final() */ 1617 err = do_ahash_op(crypto_ahash_update, req, &wait, cfg->nosimd); 1618 err = check_nonfinal_ahash_op("update", err, result, digestsize, 1619 driver, vec_name, cfg); 1620 if (err) 1621 return err; 1622 err = do_ahash_op(crypto_ahash_final, req, &wait, cfg->nosimd); 1623 if (err) { 1624 pr_err("alg: ahash: %s final() failed with err %d on test vector %s, cfg=\"%s\"\n", 1625 driver, err, vec_name, cfg->name); 1626 return err; 1627 } 1628 } else { 1629 /* finish with finup() */ 1630 err = do_ahash_op(crypto_ahash_finup, req, &wait, cfg->nosimd); 1631 if (err) { 1632 pr_err("alg: ahash: %s finup() failed with err %d on test vector %s, cfg=\"%s\"\n", 1633 driver, err, vec_name, cfg->name); 1634 return err; 1635 } 1636 } 1637 1638 result_ready: 1639 return check_hash_result("ahash", result, digestsize, vec, vec_name, 1640 driver, cfg); 1641 } 1642 1643 static int test_hash_vec_cfg(const struct hash_testvec *vec, 1644 const char *vec_name, 1645 const struct testvec_config *cfg, 1646 struct ahash_request *req, 1647 struct shash_desc *desc, 1648 struct test_sglist *tsgl, 1649 u8 *hashstate) 1650 { 1651 int err; 1652 1653 /* 1654 * For algorithms implemented as "shash", most bugs will be detected by 1655 * both the shash and ahash tests. Test the shash API first so that the 1656 * failures involve less indirection, so are easier to debug. 1657 */ 1658 1659 if (desc) { 1660 err = test_shash_vec_cfg(vec, vec_name, cfg, desc, tsgl, 1661 hashstate); 1662 if (err) 1663 return err; 1664 } 1665 1666 return test_ahash_vec_cfg(vec, vec_name, cfg, req, tsgl, hashstate); 1667 } 1668 1669 static int test_hash_vec(const struct hash_testvec *vec, unsigned int vec_num, 1670 struct ahash_request *req, struct shash_desc *desc, 1671 struct test_sglist *tsgl, u8 *hashstate) 1672 { 1673 char vec_name[16]; 1674 unsigned int i; 1675 int err; 1676 1677 sprintf(vec_name, "%u", vec_num); 1678 1679 for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) { 1680 err = test_hash_vec_cfg(vec, vec_name, 1681 &default_hash_testvec_configs[i], 1682 req, desc, tsgl, hashstate); 1683 if (err) 1684 return err; 1685 } 1686 1687 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 1688 if (!noextratests) { 1689 struct rnd_state rng; 1690 struct testvec_config cfg; 1691 char cfgname[TESTVEC_CONFIG_NAMELEN]; 1692 1693 init_rnd_state(&rng); 1694 1695 for (i = 0; i < fuzz_iterations; i++) { 1696 generate_random_testvec_config(&rng, &cfg, cfgname, 1697 sizeof(cfgname)); 1698 err = test_hash_vec_cfg(vec, vec_name, &cfg, 1699 req, desc, tsgl, hashstate); 1700 if (err) 1701 return err; 1702 cond_resched(); 1703 } 1704 } 1705 #endif 1706 return 0; 1707 } 1708 1709 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 1710 /* 1711 * Generate a hash test vector from the given implementation. 1712 * Assumes the buffers in 'vec' were already allocated. 1713 */ 1714 static void generate_random_hash_testvec(struct rnd_state *rng, 1715 struct shash_desc *desc, 1716 struct hash_testvec *vec, 1717 unsigned int maxkeysize, 1718 unsigned int maxdatasize, 1719 char *name, size_t max_namelen) 1720 { 1721 /* Data */ 1722 vec->psize = generate_random_length(rng, maxdatasize); 1723 generate_random_bytes(rng, (u8 *)vec->plaintext, vec->psize); 1724 1725 /* 1726 * Key: length in range [1, maxkeysize], but usually choose maxkeysize. 1727 * If algorithm is unkeyed, then maxkeysize == 0 and set ksize = 0. 1728 */ 1729 vec->setkey_error = 0; 1730 vec->ksize = 0; 1731 if (maxkeysize) { 1732 vec->ksize = maxkeysize; 1733 if (prandom_u32_below(rng, 4) == 0) 1734 vec->ksize = prandom_u32_inclusive(rng, 1, maxkeysize); 1735 generate_random_bytes(rng, (u8 *)vec->key, vec->ksize); 1736 1737 vec->setkey_error = crypto_shash_setkey(desc->tfm, vec->key, 1738 vec->ksize); 1739 /* If the key couldn't be set, no need to continue to digest. */ 1740 if (vec->setkey_error) 1741 goto done; 1742 } 1743 1744 /* Digest */ 1745 vec->digest_error = crypto_shash_digest(desc, vec->plaintext, 1746 vec->psize, (u8 *)vec->digest); 1747 done: 1748 snprintf(name, max_namelen, "\"random: psize=%u ksize=%u\"", 1749 vec->psize, vec->ksize); 1750 } 1751 1752 /* 1753 * Test the hash algorithm represented by @req against the corresponding generic 1754 * implementation, if one is available. 1755 */ 1756 static int test_hash_vs_generic_impl(const char *generic_driver, 1757 unsigned int maxkeysize, 1758 struct ahash_request *req, 1759 struct shash_desc *desc, 1760 struct test_sglist *tsgl, 1761 u8 *hashstate) 1762 { 1763 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1764 const unsigned int digestsize = crypto_ahash_digestsize(tfm); 1765 const unsigned int blocksize = crypto_ahash_blocksize(tfm); 1766 const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 1767 const char *algname = crypto_hash_alg_common(tfm)->base.cra_name; 1768 const char *driver = crypto_ahash_driver_name(tfm); 1769 struct rnd_state rng; 1770 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 1771 struct crypto_shash *generic_tfm = NULL; 1772 struct shash_desc *generic_desc = NULL; 1773 unsigned int i; 1774 struct hash_testvec vec = { 0 }; 1775 char vec_name[64]; 1776 struct testvec_config *cfg; 1777 char cfgname[TESTVEC_CONFIG_NAMELEN]; 1778 int err; 1779 1780 if (noextratests) 1781 return 0; 1782 1783 init_rnd_state(&rng); 1784 1785 if (!generic_driver) { /* Use default naming convention? */ 1786 err = build_generic_driver_name(algname, _generic_driver); 1787 if (err) 1788 return err; 1789 generic_driver = _generic_driver; 1790 } 1791 1792 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 1793 return 0; 1794 1795 generic_tfm = crypto_alloc_shash(generic_driver, 0, 0); 1796 if (IS_ERR(generic_tfm)) { 1797 err = PTR_ERR(generic_tfm); 1798 if (err == -ENOENT) { 1799 pr_warn("alg: hash: skipping comparison tests for %s because %s is unavailable\n", 1800 driver, generic_driver); 1801 return 0; 1802 } 1803 pr_err("alg: hash: error allocating %s (generic impl of %s): %d\n", 1804 generic_driver, algname, err); 1805 return err; 1806 } 1807 1808 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1809 if (!cfg) { 1810 err = -ENOMEM; 1811 goto out; 1812 } 1813 1814 generic_desc = kzalloc(sizeof(*desc) + 1815 crypto_shash_descsize(generic_tfm), GFP_KERNEL); 1816 if (!generic_desc) { 1817 err = -ENOMEM; 1818 goto out; 1819 } 1820 generic_desc->tfm = generic_tfm; 1821 1822 /* Check the algorithm properties for consistency. */ 1823 1824 if (digestsize != crypto_shash_digestsize(generic_tfm)) { 1825 pr_err("alg: hash: digestsize for %s (%u) doesn't match generic impl (%u)\n", 1826 driver, digestsize, 1827 crypto_shash_digestsize(generic_tfm)); 1828 err = -EINVAL; 1829 goto out; 1830 } 1831 1832 if (blocksize != crypto_shash_blocksize(generic_tfm)) { 1833 pr_err("alg: hash: blocksize for %s (%u) doesn't match generic impl (%u)\n", 1834 driver, blocksize, crypto_shash_blocksize(generic_tfm)); 1835 err = -EINVAL; 1836 goto out; 1837 } 1838 1839 /* 1840 * Now generate test vectors using the generic implementation, and test 1841 * the other implementation against them. 1842 */ 1843 1844 vec.key = kmalloc(maxkeysize, GFP_KERNEL); 1845 vec.plaintext = kmalloc(maxdatasize, GFP_KERNEL); 1846 vec.digest = kmalloc(digestsize, GFP_KERNEL); 1847 if (!vec.key || !vec.plaintext || !vec.digest) { 1848 err = -ENOMEM; 1849 goto out; 1850 } 1851 1852 for (i = 0; i < fuzz_iterations * 8; i++) { 1853 generate_random_hash_testvec(&rng, generic_desc, &vec, 1854 maxkeysize, maxdatasize, 1855 vec_name, sizeof(vec_name)); 1856 generate_random_testvec_config(&rng, cfg, cfgname, 1857 sizeof(cfgname)); 1858 1859 err = test_hash_vec_cfg(&vec, vec_name, cfg, 1860 req, desc, tsgl, hashstate); 1861 if (err) 1862 goto out; 1863 cond_resched(); 1864 } 1865 err = 0; 1866 out: 1867 kfree(cfg); 1868 kfree(vec.key); 1869 kfree(vec.plaintext); 1870 kfree(vec.digest); 1871 crypto_free_shash(generic_tfm); 1872 kfree_sensitive(generic_desc); 1873 return err; 1874 } 1875 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1876 static int test_hash_vs_generic_impl(const char *generic_driver, 1877 unsigned int maxkeysize, 1878 struct ahash_request *req, 1879 struct shash_desc *desc, 1880 struct test_sglist *tsgl, 1881 u8 *hashstate) 1882 { 1883 return 0; 1884 } 1885 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 1886 1887 static int alloc_shash(const char *driver, u32 type, u32 mask, 1888 struct crypto_shash **tfm_ret, 1889 struct shash_desc **desc_ret) 1890 { 1891 struct crypto_shash *tfm; 1892 struct shash_desc *desc; 1893 1894 tfm = crypto_alloc_shash(driver, type, mask); 1895 if (IS_ERR(tfm)) { 1896 if (PTR_ERR(tfm) == -ENOENT) { 1897 /* 1898 * This algorithm is only available through the ahash 1899 * API, not the shash API, so skip the shash tests. 1900 */ 1901 return 0; 1902 } 1903 pr_err("alg: hash: failed to allocate shash transform for %s: %ld\n", 1904 driver, PTR_ERR(tfm)); 1905 return PTR_ERR(tfm); 1906 } 1907 1908 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL); 1909 if (!desc) { 1910 crypto_free_shash(tfm); 1911 return -ENOMEM; 1912 } 1913 desc->tfm = tfm; 1914 1915 *tfm_ret = tfm; 1916 *desc_ret = desc; 1917 return 0; 1918 } 1919 1920 static int __alg_test_hash(const struct hash_testvec *vecs, 1921 unsigned int num_vecs, const char *driver, 1922 u32 type, u32 mask, 1923 const char *generic_driver, unsigned int maxkeysize) 1924 { 1925 struct crypto_ahash *atfm = NULL; 1926 struct ahash_request *req = NULL; 1927 struct crypto_shash *stfm = NULL; 1928 struct shash_desc *desc = NULL; 1929 struct test_sglist *tsgl = NULL; 1930 u8 *hashstate = NULL; 1931 unsigned int statesize; 1932 unsigned int i; 1933 int err; 1934 1935 /* 1936 * Always test the ahash API. This works regardless of whether the 1937 * algorithm is implemented as ahash or shash. 1938 */ 1939 1940 atfm = crypto_alloc_ahash(driver, type, mask); 1941 if (IS_ERR(atfm)) { 1942 if (PTR_ERR(atfm) == -ENOENT) 1943 return -ENOENT; 1944 pr_err("alg: hash: failed to allocate transform for %s: %ld\n", 1945 driver, PTR_ERR(atfm)); 1946 return PTR_ERR(atfm); 1947 } 1948 driver = crypto_ahash_driver_name(atfm); 1949 1950 req = ahash_request_alloc(atfm, GFP_KERNEL); 1951 if (!req) { 1952 pr_err("alg: hash: failed to allocate request for %s\n", 1953 driver); 1954 err = -ENOMEM; 1955 goto out; 1956 } 1957 1958 /* 1959 * If available also test the shash API, to cover corner cases that may 1960 * be missed by testing the ahash API only. 1961 */ 1962 err = alloc_shash(driver, type, mask, &stfm, &desc); 1963 if (err) 1964 goto out; 1965 1966 tsgl = kmalloc(sizeof(*tsgl), GFP_KERNEL); 1967 if (!tsgl || init_test_sglist(tsgl) != 0) { 1968 pr_err("alg: hash: failed to allocate test buffers for %s\n", 1969 driver); 1970 kfree(tsgl); 1971 tsgl = NULL; 1972 err = -ENOMEM; 1973 goto out; 1974 } 1975 1976 statesize = crypto_ahash_statesize(atfm); 1977 if (stfm) 1978 statesize = max(statesize, crypto_shash_statesize(stfm)); 1979 hashstate = kmalloc(statesize + TESTMGR_POISON_LEN, GFP_KERNEL); 1980 if (!hashstate) { 1981 pr_err("alg: hash: failed to allocate hash state buffer for %s\n", 1982 driver); 1983 err = -ENOMEM; 1984 goto out; 1985 } 1986 1987 for (i = 0; i < num_vecs; i++) { 1988 if (fips_enabled && vecs[i].fips_skip) 1989 continue; 1990 1991 err = test_hash_vec(&vecs[i], i, req, desc, tsgl, hashstate); 1992 if (err) 1993 goto out; 1994 cond_resched(); 1995 } 1996 err = test_hash_vs_generic_impl(generic_driver, maxkeysize, req, 1997 desc, tsgl, hashstate); 1998 out: 1999 kfree(hashstate); 2000 if (tsgl) { 2001 destroy_test_sglist(tsgl); 2002 kfree(tsgl); 2003 } 2004 kfree(desc); 2005 crypto_free_shash(stfm); 2006 ahash_request_free(req); 2007 crypto_free_ahash(atfm); 2008 return err; 2009 } 2010 2011 static int alg_test_hash(const struct alg_test_desc *desc, const char *driver, 2012 u32 type, u32 mask) 2013 { 2014 const struct hash_testvec *template = desc->suite.hash.vecs; 2015 unsigned int tcount = desc->suite.hash.count; 2016 unsigned int nr_unkeyed, nr_keyed; 2017 unsigned int maxkeysize = 0; 2018 int err; 2019 2020 /* 2021 * For OPTIONAL_KEY algorithms, we have to do all the unkeyed tests 2022 * first, before setting a key on the tfm. To make this easier, we 2023 * require that the unkeyed test vectors (if any) are listed first. 2024 */ 2025 2026 for (nr_unkeyed = 0; nr_unkeyed < tcount; nr_unkeyed++) { 2027 if (template[nr_unkeyed].ksize) 2028 break; 2029 } 2030 for (nr_keyed = 0; nr_unkeyed + nr_keyed < tcount; nr_keyed++) { 2031 if (!template[nr_unkeyed + nr_keyed].ksize) { 2032 pr_err("alg: hash: test vectors for %s out of order, " 2033 "unkeyed ones must come first\n", desc->alg); 2034 return -EINVAL; 2035 } 2036 maxkeysize = max_t(unsigned int, maxkeysize, 2037 template[nr_unkeyed + nr_keyed].ksize); 2038 } 2039 2040 err = 0; 2041 if (nr_unkeyed) { 2042 err = __alg_test_hash(template, nr_unkeyed, driver, type, mask, 2043 desc->generic_driver, maxkeysize); 2044 template += nr_unkeyed; 2045 } 2046 2047 if (!err && nr_keyed) 2048 err = __alg_test_hash(template, nr_keyed, driver, type, mask, 2049 desc->generic_driver, maxkeysize); 2050 2051 return err; 2052 } 2053 2054 static int test_aead_vec_cfg(int enc, const struct aead_testvec *vec, 2055 const char *vec_name, 2056 const struct testvec_config *cfg, 2057 struct aead_request *req, 2058 struct cipher_test_sglists *tsgls) 2059 { 2060 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2061 const unsigned int alignmask = crypto_aead_alignmask(tfm); 2062 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2063 const unsigned int authsize = vec->clen - vec->plen; 2064 const char *driver = crypto_aead_driver_name(tfm); 2065 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 2066 const char *op = enc ? "encryption" : "decryption"; 2067 DECLARE_CRYPTO_WAIT(wait); 2068 u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; 2069 u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + 2070 cfg->iv_offset + 2071 (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); 2072 struct kvec input[2]; 2073 int err; 2074 2075 /* Set the key */ 2076 if (vec->wk) 2077 crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2078 else 2079 crypto_aead_clear_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2080 2081 err = do_setkey(crypto_aead_setkey, tfm, vec->key, vec->klen, 2082 cfg, alignmask); 2083 if (err && err != vec->setkey_error) { 2084 pr_err("alg: aead: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 2085 driver, vec_name, vec->setkey_error, err, 2086 crypto_aead_get_flags(tfm)); 2087 return err; 2088 } 2089 if (!err && vec->setkey_error) { 2090 pr_err("alg: aead: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 2091 driver, vec_name, vec->setkey_error); 2092 return -EINVAL; 2093 } 2094 2095 /* Set the authentication tag size */ 2096 err = crypto_aead_setauthsize(tfm, authsize); 2097 if (err && err != vec->setauthsize_error) { 2098 pr_err("alg: aead: %s setauthsize failed on test vector %s; expected_error=%d, actual_error=%d\n", 2099 driver, vec_name, vec->setauthsize_error, err); 2100 return err; 2101 } 2102 if (!err && vec->setauthsize_error) { 2103 pr_err("alg: aead: %s setauthsize unexpectedly succeeded on test vector %s; expected_error=%d\n", 2104 driver, vec_name, vec->setauthsize_error); 2105 return -EINVAL; 2106 } 2107 2108 if (vec->setkey_error || vec->setauthsize_error) 2109 return 0; 2110 2111 /* The IV must be copied to a buffer, as the algorithm may modify it */ 2112 if (WARN_ON(ivsize > MAX_IVLEN)) 2113 return -EINVAL; 2114 if (vec->iv) 2115 memcpy(iv, vec->iv, ivsize); 2116 else 2117 memset(iv, 0, ivsize); 2118 2119 /* Build the src/dst scatterlists */ 2120 input[0].iov_base = (void *)vec->assoc; 2121 input[0].iov_len = vec->alen; 2122 input[1].iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; 2123 input[1].iov_len = enc ? vec->plen : vec->clen; 2124 err = build_cipher_test_sglists(tsgls, cfg, alignmask, 2125 vec->alen + (enc ? vec->plen : 2126 vec->clen), 2127 vec->alen + (enc ? vec->clen : 2128 vec->plen), 2129 input, 2); 2130 if (err) { 2131 pr_err("alg: aead: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", 2132 driver, op, vec_name, cfg->name); 2133 return err; 2134 } 2135 2136 /* Do the actual encryption or decryption */ 2137 testmgr_poison(req->__ctx, crypto_aead_reqsize(tfm)); 2138 aead_request_set_callback(req, req_flags, crypto_req_done, &wait); 2139 aead_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, 2140 enc ? vec->plen : vec->clen, iv); 2141 aead_request_set_ad(req, vec->alen); 2142 if (cfg->nosimd) 2143 crypto_disable_simd_for_test(); 2144 err = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); 2145 if (cfg->nosimd) 2146 crypto_reenable_simd_for_test(); 2147 err = crypto_wait_req(err, &wait); 2148 2149 /* Check that the algorithm didn't overwrite things it shouldn't have */ 2150 if (req->cryptlen != (enc ? vec->plen : vec->clen) || 2151 req->assoclen != vec->alen || 2152 req->iv != iv || 2153 req->src != tsgls->src.sgl_ptr || 2154 req->dst != tsgls->dst.sgl_ptr || 2155 crypto_aead_reqtfm(req) != tfm || 2156 req->base.complete != crypto_req_done || 2157 req->base.flags != req_flags || 2158 req->base.data != &wait) { 2159 pr_err("alg: aead: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", 2160 driver, op, vec_name, cfg->name); 2161 if (req->cryptlen != (enc ? vec->plen : vec->clen)) 2162 pr_err("alg: aead: changed 'req->cryptlen'\n"); 2163 if (req->assoclen != vec->alen) 2164 pr_err("alg: aead: changed 'req->assoclen'\n"); 2165 if (req->iv != iv) 2166 pr_err("alg: aead: changed 'req->iv'\n"); 2167 if (req->src != tsgls->src.sgl_ptr) 2168 pr_err("alg: aead: changed 'req->src'\n"); 2169 if (req->dst != tsgls->dst.sgl_ptr) 2170 pr_err("alg: aead: changed 'req->dst'\n"); 2171 if (crypto_aead_reqtfm(req) != tfm) 2172 pr_err("alg: aead: changed 'req->base.tfm'\n"); 2173 if (req->base.complete != crypto_req_done) 2174 pr_err("alg: aead: changed 'req->base.complete'\n"); 2175 if (req->base.flags != req_flags) 2176 pr_err("alg: aead: changed 'req->base.flags'\n"); 2177 if (req->base.data != &wait) 2178 pr_err("alg: aead: changed 'req->base.data'\n"); 2179 return -EINVAL; 2180 } 2181 if (is_test_sglist_corrupted(&tsgls->src)) { 2182 pr_err("alg: aead: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", 2183 driver, op, vec_name, cfg->name); 2184 return -EINVAL; 2185 } 2186 if (tsgls->dst.sgl_ptr != tsgls->src.sgl && 2187 is_test_sglist_corrupted(&tsgls->dst)) { 2188 pr_err("alg: aead: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", 2189 driver, op, vec_name, cfg->name); 2190 return -EINVAL; 2191 } 2192 2193 /* Check for unexpected success or failure, or wrong error code */ 2194 if ((err == 0 && vec->novrfy) || 2195 (err != vec->crypt_error && !(err == -EBADMSG && vec->novrfy))) { 2196 char expected_error[32]; 2197 2198 if (vec->novrfy && 2199 vec->crypt_error != 0 && vec->crypt_error != -EBADMSG) 2200 sprintf(expected_error, "-EBADMSG or %d", 2201 vec->crypt_error); 2202 else if (vec->novrfy) 2203 sprintf(expected_error, "-EBADMSG"); 2204 else 2205 sprintf(expected_error, "%d", vec->crypt_error); 2206 if (err) { 2207 pr_err("alg: aead: %s %s failed on test vector %s; expected_error=%s, actual_error=%d, cfg=\"%s\"\n", 2208 driver, op, vec_name, expected_error, err, 2209 cfg->name); 2210 return err; 2211 } 2212 pr_err("alg: aead: %s %s unexpectedly succeeded on test vector %s; expected_error=%s, cfg=\"%s\"\n", 2213 driver, op, vec_name, expected_error, cfg->name); 2214 return -EINVAL; 2215 } 2216 if (err) /* Expectedly failed. */ 2217 return 0; 2218 2219 /* Check for the correct output (ciphertext or plaintext) */ 2220 err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, 2221 enc ? vec->clen : vec->plen, 2222 vec->alen, 2223 enc || cfg->inplace_mode == OUT_OF_PLACE); 2224 if (err == -EOVERFLOW) { 2225 pr_err("alg: aead: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", 2226 driver, op, vec_name, cfg->name); 2227 return err; 2228 } 2229 if (err) { 2230 pr_err("alg: aead: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 2231 driver, op, vec_name, cfg->name); 2232 return err; 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int test_aead_vec(int enc, const struct aead_testvec *vec, 2239 unsigned int vec_num, struct aead_request *req, 2240 struct cipher_test_sglists *tsgls) 2241 { 2242 char vec_name[16]; 2243 unsigned int i; 2244 int err; 2245 2246 if (enc && vec->novrfy) 2247 return 0; 2248 2249 sprintf(vec_name, "%u", vec_num); 2250 2251 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { 2252 err = test_aead_vec_cfg(enc, vec, vec_name, 2253 &default_cipher_testvec_configs[i], 2254 req, tsgls); 2255 if (err) 2256 return err; 2257 } 2258 2259 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 2260 if (!noextratests) { 2261 struct rnd_state rng; 2262 struct testvec_config cfg; 2263 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2264 2265 init_rnd_state(&rng); 2266 2267 for (i = 0; i < fuzz_iterations; i++) { 2268 generate_random_testvec_config(&rng, &cfg, cfgname, 2269 sizeof(cfgname)); 2270 err = test_aead_vec_cfg(enc, vec, vec_name, 2271 &cfg, req, tsgls); 2272 if (err) 2273 return err; 2274 cond_resched(); 2275 } 2276 } 2277 #endif 2278 return 0; 2279 } 2280 2281 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 2282 2283 struct aead_extra_tests_ctx { 2284 struct rnd_state rng; 2285 struct aead_request *req; 2286 struct crypto_aead *tfm; 2287 const struct alg_test_desc *test_desc; 2288 struct cipher_test_sglists *tsgls; 2289 unsigned int maxdatasize; 2290 unsigned int maxkeysize; 2291 2292 struct aead_testvec vec; 2293 char vec_name[64]; 2294 char cfgname[TESTVEC_CONFIG_NAMELEN]; 2295 struct testvec_config cfg; 2296 }; 2297 2298 /* 2299 * Make at least one random change to a (ciphertext, AAD) pair. "Ciphertext" 2300 * here means the full ciphertext including the authentication tag. The 2301 * authentication tag (and hence also the ciphertext) is assumed to be nonempty. 2302 */ 2303 static void mutate_aead_message(struct rnd_state *rng, 2304 struct aead_testvec *vec, bool aad_iv, 2305 unsigned int ivsize) 2306 { 2307 const unsigned int aad_tail_size = aad_iv ? ivsize : 0; 2308 const unsigned int authsize = vec->clen - vec->plen; 2309 2310 if (prandom_bool(rng) && vec->alen > aad_tail_size) { 2311 /* Mutate the AAD */ 2312 flip_random_bit(rng, (u8 *)vec->assoc, 2313 vec->alen - aad_tail_size); 2314 if (prandom_bool(rng)) 2315 return; 2316 } 2317 if (prandom_bool(rng)) { 2318 /* Mutate auth tag (assuming it's at the end of ciphertext) */ 2319 flip_random_bit(rng, (u8 *)vec->ctext + vec->plen, authsize); 2320 } else { 2321 /* Mutate any part of the ciphertext */ 2322 flip_random_bit(rng, (u8 *)vec->ctext, vec->clen); 2323 } 2324 } 2325 2326 /* 2327 * Minimum authentication tag size in bytes at which we assume that we can 2328 * reliably generate inauthentic messages, i.e. not generate an authentic 2329 * message by chance. 2330 */ 2331 #define MIN_COLLISION_FREE_AUTHSIZE 8 2332 2333 static void generate_aead_message(struct rnd_state *rng, 2334 struct aead_request *req, 2335 const struct aead_test_suite *suite, 2336 struct aead_testvec *vec, 2337 bool prefer_inauthentic) 2338 { 2339 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2340 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2341 const unsigned int authsize = vec->clen - vec->plen; 2342 const bool inauthentic = (authsize >= MIN_COLLISION_FREE_AUTHSIZE) && 2343 (prefer_inauthentic || 2344 prandom_u32_below(rng, 4) == 0); 2345 2346 /* Generate the AAD. */ 2347 generate_random_bytes(rng, (u8 *)vec->assoc, vec->alen); 2348 if (suite->aad_iv && vec->alen >= ivsize) 2349 /* Avoid implementation-defined behavior. */ 2350 memcpy((u8 *)vec->assoc + vec->alen - ivsize, vec->iv, ivsize); 2351 2352 if (inauthentic && prandom_bool(rng)) { 2353 /* Generate a random ciphertext. */ 2354 generate_random_bytes(rng, (u8 *)vec->ctext, vec->clen); 2355 } else { 2356 int i = 0; 2357 struct scatterlist src[2], dst; 2358 u8 iv[MAX_IVLEN]; 2359 DECLARE_CRYPTO_WAIT(wait); 2360 2361 /* Generate a random plaintext and encrypt it. */ 2362 sg_init_table(src, 2); 2363 if (vec->alen) 2364 sg_set_buf(&src[i++], vec->assoc, vec->alen); 2365 if (vec->plen) { 2366 generate_random_bytes(rng, (u8 *)vec->ptext, vec->plen); 2367 sg_set_buf(&src[i++], vec->ptext, vec->plen); 2368 } 2369 sg_init_one(&dst, vec->ctext, vec->alen + vec->clen); 2370 memcpy(iv, vec->iv, ivsize); 2371 aead_request_set_callback(req, 0, crypto_req_done, &wait); 2372 aead_request_set_crypt(req, src, &dst, vec->plen, iv); 2373 aead_request_set_ad(req, vec->alen); 2374 vec->crypt_error = crypto_wait_req(crypto_aead_encrypt(req), 2375 &wait); 2376 /* If encryption failed, we're done. */ 2377 if (vec->crypt_error != 0) 2378 return; 2379 memmove((u8 *)vec->ctext, vec->ctext + vec->alen, vec->clen); 2380 if (!inauthentic) 2381 return; 2382 /* 2383 * Mutate the authentic (ciphertext, AAD) pair to get an 2384 * inauthentic one. 2385 */ 2386 mutate_aead_message(rng, vec, suite->aad_iv, ivsize); 2387 } 2388 vec->novrfy = 1; 2389 if (suite->einval_allowed) 2390 vec->crypt_error = -EINVAL; 2391 } 2392 2393 /* 2394 * Generate an AEAD test vector 'vec' using the implementation specified by 2395 * 'req'. The buffers in 'vec' must already be allocated. 2396 * 2397 * If 'prefer_inauthentic' is true, then this function will generate inauthentic 2398 * test vectors (i.e. vectors with 'vec->novrfy=1') more often. 2399 */ 2400 static void generate_random_aead_testvec(struct rnd_state *rng, 2401 struct aead_request *req, 2402 struct aead_testvec *vec, 2403 const struct aead_test_suite *suite, 2404 unsigned int maxkeysize, 2405 unsigned int maxdatasize, 2406 char *name, size_t max_namelen, 2407 bool prefer_inauthentic) 2408 { 2409 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2410 const unsigned int ivsize = crypto_aead_ivsize(tfm); 2411 const unsigned int maxauthsize = crypto_aead_maxauthsize(tfm); 2412 unsigned int authsize; 2413 unsigned int total_len; 2414 2415 /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ 2416 vec->klen = maxkeysize; 2417 if (prandom_u32_below(rng, 4) == 0) 2418 vec->klen = prandom_u32_below(rng, maxkeysize + 1); 2419 generate_random_bytes(rng, (u8 *)vec->key, vec->klen); 2420 vec->setkey_error = crypto_aead_setkey(tfm, vec->key, vec->klen); 2421 2422 /* IV */ 2423 generate_random_bytes(rng, (u8 *)vec->iv, ivsize); 2424 2425 /* Tag length: in [0, maxauthsize], but usually choose maxauthsize */ 2426 authsize = maxauthsize; 2427 if (prandom_u32_below(rng, 4) == 0) 2428 authsize = prandom_u32_below(rng, maxauthsize + 1); 2429 if (prefer_inauthentic && authsize < MIN_COLLISION_FREE_AUTHSIZE) 2430 authsize = MIN_COLLISION_FREE_AUTHSIZE; 2431 if (WARN_ON(authsize > maxdatasize)) 2432 authsize = maxdatasize; 2433 maxdatasize -= authsize; 2434 vec->setauthsize_error = crypto_aead_setauthsize(tfm, authsize); 2435 2436 /* AAD, plaintext, and ciphertext lengths */ 2437 total_len = generate_random_length(rng, maxdatasize); 2438 if (prandom_u32_below(rng, 4) == 0) 2439 vec->alen = 0; 2440 else 2441 vec->alen = generate_random_length(rng, total_len); 2442 vec->plen = total_len - vec->alen; 2443 vec->clen = vec->plen + authsize; 2444 2445 /* 2446 * Generate the AAD, plaintext, and ciphertext. Not applicable if the 2447 * key or the authentication tag size couldn't be set. 2448 */ 2449 vec->novrfy = 0; 2450 vec->crypt_error = 0; 2451 if (vec->setkey_error == 0 && vec->setauthsize_error == 0) 2452 generate_aead_message(rng, req, suite, vec, prefer_inauthentic); 2453 snprintf(name, max_namelen, 2454 "\"random: alen=%u plen=%u authsize=%u klen=%u novrfy=%d\"", 2455 vec->alen, vec->plen, authsize, vec->klen, vec->novrfy); 2456 } 2457 2458 static void try_to_generate_inauthentic_testvec( 2459 struct aead_extra_tests_ctx *ctx) 2460 { 2461 int i; 2462 2463 for (i = 0; i < 10; i++) { 2464 generate_random_aead_testvec(&ctx->rng, ctx->req, &ctx->vec, 2465 &ctx->test_desc->suite.aead, 2466 ctx->maxkeysize, ctx->maxdatasize, 2467 ctx->vec_name, 2468 sizeof(ctx->vec_name), true); 2469 if (ctx->vec.novrfy) 2470 return; 2471 } 2472 } 2473 2474 /* 2475 * Generate inauthentic test vectors (i.e. ciphertext, AAD pairs that aren't the 2476 * result of an encryption with the key) and verify that decryption fails. 2477 */ 2478 static int test_aead_inauthentic_inputs(struct aead_extra_tests_ctx *ctx) 2479 { 2480 unsigned int i; 2481 int err; 2482 2483 for (i = 0; i < fuzz_iterations * 8; i++) { 2484 /* 2485 * Since this part of the tests isn't comparing the 2486 * implementation to another, there's no point in testing any 2487 * test vectors other than inauthentic ones (vec.novrfy=1) here. 2488 * 2489 * If we're having trouble generating such a test vector, e.g. 2490 * if the algorithm keeps rejecting the generated keys, don't 2491 * retry forever; just continue on. 2492 */ 2493 try_to_generate_inauthentic_testvec(ctx); 2494 if (ctx->vec.novrfy) { 2495 generate_random_testvec_config(&ctx->rng, &ctx->cfg, 2496 ctx->cfgname, 2497 sizeof(ctx->cfgname)); 2498 err = test_aead_vec_cfg(DECRYPT, &ctx->vec, 2499 ctx->vec_name, &ctx->cfg, 2500 ctx->req, ctx->tsgls); 2501 if (err) 2502 return err; 2503 } 2504 cond_resched(); 2505 } 2506 return 0; 2507 } 2508 2509 /* 2510 * Test the AEAD algorithm against the corresponding generic implementation, if 2511 * one is available. 2512 */ 2513 static int test_aead_vs_generic_impl(struct aead_extra_tests_ctx *ctx) 2514 { 2515 struct crypto_aead *tfm = ctx->tfm; 2516 const char *algname = crypto_aead_alg(tfm)->base.cra_name; 2517 const char *driver = crypto_aead_driver_name(tfm); 2518 const char *generic_driver = ctx->test_desc->generic_driver; 2519 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 2520 struct crypto_aead *generic_tfm = NULL; 2521 struct aead_request *generic_req = NULL; 2522 unsigned int i; 2523 int err; 2524 2525 if (!generic_driver) { /* Use default naming convention? */ 2526 err = build_generic_driver_name(algname, _generic_driver); 2527 if (err) 2528 return err; 2529 generic_driver = _generic_driver; 2530 } 2531 2532 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 2533 return 0; 2534 2535 generic_tfm = crypto_alloc_aead(generic_driver, 0, 0); 2536 if (IS_ERR(generic_tfm)) { 2537 err = PTR_ERR(generic_tfm); 2538 if (err == -ENOENT) { 2539 pr_warn("alg: aead: skipping comparison tests for %s because %s is unavailable\n", 2540 driver, generic_driver); 2541 return 0; 2542 } 2543 pr_err("alg: aead: error allocating %s (generic impl of %s): %d\n", 2544 generic_driver, algname, err); 2545 return err; 2546 } 2547 2548 generic_req = aead_request_alloc(generic_tfm, GFP_KERNEL); 2549 if (!generic_req) { 2550 err = -ENOMEM; 2551 goto out; 2552 } 2553 2554 /* Check the algorithm properties for consistency. */ 2555 2556 if (crypto_aead_maxauthsize(tfm) != 2557 crypto_aead_maxauthsize(generic_tfm)) { 2558 pr_err("alg: aead: maxauthsize for %s (%u) doesn't match generic impl (%u)\n", 2559 driver, crypto_aead_maxauthsize(tfm), 2560 crypto_aead_maxauthsize(generic_tfm)); 2561 err = -EINVAL; 2562 goto out; 2563 } 2564 2565 if (crypto_aead_ivsize(tfm) != crypto_aead_ivsize(generic_tfm)) { 2566 pr_err("alg: aead: ivsize for %s (%u) doesn't match generic impl (%u)\n", 2567 driver, crypto_aead_ivsize(tfm), 2568 crypto_aead_ivsize(generic_tfm)); 2569 err = -EINVAL; 2570 goto out; 2571 } 2572 2573 if (crypto_aead_blocksize(tfm) != crypto_aead_blocksize(generic_tfm)) { 2574 pr_err("alg: aead: blocksize for %s (%u) doesn't match generic impl (%u)\n", 2575 driver, crypto_aead_blocksize(tfm), 2576 crypto_aead_blocksize(generic_tfm)); 2577 err = -EINVAL; 2578 goto out; 2579 } 2580 2581 /* 2582 * Now generate test vectors using the generic implementation, and test 2583 * the other implementation against them. 2584 */ 2585 for (i = 0; i < fuzz_iterations * 8; i++) { 2586 generate_random_aead_testvec(&ctx->rng, generic_req, &ctx->vec, 2587 &ctx->test_desc->suite.aead, 2588 ctx->maxkeysize, ctx->maxdatasize, 2589 ctx->vec_name, 2590 sizeof(ctx->vec_name), false); 2591 generate_random_testvec_config(&ctx->rng, &ctx->cfg, 2592 ctx->cfgname, 2593 sizeof(ctx->cfgname)); 2594 if (!ctx->vec.novrfy) { 2595 err = test_aead_vec_cfg(ENCRYPT, &ctx->vec, 2596 ctx->vec_name, &ctx->cfg, 2597 ctx->req, ctx->tsgls); 2598 if (err) 2599 goto out; 2600 } 2601 if (ctx->vec.crypt_error == 0 || ctx->vec.novrfy) { 2602 err = test_aead_vec_cfg(DECRYPT, &ctx->vec, 2603 ctx->vec_name, &ctx->cfg, 2604 ctx->req, ctx->tsgls); 2605 if (err) 2606 goto out; 2607 } 2608 cond_resched(); 2609 } 2610 err = 0; 2611 out: 2612 crypto_free_aead(generic_tfm); 2613 aead_request_free(generic_req); 2614 return err; 2615 } 2616 2617 static int test_aead_extra(const struct alg_test_desc *test_desc, 2618 struct aead_request *req, 2619 struct cipher_test_sglists *tsgls) 2620 { 2621 struct aead_extra_tests_ctx *ctx; 2622 unsigned int i; 2623 int err; 2624 2625 if (noextratests) 2626 return 0; 2627 2628 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2629 if (!ctx) 2630 return -ENOMEM; 2631 init_rnd_state(&ctx->rng); 2632 ctx->req = req; 2633 ctx->tfm = crypto_aead_reqtfm(req); 2634 ctx->test_desc = test_desc; 2635 ctx->tsgls = tsgls; 2636 ctx->maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 2637 ctx->maxkeysize = 0; 2638 for (i = 0; i < test_desc->suite.aead.count; i++) 2639 ctx->maxkeysize = max_t(unsigned int, ctx->maxkeysize, 2640 test_desc->suite.aead.vecs[i].klen); 2641 2642 ctx->vec.key = kmalloc(ctx->maxkeysize, GFP_KERNEL); 2643 ctx->vec.iv = kmalloc(crypto_aead_ivsize(ctx->tfm), GFP_KERNEL); 2644 ctx->vec.assoc = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2645 ctx->vec.ptext = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2646 ctx->vec.ctext = kmalloc(ctx->maxdatasize, GFP_KERNEL); 2647 if (!ctx->vec.key || !ctx->vec.iv || !ctx->vec.assoc || 2648 !ctx->vec.ptext || !ctx->vec.ctext) { 2649 err = -ENOMEM; 2650 goto out; 2651 } 2652 2653 err = test_aead_vs_generic_impl(ctx); 2654 if (err) 2655 goto out; 2656 2657 err = test_aead_inauthentic_inputs(ctx); 2658 out: 2659 kfree(ctx->vec.key); 2660 kfree(ctx->vec.iv); 2661 kfree(ctx->vec.assoc); 2662 kfree(ctx->vec.ptext); 2663 kfree(ctx->vec.ctext); 2664 kfree(ctx); 2665 return err; 2666 } 2667 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 2668 static int test_aead_extra(const struct alg_test_desc *test_desc, 2669 struct aead_request *req, 2670 struct cipher_test_sglists *tsgls) 2671 { 2672 return 0; 2673 } 2674 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 2675 2676 static int test_aead(int enc, const struct aead_test_suite *suite, 2677 struct aead_request *req, 2678 struct cipher_test_sglists *tsgls) 2679 { 2680 unsigned int i; 2681 int err; 2682 2683 for (i = 0; i < suite->count; i++) { 2684 err = test_aead_vec(enc, &suite->vecs[i], i, req, tsgls); 2685 if (err) 2686 return err; 2687 cond_resched(); 2688 } 2689 return 0; 2690 } 2691 2692 static int alg_test_aead(const struct alg_test_desc *desc, const char *driver, 2693 u32 type, u32 mask) 2694 { 2695 const struct aead_test_suite *suite = &desc->suite.aead; 2696 struct crypto_aead *tfm; 2697 struct aead_request *req = NULL; 2698 struct cipher_test_sglists *tsgls = NULL; 2699 int err; 2700 2701 if (suite->count <= 0) { 2702 pr_err("alg: aead: empty test suite for %s\n", driver); 2703 return -EINVAL; 2704 } 2705 2706 tfm = crypto_alloc_aead(driver, type, mask); 2707 if (IS_ERR(tfm)) { 2708 if (PTR_ERR(tfm) == -ENOENT) 2709 return -ENOENT; 2710 pr_err("alg: aead: failed to allocate transform for %s: %ld\n", 2711 driver, PTR_ERR(tfm)); 2712 return PTR_ERR(tfm); 2713 } 2714 driver = crypto_aead_driver_name(tfm); 2715 2716 req = aead_request_alloc(tfm, GFP_KERNEL); 2717 if (!req) { 2718 pr_err("alg: aead: failed to allocate request for %s\n", 2719 driver); 2720 err = -ENOMEM; 2721 goto out; 2722 } 2723 2724 tsgls = alloc_cipher_test_sglists(); 2725 if (!tsgls) { 2726 pr_err("alg: aead: failed to allocate test buffers for %s\n", 2727 driver); 2728 err = -ENOMEM; 2729 goto out; 2730 } 2731 2732 err = test_aead(ENCRYPT, suite, req, tsgls); 2733 if (err) 2734 goto out; 2735 2736 err = test_aead(DECRYPT, suite, req, tsgls); 2737 if (err) 2738 goto out; 2739 2740 err = test_aead_extra(desc, req, tsgls); 2741 out: 2742 free_cipher_test_sglists(tsgls); 2743 aead_request_free(req); 2744 crypto_free_aead(tfm); 2745 return err; 2746 } 2747 2748 static int test_cipher(struct crypto_cipher *tfm, int enc, 2749 const struct cipher_testvec *template, 2750 unsigned int tcount) 2751 { 2752 const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm)); 2753 unsigned int i, j, k; 2754 char *q; 2755 const char *e; 2756 const char *input, *result; 2757 void *data; 2758 char *xbuf[XBUFSIZE]; 2759 int ret = -ENOMEM; 2760 2761 if (testmgr_alloc_buf(xbuf)) 2762 goto out_nobuf; 2763 2764 if (enc == ENCRYPT) 2765 e = "encryption"; 2766 else 2767 e = "decryption"; 2768 2769 j = 0; 2770 for (i = 0; i < tcount; i++) { 2771 2772 if (fips_enabled && template[i].fips_skip) 2773 continue; 2774 2775 input = enc ? template[i].ptext : template[i].ctext; 2776 result = enc ? template[i].ctext : template[i].ptext; 2777 j++; 2778 2779 ret = -EINVAL; 2780 if (WARN_ON(template[i].len > PAGE_SIZE)) 2781 goto out; 2782 2783 data = xbuf[0]; 2784 memcpy(data, input, template[i].len); 2785 2786 crypto_cipher_clear_flags(tfm, ~0); 2787 if (template[i].wk) 2788 crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2789 2790 ret = crypto_cipher_setkey(tfm, template[i].key, 2791 template[i].klen); 2792 if (ret) { 2793 if (ret == template[i].setkey_error) 2794 continue; 2795 pr_err("alg: cipher: %s setkey failed on test vector %u; expected_error=%d, actual_error=%d, flags=%#x\n", 2796 algo, j, template[i].setkey_error, ret, 2797 crypto_cipher_get_flags(tfm)); 2798 goto out; 2799 } 2800 if (template[i].setkey_error) { 2801 pr_err("alg: cipher: %s setkey unexpectedly succeeded on test vector %u; expected_error=%d\n", 2802 algo, j, template[i].setkey_error); 2803 ret = -EINVAL; 2804 goto out; 2805 } 2806 2807 for (k = 0; k < template[i].len; 2808 k += crypto_cipher_blocksize(tfm)) { 2809 if (enc) 2810 crypto_cipher_encrypt_one(tfm, data + k, 2811 data + k); 2812 else 2813 crypto_cipher_decrypt_one(tfm, data + k, 2814 data + k); 2815 } 2816 2817 q = data; 2818 if (memcmp(q, result, template[i].len)) { 2819 printk(KERN_ERR "alg: cipher: Test %d failed " 2820 "on %s for %s\n", j, e, algo); 2821 hexdump(q, template[i].len); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 } 2826 2827 ret = 0; 2828 2829 out: 2830 testmgr_free_buf(xbuf); 2831 out_nobuf: 2832 return ret; 2833 } 2834 2835 static int test_skcipher_vec_cfg(int enc, const struct cipher_testvec *vec, 2836 const char *vec_name, 2837 const struct testvec_config *cfg, 2838 struct skcipher_request *req, 2839 struct cipher_test_sglists *tsgls) 2840 { 2841 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 2842 const unsigned int alignmask = crypto_skcipher_alignmask(tfm); 2843 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 2844 const char *driver = crypto_skcipher_driver_name(tfm); 2845 const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; 2846 const char *op = enc ? "encryption" : "decryption"; 2847 DECLARE_CRYPTO_WAIT(wait); 2848 u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; 2849 u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + 2850 cfg->iv_offset + 2851 (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); 2852 struct kvec input; 2853 int err; 2854 2855 /* Set the key */ 2856 if (vec->wk) 2857 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2858 else 2859 crypto_skcipher_clear_flags(tfm, 2860 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 2861 err = do_setkey(crypto_skcipher_setkey, tfm, vec->key, vec->klen, 2862 cfg, alignmask); 2863 if (err) { 2864 if (err == vec->setkey_error) 2865 return 0; 2866 pr_err("alg: skcipher: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", 2867 driver, vec_name, vec->setkey_error, err, 2868 crypto_skcipher_get_flags(tfm)); 2869 return err; 2870 } 2871 if (vec->setkey_error) { 2872 pr_err("alg: skcipher: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", 2873 driver, vec_name, vec->setkey_error); 2874 return -EINVAL; 2875 } 2876 2877 /* The IV must be copied to a buffer, as the algorithm may modify it */ 2878 if (ivsize) { 2879 if (WARN_ON(ivsize > MAX_IVLEN)) 2880 return -EINVAL; 2881 if (vec->generates_iv && !enc) 2882 memcpy(iv, vec->iv_out, ivsize); 2883 else if (vec->iv) 2884 memcpy(iv, vec->iv, ivsize); 2885 else 2886 memset(iv, 0, ivsize); 2887 } else { 2888 if (vec->generates_iv) { 2889 pr_err("alg: skcipher: %s has ivsize=0 but test vector %s generates IV!\n", 2890 driver, vec_name); 2891 return -EINVAL; 2892 } 2893 iv = NULL; 2894 } 2895 2896 /* Build the src/dst scatterlists */ 2897 input.iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; 2898 input.iov_len = vec->len; 2899 err = build_cipher_test_sglists(tsgls, cfg, alignmask, 2900 vec->len, vec->len, &input, 1); 2901 if (err) { 2902 pr_err("alg: skcipher: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", 2903 driver, op, vec_name, cfg->name); 2904 return err; 2905 } 2906 2907 /* Do the actual encryption or decryption */ 2908 testmgr_poison(req->__ctx, crypto_skcipher_reqsize(tfm)); 2909 skcipher_request_set_callback(req, req_flags, crypto_req_done, &wait); 2910 skcipher_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, 2911 vec->len, iv); 2912 if (cfg->nosimd) 2913 crypto_disable_simd_for_test(); 2914 err = enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req); 2915 if (cfg->nosimd) 2916 crypto_reenable_simd_for_test(); 2917 err = crypto_wait_req(err, &wait); 2918 2919 /* Check that the algorithm didn't overwrite things it shouldn't have */ 2920 if (req->cryptlen != vec->len || 2921 req->iv != iv || 2922 req->src != tsgls->src.sgl_ptr || 2923 req->dst != tsgls->dst.sgl_ptr || 2924 crypto_skcipher_reqtfm(req) != tfm || 2925 req->base.complete != crypto_req_done || 2926 req->base.flags != req_flags || 2927 req->base.data != &wait) { 2928 pr_err("alg: skcipher: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", 2929 driver, op, vec_name, cfg->name); 2930 if (req->cryptlen != vec->len) 2931 pr_err("alg: skcipher: changed 'req->cryptlen'\n"); 2932 if (req->iv != iv) 2933 pr_err("alg: skcipher: changed 'req->iv'\n"); 2934 if (req->src != tsgls->src.sgl_ptr) 2935 pr_err("alg: skcipher: changed 'req->src'\n"); 2936 if (req->dst != tsgls->dst.sgl_ptr) 2937 pr_err("alg: skcipher: changed 'req->dst'\n"); 2938 if (crypto_skcipher_reqtfm(req) != tfm) 2939 pr_err("alg: skcipher: changed 'req->base.tfm'\n"); 2940 if (req->base.complete != crypto_req_done) 2941 pr_err("alg: skcipher: changed 'req->base.complete'\n"); 2942 if (req->base.flags != req_flags) 2943 pr_err("alg: skcipher: changed 'req->base.flags'\n"); 2944 if (req->base.data != &wait) 2945 pr_err("alg: skcipher: changed 'req->base.data'\n"); 2946 return -EINVAL; 2947 } 2948 if (is_test_sglist_corrupted(&tsgls->src)) { 2949 pr_err("alg: skcipher: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", 2950 driver, op, vec_name, cfg->name); 2951 return -EINVAL; 2952 } 2953 if (tsgls->dst.sgl_ptr != tsgls->src.sgl && 2954 is_test_sglist_corrupted(&tsgls->dst)) { 2955 pr_err("alg: skcipher: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", 2956 driver, op, vec_name, cfg->name); 2957 return -EINVAL; 2958 } 2959 2960 /* Check for success or failure */ 2961 if (err) { 2962 if (err == vec->crypt_error) 2963 return 0; 2964 pr_err("alg: skcipher: %s %s failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", 2965 driver, op, vec_name, vec->crypt_error, err, cfg->name); 2966 return err; 2967 } 2968 if (vec->crypt_error) { 2969 pr_err("alg: skcipher: %s %s unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", 2970 driver, op, vec_name, vec->crypt_error, cfg->name); 2971 return -EINVAL; 2972 } 2973 2974 /* Check for the correct output (ciphertext or plaintext) */ 2975 err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, 2976 vec->len, 0, true); 2977 if (err == -EOVERFLOW) { 2978 pr_err("alg: skcipher: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", 2979 driver, op, vec_name, cfg->name); 2980 return err; 2981 } 2982 if (err) { 2983 pr_err("alg: skcipher: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", 2984 driver, op, vec_name, cfg->name); 2985 return err; 2986 } 2987 2988 /* If applicable, check that the algorithm generated the correct IV */ 2989 if (vec->iv_out && memcmp(iv, vec->iv_out, ivsize) != 0) { 2990 pr_err("alg: skcipher: %s %s test failed (wrong output IV) on test vector %s, cfg=\"%s\"\n", 2991 driver, op, vec_name, cfg->name); 2992 hexdump(iv, ivsize); 2993 return -EINVAL; 2994 } 2995 2996 return 0; 2997 } 2998 2999 static int test_skcipher_vec(int enc, const struct cipher_testvec *vec, 3000 unsigned int vec_num, 3001 struct skcipher_request *req, 3002 struct cipher_test_sglists *tsgls) 3003 { 3004 char vec_name[16]; 3005 unsigned int i; 3006 int err; 3007 3008 if (fips_enabled && vec->fips_skip) 3009 return 0; 3010 3011 sprintf(vec_name, "%u", vec_num); 3012 3013 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { 3014 err = test_skcipher_vec_cfg(enc, vec, vec_name, 3015 &default_cipher_testvec_configs[i], 3016 req, tsgls); 3017 if (err) 3018 return err; 3019 } 3020 3021 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 3022 if (!noextratests) { 3023 struct rnd_state rng; 3024 struct testvec_config cfg; 3025 char cfgname[TESTVEC_CONFIG_NAMELEN]; 3026 3027 init_rnd_state(&rng); 3028 3029 for (i = 0; i < fuzz_iterations; i++) { 3030 generate_random_testvec_config(&rng, &cfg, cfgname, 3031 sizeof(cfgname)); 3032 err = test_skcipher_vec_cfg(enc, vec, vec_name, 3033 &cfg, req, tsgls); 3034 if (err) 3035 return err; 3036 cond_resched(); 3037 } 3038 } 3039 #endif 3040 return 0; 3041 } 3042 3043 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 3044 /* 3045 * Generate a symmetric cipher test vector from the given implementation. 3046 * Assumes the buffers in 'vec' were already allocated. 3047 */ 3048 static void generate_random_cipher_testvec(struct rnd_state *rng, 3049 struct skcipher_request *req, 3050 struct cipher_testvec *vec, 3051 unsigned int maxdatasize, 3052 char *name, size_t max_namelen) 3053 { 3054 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 3055 const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); 3056 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 3057 struct scatterlist src, dst; 3058 u8 iv[MAX_IVLEN]; 3059 DECLARE_CRYPTO_WAIT(wait); 3060 3061 /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ 3062 vec->klen = maxkeysize; 3063 if (prandom_u32_below(rng, 4) == 0) 3064 vec->klen = prandom_u32_below(rng, maxkeysize + 1); 3065 generate_random_bytes(rng, (u8 *)vec->key, vec->klen); 3066 vec->setkey_error = crypto_skcipher_setkey(tfm, vec->key, vec->klen); 3067 3068 /* IV */ 3069 generate_random_bytes(rng, (u8 *)vec->iv, ivsize); 3070 3071 /* Plaintext */ 3072 vec->len = generate_random_length(rng, maxdatasize); 3073 generate_random_bytes(rng, (u8 *)vec->ptext, vec->len); 3074 3075 /* If the key couldn't be set, no need to continue to encrypt. */ 3076 if (vec->setkey_error) 3077 goto done; 3078 3079 /* Ciphertext */ 3080 sg_init_one(&src, vec->ptext, vec->len); 3081 sg_init_one(&dst, vec->ctext, vec->len); 3082 memcpy(iv, vec->iv, ivsize); 3083 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 3084 skcipher_request_set_crypt(req, &src, &dst, vec->len, iv); 3085 vec->crypt_error = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 3086 if (vec->crypt_error != 0) { 3087 /* 3088 * The only acceptable error here is for an invalid length, so 3089 * skcipher decryption should fail with the same error too. 3090 * We'll test for this. But to keep the API usage well-defined, 3091 * explicitly initialize the ciphertext buffer too. 3092 */ 3093 memset((u8 *)vec->ctext, 0, vec->len); 3094 } 3095 done: 3096 snprintf(name, max_namelen, "\"random: len=%u klen=%u\"", 3097 vec->len, vec->klen); 3098 } 3099 3100 /* 3101 * Test the skcipher algorithm represented by @req against the corresponding 3102 * generic implementation, if one is available. 3103 */ 3104 static int test_skcipher_vs_generic_impl(const char *generic_driver, 3105 struct skcipher_request *req, 3106 struct cipher_test_sglists *tsgls) 3107 { 3108 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 3109 const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); 3110 const unsigned int ivsize = crypto_skcipher_ivsize(tfm); 3111 const unsigned int blocksize = crypto_skcipher_blocksize(tfm); 3112 const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; 3113 const char *algname = crypto_skcipher_alg(tfm)->base.cra_name; 3114 const char *driver = crypto_skcipher_driver_name(tfm); 3115 struct rnd_state rng; 3116 char _generic_driver[CRYPTO_MAX_ALG_NAME]; 3117 struct crypto_skcipher *generic_tfm = NULL; 3118 struct skcipher_request *generic_req = NULL; 3119 unsigned int i; 3120 struct cipher_testvec vec = { 0 }; 3121 char vec_name[64]; 3122 struct testvec_config *cfg; 3123 char cfgname[TESTVEC_CONFIG_NAMELEN]; 3124 int err; 3125 3126 if (noextratests) 3127 return 0; 3128 3129 /* Keywrap isn't supported here yet as it handles its IV differently. */ 3130 if (strncmp(algname, "kw(", 3) == 0) 3131 return 0; 3132 3133 init_rnd_state(&rng); 3134 3135 if (!generic_driver) { /* Use default naming convention? */ 3136 err = build_generic_driver_name(algname, _generic_driver); 3137 if (err) 3138 return err; 3139 generic_driver = _generic_driver; 3140 } 3141 3142 if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ 3143 return 0; 3144 3145 generic_tfm = crypto_alloc_skcipher(generic_driver, 0, 0); 3146 if (IS_ERR(generic_tfm)) { 3147 err = PTR_ERR(generic_tfm); 3148 if (err == -ENOENT) { 3149 pr_warn("alg: skcipher: skipping comparison tests for %s because %s is unavailable\n", 3150 driver, generic_driver); 3151 return 0; 3152 } 3153 pr_err("alg: skcipher: error allocating %s (generic impl of %s): %d\n", 3154 generic_driver, algname, err); 3155 return err; 3156 } 3157 3158 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 3159 if (!cfg) { 3160 err = -ENOMEM; 3161 goto out; 3162 } 3163 3164 generic_req = skcipher_request_alloc(generic_tfm, GFP_KERNEL); 3165 if (!generic_req) { 3166 err = -ENOMEM; 3167 goto out; 3168 } 3169 3170 /* Check the algorithm properties for consistency. */ 3171 3172 if (crypto_skcipher_min_keysize(tfm) != 3173 crypto_skcipher_min_keysize(generic_tfm)) { 3174 pr_err("alg: skcipher: min keysize for %s (%u) doesn't match generic impl (%u)\n", 3175 driver, crypto_skcipher_min_keysize(tfm), 3176 crypto_skcipher_min_keysize(generic_tfm)); 3177 err = -EINVAL; 3178 goto out; 3179 } 3180 3181 if (maxkeysize != crypto_skcipher_max_keysize(generic_tfm)) { 3182 pr_err("alg: skcipher: max keysize for %s (%u) doesn't match generic impl (%u)\n", 3183 driver, maxkeysize, 3184 crypto_skcipher_max_keysize(generic_tfm)); 3185 err = -EINVAL; 3186 goto out; 3187 } 3188 3189 if (ivsize != crypto_skcipher_ivsize(generic_tfm)) { 3190 pr_err("alg: skcipher: ivsize for %s (%u) doesn't match generic impl (%u)\n", 3191 driver, ivsize, crypto_skcipher_ivsize(generic_tfm)); 3192 err = -EINVAL; 3193 goto out; 3194 } 3195 3196 if (blocksize != crypto_skcipher_blocksize(generic_tfm)) { 3197 pr_err("alg: skcipher: blocksize for %s (%u) doesn't match generic impl (%u)\n", 3198 driver, blocksize, 3199 crypto_skcipher_blocksize(generic_tfm)); 3200 err = -EINVAL; 3201 goto out; 3202 } 3203 3204 /* 3205 * Now generate test vectors using the generic implementation, and test 3206 * the other implementation against them. 3207 */ 3208 3209 vec.key = kmalloc(maxkeysize, GFP_KERNEL); 3210 vec.iv = kmalloc(ivsize, GFP_KERNEL); 3211 vec.ptext = kmalloc(maxdatasize, GFP_KERNEL); 3212 vec.ctext = kmalloc(maxdatasize, GFP_KERNEL); 3213 if (!vec.key || !vec.iv || !vec.ptext || !vec.ctext) { 3214 err = -ENOMEM; 3215 goto out; 3216 } 3217 3218 for (i = 0; i < fuzz_iterations * 8; i++) { 3219 generate_random_cipher_testvec(&rng, generic_req, &vec, 3220 maxdatasize, 3221 vec_name, sizeof(vec_name)); 3222 generate_random_testvec_config(&rng, cfg, cfgname, 3223 sizeof(cfgname)); 3224 3225 err = test_skcipher_vec_cfg(ENCRYPT, &vec, vec_name, 3226 cfg, req, tsgls); 3227 if (err) 3228 goto out; 3229 err = test_skcipher_vec_cfg(DECRYPT, &vec, vec_name, 3230 cfg, req, tsgls); 3231 if (err) 3232 goto out; 3233 cond_resched(); 3234 } 3235 err = 0; 3236 out: 3237 kfree(cfg); 3238 kfree(vec.key); 3239 kfree(vec.iv); 3240 kfree(vec.ptext); 3241 kfree(vec.ctext); 3242 crypto_free_skcipher(generic_tfm); 3243 skcipher_request_free(generic_req); 3244 return err; 3245 } 3246 #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 3247 static int test_skcipher_vs_generic_impl(const char *generic_driver, 3248 struct skcipher_request *req, 3249 struct cipher_test_sglists *tsgls) 3250 { 3251 return 0; 3252 } 3253 #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ 3254 3255 static int test_skcipher(int enc, const struct cipher_test_suite *suite, 3256 struct skcipher_request *req, 3257 struct cipher_test_sglists *tsgls) 3258 { 3259 unsigned int i; 3260 int err; 3261 3262 for (i = 0; i < suite->count; i++) { 3263 err = test_skcipher_vec(enc, &suite->vecs[i], i, req, tsgls); 3264 if (err) 3265 return err; 3266 cond_resched(); 3267 } 3268 return 0; 3269 } 3270 3271 static int alg_test_skcipher(const struct alg_test_desc *desc, 3272 const char *driver, u32 type, u32 mask) 3273 { 3274 const struct cipher_test_suite *suite = &desc->suite.cipher; 3275 struct crypto_skcipher *tfm; 3276 struct skcipher_request *req = NULL; 3277 struct cipher_test_sglists *tsgls = NULL; 3278 int err; 3279 3280 if (suite->count <= 0) { 3281 pr_err("alg: skcipher: empty test suite for %s\n", driver); 3282 return -EINVAL; 3283 } 3284 3285 tfm = crypto_alloc_skcipher(driver, type, mask); 3286 if (IS_ERR(tfm)) { 3287 if (PTR_ERR(tfm) == -ENOENT) 3288 return -ENOENT; 3289 pr_err("alg: skcipher: failed to allocate transform for %s: %ld\n", 3290 driver, PTR_ERR(tfm)); 3291 return PTR_ERR(tfm); 3292 } 3293 driver = crypto_skcipher_driver_name(tfm); 3294 3295 req = skcipher_request_alloc(tfm, GFP_KERNEL); 3296 if (!req) { 3297 pr_err("alg: skcipher: failed to allocate request for %s\n", 3298 driver); 3299 err = -ENOMEM; 3300 goto out; 3301 } 3302 3303 tsgls = alloc_cipher_test_sglists(); 3304 if (!tsgls) { 3305 pr_err("alg: skcipher: failed to allocate test buffers for %s\n", 3306 driver); 3307 err = -ENOMEM; 3308 goto out; 3309 } 3310 3311 err = test_skcipher(ENCRYPT, suite, req, tsgls); 3312 if (err) 3313 goto out; 3314 3315 err = test_skcipher(DECRYPT, suite, req, tsgls); 3316 if (err) 3317 goto out; 3318 3319 err = test_skcipher_vs_generic_impl(desc->generic_driver, req, tsgls); 3320 out: 3321 free_cipher_test_sglists(tsgls); 3322 skcipher_request_free(req); 3323 crypto_free_skcipher(tfm); 3324 return err; 3325 } 3326 3327 static int test_comp(struct crypto_comp *tfm, 3328 const struct comp_testvec *ctemplate, 3329 const struct comp_testvec *dtemplate, 3330 int ctcount, int dtcount) 3331 { 3332 const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm)); 3333 char *output, *decomp_output; 3334 unsigned int i; 3335 int ret; 3336 3337 output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3338 if (!output) 3339 return -ENOMEM; 3340 3341 decomp_output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3342 if (!decomp_output) { 3343 kfree(output); 3344 return -ENOMEM; 3345 } 3346 3347 for (i = 0; i < ctcount; i++) { 3348 int ilen; 3349 unsigned int dlen = COMP_BUF_SIZE; 3350 3351 memset(output, 0, COMP_BUF_SIZE); 3352 memset(decomp_output, 0, COMP_BUF_SIZE); 3353 3354 ilen = ctemplate[i].inlen; 3355 ret = crypto_comp_compress(tfm, ctemplate[i].input, 3356 ilen, output, &dlen); 3357 if (ret) { 3358 printk(KERN_ERR "alg: comp: compression failed " 3359 "on test %d for %s: ret=%d\n", i + 1, algo, 3360 -ret); 3361 goto out; 3362 } 3363 3364 ilen = dlen; 3365 dlen = COMP_BUF_SIZE; 3366 ret = crypto_comp_decompress(tfm, output, 3367 ilen, decomp_output, &dlen); 3368 if (ret) { 3369 pr_err("alg: comp: compression failed: decompress: on test %d for %s failed: ret=%d\n", 3370 i + 1, algo, -ret); 3371 goto out; 3372 } 3373 3374 if (dlen != ctemplate[i].inlen) { 3375 printk(KERN_ERR "alg: comp: Compression test %d " 3376 "failed for %s: output len = %d\n", i + 1, algo, 3377 dlen); 3378 ret = -EINVAL; 3379 goto out; 3380 } 3381 3382 if (memcmp(decomp_output, ctemplate[i].input, 3383 ctemplate[i].inlen)) { 3384 pr_err("alg: comp: compression failed: output differs: on test %d for %s\n", 3385 i + 1, algo); 3386 hexdump(decomp_output, dlen); 3387 ret = -EINVAL; 3388 goto out; 3389 } 3390 } 3391 3392 for (i = 0; i < dtcount; i++) { 3393 int ilen; 3394 unsigned int dlen = COMP_BUF_SIZE; 3395 3396 memset(decomp_output, 0, COMP_BUF_SIZE); 3397 3398 ilen = dtemplate[i].inlen; 3399 ret = crypto_comp_decompress(tfm, dtemplate[i].input, 3400 ilen, decomp_output, &dlen); 3401 if (ret) { 3402 printk(KERN_ERR "alg: comp: decompression failed " 3403 "on test %d for %s: ret=%d\n", i + 1, algo, 3404 -ret); 3405 goto out; 3406 } 3407 3408 if (dlen != dtemplate[i].outlen) { 3409 printk(KERN_ERR "alg: comp: Decompression test %d " 3410 "failed for %s: output len = %d\n", i + 1, algo, 3411 dlen); 3412 ret = -EINVAL; 3413 goto out; 3414 } 3415 3416 if (memcmp(decomp_output, dtemplate[i].output, dlen)) { 3417 printk(KERN_ERR "alg: comp: Decompression test %d " 3418 "failed for %s\n", i + 1, algo); 3419 hexdump(decomp_output, dlen); 3420 ret = -EINVAL; 3421 goto out; 3422 } 3423 } 3424 3425 ret = 0; 3426 3427 out: 3428 kfree(decomp_output); 3429 kfree(output); 3430 return ret; 3431 } 3432 3433 static int test_acomp(struct crypto_acomp *tfm, 3434 const struct comp_testvec *ctemplate, 3435 const struct comp_testvec *dtemplate, 3436 int ctcount, int dtcount) 3437 { 3438 const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm)); 3439 unsigned int i; 3440 char *output, *decomp_out; 3441 int ret; 3442 struct scatterlist src, dst; 3443 struct acomp_req *req; 3444 struct crypto_wait wait; 3445 3446 output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3447 if (!output) 3448 return -ENOMEM; 3449 3450 decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); 3451 if (!decomp_out) { 3452 kfree(output); 3453 return -ENOMEM; 3454 } 3455 3456 for (i = 0; i < ctcount; i++) { 3457 unsigned int dlen = COMP_BUF_SIZE; 3458 int ilen = ctemplate[i].inlen; 3459 void *input_vec; 3460 3461 input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL); 3462 if (!input_vec) { 3463 ret = -ENOMEM; 3464 goto out; 3465 } 3466 3467 memset(output, 0, dlen); 3468 crypto_init_wait(&wait); 3469 sg_init_one(&src, input_vec, ilen); 3470 sg_init_one(&dst, output, dlen); 3471 3472 req = acomp_request_alloc(tfm); 3473 if (!req) { 3474 pr_err("alg: acomp: request alloc failed for %s\n", 3475 algo); 3476 kfree(input_vec); 3477 ret = -ENOMEM; 3478 goto out; 3479 } 3480 3481 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3482 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3483 crypto_req_done, &wait); 3484 3485 ret = crypto_wait_req(crypto_acomp_compress(req), &wait); 3486 if (ret) { 3487 pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", 3488 i + 1, algo, -ret); 3489 kfree(input_vec); 3490 acomp_request_free(req); 3491 goto out; 3492 } 3493 3494 ilen = req->dlen; 3495 dlen = COMP_BUF_SIZE; 3496 sg_init_one(&src, output, ilen); 3497 sg_init_one(&dst, decomp_out, dlen); 3498 crypto_init_wait(&wait); 3499 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3500 3501 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3502 if (ret) { 3503 pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", 3504 i + 1, algo, -ret); 3505 kfree(input_vec); 3506 acomp_request_free(req); 3507 goto out; 3508 } 3509 3510 if (req->dlen != ctemplate[i].inlen) { 3511 pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n", 3512 i + 1, algo, req->dlen); 3513 ret = -EINVAL; 3514 kfree(input_vec); 3515 acomp_request_free(req); 3516 goto out; 3517 } 3518 3519 if (memcmp(input_vec, decomp_out, req->dlen)) { 3520 pr_err("alg: acomp: Compression test %d failed for %s\n", 3521 i + 1, algo); 3522 hexdump(output, req->dlen); 3523 ret = -EINVAL; 3524 kfree(input_vec); 3525 acomp_request_free(req); 3526 goto out; 3527 } 3528 3529 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 3530 crypto_init_wait(&wait); 3531 sg_init_one(&src, input_vec, ilen); 3532 acomp_request_set_params(req, &src, NULL, ilen, 0); 3533 3534 ret = crypto_wait_req(crypto_acomp_compress(req), &wait); 3535 if (ret) { 3536 pr_err("alg: acomp: compression failed on NULL dst buffer test %d for %s: ret=%d\n", 3537 i + 1, algo, -ret); 3538 kfree(input_vec); 3539 acomp_request_free(req); 3540 goto out; 3541 } 3542 #endif 3543 3544 kfree(input_vec); 3545 acomp_request_free(req); 3546 } 3547 3548 for (i = 0; i < dtcount; i++) { 3549 unsigned int dlen = COMP_BUF_SIZE; 3550 int ilen = dtemplate[i].inlen; 3551 void *input_vec; 3552 3553 input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL); 3554 if (!input_vec) { 3555 ret = -ENOMEM; 3556 goto out; 3557 } 3558 3559 memset(output, 0, dlen); 3560 crypto_init_wait(&wait); 3561 sg_init_one(&src, input_vec, ilen); 3562 sg_init_one(&dst, output, dlen); 3563 3564 req = acomp_request_alloc(tfm); 3565 if (!req) { 3566 pr_err("alg: acomp: request alloc failed for %s\n", 3567 algo); 3568 kfree(input_vec); 3569 ret = -ENOMEM; 3570 goto out; 3571 } 3572 3573 acomp_request_set_params(req, &src, &dst, ilen, dlen); 3574 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3575 crypto_req_done, &wait); 3576 3577 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3578 if (ret) { 3579 pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n", 3580 i + 1, algo, -ret); 3581 kfree(input_vec); 3582 acomp_request_free(req); 3583 goto out; 3584 } 3585 3586 if (req->dlen != dtemplate[i].outlen) { 3587 pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n", 3588 i + 1, algo, req->dlen); 3589 ret = -EINVAL; 3590 kfree(input_vec); 3591 acomp_request_free(req); 3592 goto out; 3593 } 3594 3595 if (memcmp(output, dtemplate[i].output, req->dlen)) { 3596 pr_err("alg: acomp: Decompression test %d failed for %s\n", 3597 i + 1, algo); 3598 hexdump(output, req->dlen); 3599 ret = -EINVAL; 3600 kfree(input_vec); 3601 acomp_request_free(req); 3602 goto out; 3603 } 3604 3605 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 3606 crypto_init_wait(&wait); 3607 acomp_request_set_params(req, &src, NULL, ilen, 0); 3608 3609 ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); 3610 if (ret) { 3611 pr_err("alg: acomp: decompression failed on NULL dst buffer test %d for %s: ret=%d\n", 3612 i + 1, algo, -ret); 3613 kfree(input_vec); 3614 acomp_request_free(req); 3615 goto out; 3616 } 3617 #endif 3618 3619 kfree(input_vec); 3620 acomp_request_free(req); 3621 } 3622 3623 ret = 0; 3624 3625 out: 3626 kfree(decomp_out); 3627 kfree(output); 3628 return ret; 3629 } 3630 3631 static int test_cprng(struct crypto_rng *tfm, 3632 const struct cprng_testvec *template, 3633 unsigned int tcount) 3634 { 3635 const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm)); 3636 int err = 0, i, j, seedsize; 3637 u8 *seed; 3638 char result[32]; 3639 3640 seedsize = crypto_rng_seedsize(tfm); 3641 3642 seed = kmalloc(seedsize, GFP_KERNEL); 3643 if (!seed) { 3644 printk(KERN_ERR "alg: cprng: Failed to allocate seed space " 3645 "for %s\n", algo); 3646 return -ENOMEM; 3647 } 3648 3649 for (i = 0; i < tcount; i++) { 3650 memset(result, 0, 32); 3651 3652 memcpy(seed, template[i].v, template[i].vlen); 3653 memcpy(seed + template[i].vlen, template[i].key, 3654 template[i].klen); 3655 memcpy(seed + template[i].vlen + template[i].klen, 3656 template[i].dt, template[i].dtlen); 3657 3658 err = crypto_rng_reset(tfm, seed, seedsize); 3659 if (err) { 3660 printk(KERN_ERR "alg: cprng: Failed to reset rng " 3661 "for %s\n", algo); 3662 goto out; 3663 } 3664 3665 for (j = 0; j < template[i].loops; j++) { 3666 err = crypto_rng_get_bytes(tfm, result, 3667 template[i].rlen); 3668 if (err < 0) { 3669 printk(KERN_ERR "alg: cprng: Failed to obtain " 3670 "the correct amount of random data for " 3671 "%s (requested %d)\n", algo, 3672 template[i].rlen); 3673 goto out; 3674 } 3675 } 3676 3677 err = memcmp(result, template[i].result, 3678 template[i].rlen); 3679 if (err) { 3680 printk(KERN_ERR "alg: cprng: Test %d failed for %s\n", 3681 i, algo); 3682 hexdump(result, template[i].rlen); 3683 err = -EINVAL; 3684 goto out; 3685 } 3686 } 3687 3688 out: 3689 kfree(seed); 3690 return err; 3691 } 3692 3693 static int alg_test_cipher(const struct alg_test_desc *desc, 3694 const char *driver, u32 type, u32 mask) 3695 { 3696 const struct cipher_test_suite *suite = &desc->suite.cipher; 3697 struct crypto_cipher *tfm; 3698 int err; 3699 3700 tfm = crypto_alloc_cipher(driver, type, mask); 3701 if (IS_ERR(tfm)) { 3702 if (PTR_ERR(tfm) == -ENOENT) 3703 return -ENOENT; 3704 printk(KERN_ERR "alg: cipher: Failed to load transform for " 3705 "%s: %ld\n", driver, PTR_ERR(tfm)); 3706 return PTR_ERR(tfm); 3707 } 3708 3709 err = test_cipher(tfm, ENCRYPT, suite->vecs, suite->count); 3710 if (!err) 3711 err = test_cipher(tfm, DECRYPT, suite->vecs, suite->count); 3712 3713 crypto_free_cipher(tfm); 3714 return err; 3715 } 3716 3717 static int alg_test_comp(const struct alg_test_desc *desc, const char *driver, 3718 u32 type, u32 mask) 3719 { 3720 struct crypto_comp *comp; 3721 struct crypto_acomp *acomp; 3722 int err; 3723 u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK; 3724 3725 if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) { 3726 acomp = crypto_alloc_acomp(driver, type, mask); 3727 if (IS_ERR(acomp)) { 3728 if (PTR_ERR(acomp) == -ENOENT) 3729 return -ENOENT; 3730 pr_err("alg: acomp: Failed to load transform for %s: %ld\n", 3731 driver, PTR_ERR(acomp)); 3732 return PTR_ERR(acomp); 3733 } 3734 err = test_acomp(acomp, desc->suite.comp.comp.vecs, 3735 desc->suite.comp.decomp.vecs, 3736 desc->suite.comp.comp.count, 3737 desc->suite.comp.decomp.count); 3738 crypto_free_acomp(acomp); 3739 } else { 3740 comp = crypto_alloc_comp(driver, type, mask); 3741 if (IS_ERR(comp)) { 3742 if (PTR_ERR(comp) == -ENOENT) 3743 return -ENOENT; 3744 pr_err("alg: comp: Failed to load transform for %s: %ld\n", 3745 driver, PTR_ERR(comp)); 3746 return PTR_ERR(comp); 3747 } 3748 3749 err = test_comp(comp, desc->suite.comp.comp.vecs, 3750 desc->suite.comp.decomp.vecs, 3751 desc->suite.comp.comp.count, 3752 desc->suite.comp.decomp.count); 3753 3754 crypto_free_comp(comp); 3755 } 3756 return err; 3757 } 3758 3759 static int alg_test_crc32c(const struct alg_test_desc *desc, 3760 const char *driver, u32 type, u32 mask) 3761 { 3762 struct crypto_shash *tfm; 3763 __le32 val; 3764 int err; 3765 3766 err = alg_test_hash(desc, driver, type, mask); 3767 if (err) 3768 return err; 3769 3770 tfm = crypto_alloc_shash(driver, type, mask); 3771 if (IS_ERR(tfm)) { 3772 if (PTR_ERR(tfm) == -ENOENT) { 3773 /* 3774 * This crc32c implementation is only available through 3775 * ahash API, not the shash API, so the remaining part 3776 * of the test is not applicable to it. 3777 */ 3778 return 0; 3779 } 3780 printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: " 3781 "%ld\n", driver, PTR_ERR(tfm)); 3782 return PTR_ERR(tfm); 3783 } 3784 driver = crypto_shash_driver_name(tfm); 3785 3786 do { 3787 SHASH_DESC_ON_STACK(shash, tfm); 3788 u32 *ctx = (u32 *)shash_desc_ctx(shash); 3789 3790 shash->tfm = tfm; 3791 3792 *ctx = 420553207; 3793 err = crypto_shash_final(shash, (u8 *)&val); 3794 if (err) { 3795 printk(KERN_ERR "alg: crc32c: Operation failed for " 3796 "%s: %d\n", driver, err); 3797 break; 3798 } 3799 3800 if (val != cpu_to_le32(~420553207)) { 3801 pr_err("alg: crc32c: Test failed for %s: %u\n", 3802 driver, le32_to_cpu(val)); 3803 err = -EINVAL; 3804 } 3805 } while (0); 3806 3807 crypto_free_shash(tfm); 3808 3809 return err; 3810 } 3811 3812 static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver, 3813 u32 type, u32 mask) 3814 { 3815 struct crypto_rng *rng; 3816 int err; 3817 3818 rng = crypto_alloc_rng(driver, type, mask); 3819 if (IS_ERR(rng)) { 3820 if (PTR_ERR(rng) == -ENOENT) 3821 return -ENOENT; 3822 printk(KERN_ERR "alg: cprng: Failed to load transform for %s: " 3823 "%ld\n", driver, PTR_ERR(rng)); 3824 return PTR_ERR(rng); 3825 } 3826 3827 err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count); 3828 3829 crypto_free_rng(rng); 3830 3831 return err; 3832 } 3833 3834 3835 static int drbg_cavs_test(const struct drbg_testvec *test, int pr, 3836 const char *driver, u32 type, u32 mask) 3837 { 3838 int ret = -EAGAIN; 3839 struct crypto_rng *drng; 3840 struct drbg_test_data test_data; 3841 struct drbg_string addtl, pers, testentropy; 3842 unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL); 3843 3844 if (!buf) 3845 return -ENOMEM; 3846 3847 drng = crypto_alloc_rng(driver, type, mask); 3848 if (IS_ERR(drng)) { 3849 if (PTR_ERR(drng) == -ENOENT) 3850 goto out_no_rng; 3851 printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for " 3852 "%s\n", driver); 3853 out_no_rng: 3854 kfree_sensitive(buf); 3855 return PTR_ERR(drng); 3856 } 3857 3858 test_data.testentropy = &testentropy; 3859 drbg_string_fill(&testentropy, test->entropy, test->entropylen); 3860 drbg_string_fill(&pers, test->pers, test->perslen); 3861 ret = crypto_drbg_reset_test(drng, &pers, &test_data); 3862 if (ret) { 3863 printk(KERN_ERR "alg: drbg: Failed to reset rng\n"); 3864 goto outbuf; 3865 } 3866 3867 drbg_string_fill(&addtl, test->addtla, test->addtllen); 3868 if (pr) { 3869 drbg_string_fill(&testentropy, test->entpra, test->entprlen); 3870 ret = crypto_drbg_get_bytes_addtl_test(drng, 3871 buf, test->expectedlen, &addtl, &test_data); 3872 } else { 3873 ret = crypto_drbg_get_bytes_addtl(drng, 3874 buf, test->expectedlen, &addtl); 3875 } 3876 if (ret < 0) { 3877 printk(KERN_ERR "alg: drbg: could not obtain random data for " 3878 "driver %s\n", driver); 3879 goto outbuf; 3880 } 3881 3882 drbg_string_fill(&addtl, test->addtlb, test->addtllen); 3883 if (pr) { 3884 drbg_string_fill(&testentropy, test->entprb, test->entprlen); 3885 ret = crypto_drbg_get_bytes_addtl_test(drng, 3886 buf, test->expectedlen, &addtl, &test_data); 3887 } else { 3888 ret = crypto_drbg_get_bytes_addtl(drng, 3889 buf, test->expectedlen, &addtl); 3890 } 3891 if (ret < 0) { 3892 printk(KERN_ERR "alg: drbg: could not obtain random data for " 3893 "driver %s\n", driver); 3894 goto outbuf; 3895 } 3896 3897 ret = memcmp(test->expected, buf, test->expectedlen); 3898 3899 outbuf: 3900 crypto_free_rng(drng); 3901 kfree_sensitive(buf); 3902 return ret; 3903 } 3904 3905 3906 static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver, 3907 u32 type, u32 mask) 3908 { 3909 int err = 0; 3910 int pr = 0; 3911 int i = 0; 3912 const struct drbg_testvec *template = desc->suite.drbg.vecs; 3913 unsigned int tcount = desc->suite.drbg.count; 3914 3915 if (0 == memcmp(driver, "drbg_pr_", 8)) 3916 pr = 1; 3917 3918 for (i = 0; i < tcount; i++) { 3919 err = drbg_cavs_test(&template[i], pr, driver, type, mask); 3920 if (err) { 3921 printk(KERN_ERR "alg: drbg: Test %d failed for %s\n", 3922 i, driver); 3923 err = -EINVAL; 3924 break; 3925 } 3926 } 3927 return err; 3928 3929 } 3930 3931 static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec, 3932 const char *alg) 3933 { 3934 struct kpp_request *req; 3935 void *input_buf = NULL; 3936 void *output_buf = NULL; 3937 void *a_public = NULL; 3938 void *a_ss = NULL; 3939 void *shared_secret = NULL; 3940 struct crypto_wait wait; 3941 unsigned int out_len_max; 3942 int err = -ENOMEM; 3943 struct scatterlist src, dst; 3944 3945 req = kpp_request_alloc(tfm, GFP_KERNEL); 3946 if (!req) 3947 return err; 3948 3949 crypto_init_wait(&wait); 3950 3951 err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size); 3952 if (err < 0) 3953 goto free_req; 3954 3955 out_len_max = crypto_kpp_maxsize(tfm); 3956 output_buf = kzalloc(out_len_max, GFP_KERNEL); 3957 if (!output_buf) { 3958 err = -ENOMEM; 3959 goto free_req; 3960 } 3961 3962 /* Use appropriate parameter as base */ 3963 kpp_request_set_input(req, NULL, 0); 3964 sg_init_one(&dst, output_buf, out_len_max); 3965 kpp_request_set_output(req, &dst, out_len_max); 3966 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 3967 crypto_req_done, &wait); 3968 3969 /* Compute party A's public key */ 3970 err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait); 3971 if (err) { 3972 pr_err("alg: %s: Party A: generate public key test failed. err %d\n", 3973 alg, err); 3974 goto free_output; 3975 } 3976 3977 if (vec->genkey) { 3978 /* Save party A's public key */ 3979 a_public = kmemdup(sg_virt(req->dst), out_len_max, GFP_KERNEL); 3980 if (!a_public) { 3981 err = -ENOMEM; 3982 goto free_output; 3983 } 3984 } else { 3985 /* Verify calculated public key */ 3986 if (memcmp(vec->expected_a_public, sg_virt(req->dst), 3987 vec->expected_a_public_size)) { 3988 pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n", 3989 alg); 3990 err = -EINVAL; 3991 goto free_output; 3992 } 3993 } 3994 3995 /* Calculate shared secret key by using counter part (b) public key. */ 3996 input_buf = kmemdup(vec->b_public, vec->b_public_size, GFP_KERNEL); 3997 if (!input_buf) { 3998 err = -ENOMEM; 3999 goto free_output; 4000 } 4001 4002 sg_init_one(&src, input_buf, vec->b_public_size); 4003 sg_init_one(&dst, output_buf, out_len_max); 4004 kpp_request_set_input(req, &src, vec->b_public_size); 4005 kpp_request_set_output(req, &dst, out_len_max); 4006 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 4007 crypto_req_done, &wait); 4008 err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); 4009 if (err) { 4010 pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n", 4011 alg, err); 4012 goto free_all; 4013 } 4014 4015 if (vec->genkey) { 4016 /* Save the shared secret obtained by party A */ 4017 a_ss = kmemdup(sg_virt(req->dst), vec->expected_ss_size, GFP_KERNEL); 4018 if (!a_ss) { 4019 err = -ENOMEM; 4020 goto free_all; 4021 } 4022 4023 /* 4024 * Calculate party B's shared secret by using party A's 4025 * public key. 4026 */ 4027 err = crypto_kpp_set_secret(tfm, vec->b_secret, 4028 vec->b_secret_size); 4029 if (err < 0) 4030 goto free_all; 4031 4032 sg_init_one(&src, a_public, vec->expected_a_public_size); 4033 sg_init_one(&dst, output_buf, out_len_max); 4034 kpp_request_set_input(req, &src, vec->expected_a_public_size); 4035 kpp_request_set_output(req, &dst, out_len_max); 4036 kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 4037 crypto_req_done, &wait); 4038 err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), 4039 &wait); 4040 if (err) { 4041 pr_err("alg: %s: Party B: compute shared secret failed. err %d\n", 4042 alg, err); 4043 goto free_all; 4044 } 4045 4046 shared_secret = a_ss; 4047 } else { 4048 shared_secret = (void *)vec->expected_ss; 4049 } 4050 4051 /* 4052 * verify shared secret from which the user will derive 4053 * secret key by executing whatever hash it has chosen 4054 */ 4055 if (memcmp(shared_secret, sg_virt(req->dst), 4056 vec->expected_ss_size)) { 4057 pr_err("alg: %s: compute shared secret test failed. Invalid output\n", 4058 alg); 4059 err = -EINVAL; 4060 } 4061 4062 free_all: 4063 kfree(a_ss); 4064 kfree(input_buf); 4065 free_output: 4066 kfree(a_public); 4067 kfree(output_buf); 4068 free_req: 4069 kpp_request_free(req); 4070 return err; 4071 } 4072 4073 static int test_kpp(struct crypto_kpp *tfm, const char *alg, 4074 const struct kpp_testvec *vecs, unsigned int tcount) 4075 { 4076 int ret, i; 4077 4078 for (i = 0; i < tcount; i++) { 4079 ret = do_test_kpp(tfm, vecs++, alg); 4080 if (ret) { 4081 pr_err("alg: %s: test failed on vector %d, err=%d\n", 4082 alg, i + 1, ret); 4083 return ret; 4084 } 4085 } 4086 return 0; 4087 } 4088 4089 static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver, 4090 u32 type, u32 mask) 4091 { 4092 struct crypto_kpp *tfm; 4093 int err = 0; 4094 4095 tfm = crypto_alloc_kpp(driver, type, mask); 4096 if (IS_ERR(tfm)) { 4097 if (PTR_ERR(tfm) == -ENOENT) 4098 return -ENOENT; 4099 pr_err("alg: kpp: Failed to load tfm for %s: %ld\n", 4100 driver, PTR_ERR(tfm)); 4101 return PTR_ERR(tfm); 4102 } 4103 if (desc->suite.kpp.vecs) 4104 err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs, 4105 desc->suite.kpp.count); 4106 4107 crypto_free_kpp(tfm); 4108 return err; 4109 } 4110 4111 static u8 *test_pack_u32(u8 *dst, u32 val) 4112 { 4113 memcpy(dst, &val, sizeof(val)); 4114 return dst + sizeof(val); 4115 } 4116 4117 static int test_akcipher_one(struct crypto_akcipher *tfm, 4118 const struct akcipher_testvec *vecs) 4119 { 4120 char *xbuf[XBUFSIZE]; 4121 struct akcipher_request *req; 4122 void *outbuf_enc = NULL; 4123 void *outbuf_dec = NULL; 4124 struct crypto_wait wait; 4125 unsigned int out_len_max, out_len = 0; 4126 int err = -ENOMEM; 4127 struct scatterlist src, dst, src_tab[3]; 4128 const char *m, *c; 4129 unsigned int m_size, c_size; 4130 const char *op; 4131 u8 *key, *ptr; 4132 4133 if (testmgr_alloc_buf(xbuf)) 4134 return err; 4135 4136 req = akcipher_request_alloc(tfm, GFP_KERNEL); 4137 if (!req) 4138 goto free_xbuf; 4139 4140 crypto_init_wait(&wait); 4141 4142 key = kmalloc(vecs->key_len + sizeof(u32) * 2 + vecs->param_len, 4143 GFP_KERNEL); 4144 if (!key) 4145 goto free_req; 4146 memcpy(key, vecs->key, vecs->key_len); 4147 ptr = key + vecs->key_len; 4148 ptr = test_pack_u32(ptr, vecs->algo); 4149 ptr = test_pack_u32(ptr, vecs->param_len); 4150 memcpy(ptr, vecs->params, vecs->param_len); 4151 4152 if (vecs->public_key_vec) 4153 err = crypto_akcipher_set_pub_key(tfm, key, vecs->key_len); 4154 else 4155 err = crypto_akcipher_set_priv_key(tfm, key, vecs->key_len); 4156 if (err) 4157 goto free_key; 4158 4159 /* 4160 * First run test which do not require a private key, such as 4161 * encrypt or verify. 4162 */ 4163 err = -ENOMEM; 4164 out_len_max = crypto_akcipher_maxsize(tfm); 4165 outbuf_enc = kzalloc(out_len_max, GFP_KERNEL); 4166 if (!outbuf_enc) 4167 goto free_key; 4168 4169 if (!vecs->siggen_sigver_test) { 4170 m = vecs->m; 4171 m_size = vecs->m_size; 4172 c = vecs->c; 4173 c_size = vecs->c_size; 4174 op = "encrypt"; 4175 } else { 4176 /* Swap args so we could keep plaintext (digest) 4177 * in vecs->m, and cooked signature in vecs->c. 4178 */ 4179 m = vecs->c; /* signature */ 4180 m_size = vecs->c_size; 4181 c = vecs->m; /* digest */ 4182 c_size = vecs->m_size; 4183 op = "verify"; 4184 } 4185 4186 err = -E2BIG; 4187 if (WARN_ON(m_size > PAGE_SIZE)) 4188 goto free_all; 4189 memcpy(xbuf[0], m, m_size); 4190 4191 sg_init_table(src_tab, 3); 4192 sg_set_buf(&src_tab[0], xbuf[0], 8); 4193 sg_set_buf(&src_tab[1], xbuf[0] + 8, m_size - 8); 4194 if (vecs->siggen_sigver_test) { 4195 if (WARN_ON(c_size > PAGE_SIZE)) 4196 goto free_all; 4197 memcpy(xbuf[1], c, c_size); 4198 sg_set_buf(&src_tab[2], xbuf[1], c_size); 4199 akcipher_request_set_crypt(req, src_tab, NULL, m_size, c_size); 4200 } else { 4201 sg_init_one(&dst, outbuf_enc, out_len_max); 4202 akcipher_request_set_crypt(req, src_tab, &dst, m_size, 4203 out_len_max); 4204 } 4205 akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 4206 crypto_req_done, &wait); 4207 4208 err = crypto_wait_req(vecs->siggen_sigver_test ? 4209 /* Run asymmetric signature verification */ 4210 crypto_akcipher_verify(req) : 4211 /* Run asymmetric encrypt */ 4212 crypto_akcipher_encrypt(req), &wait); 4213 if (err) { 4214 pr_err("alg: akcipher: %s test failed. err %d\n", op, err); 4215 goto free_all; 4216 } 4217 if (!vecs->siggen_sigver_test && c) { 4218 if (req->dst_len != c_size) { 4219 pr_err("alg: akcipher: %s test failed. Invalid output len\n", 4220 op); 4221 err = -EINVAL; 4222 goto free_all; 4223 } 4224 /* verify that encrypted message is equal to expected */ 4225 if (memcmp(c, outbuf_enc, c_size) != 0) { 4226 pr_err("alg: akcipher: %s test failed. Invalid output\n", 4227 op); 4228 hexdump(outbuf_enc, c_size); 4229 err = -EINVAL; 4230 goto free_all; 4231 } 4232 } 4233 4234 /* 4235 * Don't invoke (decrypt or sign) test which require a private key 4236 * for vectors with only a public key. 4237 */ 4238 if (vecs->public_key_vec) { 4239 err = 0; 4240 goto free_all; 4241 } 4242 outbuf_dec = kzalloc(out_len_max, GFP_KERNEL); 4243 if (!outbuf_dec) { 4244 err = -ENOMEM; 4245 goto free_all; 4246 } 4247 4248 if (!vecs->siggen_sigver_test && !c) { 4249 c = outbuf_enc; 4250 c_size = req->dst_len; 4251 } 4252 4253 err = -E2BIG; 4254 op = vecs->siggen_sigver_test ? "sign" : "decrypt"; 4255 if (WARN_ON(c_size > PAGE_SIZE)) 4256 goto free_all; 4257 memcpy(xbuf[0], c, c_size); 4258 4259 sg_init_one(&src, xbuf[0], c_size); 4260 sg_init_one(&dst, outbuf_dec, out_len_max); 4261 crypto_init_wait(&wait); 4262 akcipher_request_set_crypt(req, &src, &dst, c_size, out_len_max); 4263 4264 err = crypto_wait_req(vecs->siggen_sigver_test ? 4265 /* Run asymmetric signature generation */ 4266 crypto_akcipher_sign(req) : 4267 /* Run asymmetric decrypt */ 4268 crypto_akcipher_decrypt(req), &wait); 4269 if (err) { 4270 pr_err("alg: akcipher: %s test failed. err %d\n", op, err); 4271 goto free_all; 4272 } 4273 out_len = req->dst_len; 4274 if (out_len < m_size) { 4275 pr_err("alg: akcipher: %s test failed. Invalid output len %u\n", 4276 op, out_len); 4277 err = -EINVAL; 4278 goto free_all; 4279 } 4280 /* verify that decrypted message is equal to the original msg */ 4281 if (memchr_inv(outbuf_dec, 0, out_len - m_size) || 4282 memcmp(m, outbuf_dec + out_len - m_size, m_size)) { 4283 pr_err("alg: akcipher: %s test failed. Invalid output\n", op); 4284 hexdump(outbuf_dec, out_len); 4285 err = -EINVAL; 4286 } 4287 free_all: 4288 kfree(outbuf_dec); 4289 kfree(outbuf_enc); 4290 free_key: 4291 kfree(key); 4292 free_req: 4293 akcipher_request_free(req); 4294 free_xbuf: 4295 testmgr_free_buf(xbuf); 4296 return err; 4297 } 4298 4299 static int test_akcipher(struct crypto_akcipher *tfm, const char *alg, 4300 const struct akcipher_testvec *vecs, 4301 unsigned int tcount) 4302 { 4303 const char *algo = 4304 crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm)); 4305 int ret, i; 4306 4307 for (i = 0; i < tcount; i++) { 4308 ret = test_akcipher_one(tfm, vecs++); 4309 if (!ret) 4310 continue; 4311 4312 pr_err("alg: akcipher: test %d failed for %s, err=%d\n", 4313 i + 1, algo, ret); 4314 return ret; 4315 } 4316 return 0; 4317 } 4318 4319 static int alg_test_akcipher(const struct alg_test_desc *desc, 4320 const char *driver, u32 type, u32 mask) 4321 { 4322 struct crypto_akcipher *tfm; 4323 int err = 0; 4324 4325 tfm = crypto_alloc_akcipher(driver, type, mask); 4326 if (IS_ERR(tfm)) { 4327 if (PTR_ERR(tfm) == -ENOENT) 4328 return -ENOENT; 4329 pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n", 4330 driver, PTR_ERR(tfm)); 4331 return PTR_ERR(tfm); 4332 } 4333 if (desc->suite.akcipher.vecs) 4334 err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs, 4335 desc->suite.akcipher.count); 4336 4337 crypto_free_akcipher(tfm); 4338 return err; 4339 } 4340 4341 static int alg_test_null(const struct alg_test_desc *desc, 4342 const char *driver, u32 type, u32 mask) 4343 { 4344 return 0; 4345 } 4346 4347 #define ____VECS(tv) .vecs = tv, .count = ARRAY_SIZE(tv) 4348 #define __VECS(tv) { ____VECS(tv) } 4349 4350 /* Please keep this list sorted by algorithm name. */ 4351 static const struct alg_test_desc alg_test_descs[] = { 4352 { 4353 .alg = "adiantum(xchacha12,aes)", 4354 .generic_driver = "adiantum(xchacha12-generic,aes-generic,nhpoly1305-generic)", 4355 .test = alg_test_skcipher, 4356 .suite = { 4357 .cipher = __VECS(adiantum_xchacha12_aes_tv_template) 4358 }, 4359 }, { 4360 .alg = "adiantum(xchacha20,aes)", 4361 .generic_driver = "adiantum(xchacha20-generic,aes-generic,nhpoly1305-generic)", 4362 .test = alg_test_skcipher, 4363 .suite = { 4364 .cipher = __VECS(adiantum_xchacha20_aes_tv_template) 4365 }, 4366 }, { 4367 .alg = "aegis128", 4368 .test = alg_test_aead, 4369 .suite = { 4370 .aead = __VECS(aegis128_tv_template) 4371 } 4372 }, { 4373 .alg = "ansi_cprng", 4374 .test = alg_test_cprng, 4375 .suite = { 4376 .cprng = __VECS(ansi_cprng_aes_tv_template) 4377 } 4378 }, { 4379 .alg = "authenc(hmac(md5),ecb(cipher_null))", 4380 .test = alg_test_aead, 4381 .suite = { 4382 .aead = __VECS(hmac_md5_ecb_cipher_null_tv_template) 4383 } 4384 }, { 4385 .alg = "authenc(hmac(sha1),cbc(aes))", 4386 .test = alg_test_aead, 4387 .fips_allowed = 1, 4388 .suite = { 4389 .aead = __VECS(hmac_sha1_aes_cbc_tv_temp) 4390 } 4391 }, { 4392 .alg = "authenc(hmac(sha1),cbc(des))", 4393 .test = alg_test_aead, 4394 .suite = { 4395 .aead = __VECS(hmac_sha1_des_cbc_tv_temp) 4396 } 4397 }, { 4398 .alg = "authenc(hmac(sha1),cbc(des3_ede))", 4399 .test = alg_test_aead, 4400 .suite = { 4401 .aead = __VECS(hmac_sha1_des3_ede_cbc_tv_temp) 4402 } 4403 }, { 4404 .alg = "authenc(hmac(sha1),ctr(aes))", 4405 .test = alg_test_null, 4406 .fips_allowed = 1, 4407 }, { 4408 .alg = "authenc(hmac(sha1),ecb(cipher_null))", 4409 .test = alg_test_aead, 4410 .suite = { 4411 .aead = __VECS(hmac_sha1_ecb_cipher_null_tv_temp) 4412 } 4413 }, { 4414 .alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))", 4415 .test = alg_test_null, 4416 .fips_allowed = 1, 4417 }, { 4418 .alg = "authenc(hmac(sha224),cbc(des))", 4419 .test = alg_test_aead, 4420 .suite = { 4421 .aead = __VECS(hmac_sha224_des_cbc_tv_temp) 4422 } 4423 }, { 4424 .alg = "authenc(hmac(sha224),cbc(des3_ede))", 4425 .test = alg_test_aead, 4426 .suite = { 4427 .aead = __VECS(hmac_sha224_des3_ede_cbc_tv_temp) 4428 } 4429 }, { 4430 .alg = "authenc(hmac(sha256),cbc(aes))", 4431 .test = alg_test_aead, 4432 .fips_allowed = 1, 4433 .suite = { 4434 .aead = __VECS(hmac_sha256_aes_cbc_tv_temp) 4435 } 4436 }, { 4437 .alg = "authenc(hmac(sha256),cbc(des))", 4438 .test = alg_test_aead, 4439 .suite = { 4440 .aead = __VECS(hmac_sha256_des_cbc_tv_temp) 4441 } 4442 }, { 4443 .alg = "authenc(hmac(sha256),cbc(des3_ede))", 4444 .test = alg_test_aead, 4445 .suite = { 4446 .aead = __VECS(hmac_sha256_des3_ede_cbc_tv_temp) 4447 } 4448 }, { 4449 .alg = "authenc(hmac(sha256),ctr(aes))", 4450 .test = alg_test_null, 4451 .fips_allowed = 1, 4452 }, { 4453 .alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))", 4454 .test = alg_test_null, 4455 .fips_allowed = 1, 4456 }, { 4457 .alg = "authenc(hmac(sha384),cbc(des))", 4458 .test = alg_test_aead, 4459 .suite = { 4460 .aead = __VECS(hmac_sha384_des_cbc_tv_temp) 4461 } 4462 }, { 4463 .alg = "authenc(hmac(sha384),cbc(des3_ede))", 4464 .test = alg_test_aead, 4465 .suite = { 4466 .aead = __VECS(hmac_sha384_des3_ede_cbc_tv_temp) 4467 } 4468 }, { 4469 .alg = "authenc(hmac(sha384),ctr(aes))", 4470 .test = alg_test_null, 4471 .fips_allowed = 1, 4472 }, { 4473 .alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))", 4474 .test = alg_test_null, 4475 .fips_allowed = 1, 4476 }, { 4477 .alg = "authenc(hmac(sha512),cbc(aes))", 4478 .fips_allowed = 1, 4479 .test = alg_test_aead, 4480 .suite = { 4481 .aead = __VECS(hmac_sha512_aes_cbc_tv_temp) 4482 } 4483 }, { 4484 .alg = "authenc(hmac(sha512),cbc(des))", 4485 .test = alg_test_aead, 4486 .suite = { 4487 .aead = __VECS(hmac_sha512_des_cbc_tv_temp) 4488 } 4489 }, { 4490 .alg = "authenc(hmac(sha512),cbc(des3_ede))", 4491 .test = alg_test_aead, 4492 .suite = { 4493 .aead = __VECS(hmac_sha512_des3_ede_cbc_tv_temp) 4494 } 4495 }, { 4496 .alg = "authenc(hmac(sha512),ctr(aes))", 4497 .test = alg_test_null, 4498 .fips_allowed = 1, 4499 }, { 4500 .alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))", 4501 .test = alg_test_null, 4502 .fips_allowed = 1, 4503 }, { 4504 .alg = "blake2b-160", 4505 .test = alg_test_hash, 4506 .fips_allowed = 0, 4507 .suite = { 4508 .hash = __VECS(blake2b_160_tv_template) 4509 } 4510 }, { 4511 .alg = "blake2b-256", 4512 .test = alg_test_hash, 4513 .fips_allowed = 0, 4514 .suite = { 4515 .hash = __VECS(blake2b_256_tv_template) 4516 } 4517 }, { 4518 .alg = "blake2b-384", 4519 .test = alg_test_hash, 4520 .fips_allowed = 0, 4521 .suite = { 4522 .hash = __VECS(blake2b_384_tv_template) 4523 } 4524 }, { 4525 .alg = "blake2b-512", 4526 .test = alg_test_hash, 4527 .fips_allowed = 0, 4528 .suite = { 4529 .hash = __VECS(blake2b_512_tv_template) 4530 } 4531 }, { 4532 .alg = "cbc(aes)", 4533 .test = alg_test_skcipher, 4534 .fips_allowed = 1, 4535 .suite = { 4536 .cipher = __VECS(aes_cbc_tv_template) 4537 }, 4538 }, { 4539 .alg = "cbc(anubis)", 4540 .test = alg_test_skcipher, 4541 .suite = { 4542 .cipher = __VECS(anubis_cbc_tv_template) 4543 }, 4544 }, { 4545 .alg = "cbc(aria)", 4546 .test = alg_test_skcipher, 4547 .suite = { 4548 .cipher = __VECS(aria_cbc_tv_template) 4549 }, 4550 }, { 4551 .alg = "cbc(blowfish)", 4552 .test = alg_test_skcipher, 4553 .suite = { 4554 .cipher = __VECS(bf_cbc_tv_template) 4555 }, 4556 }, { 4557 .alg = "cbc(camellia)", 4558 .test = alg_test_skcipher, 4559 .suite = { 4560 .cipher = __VECS(camellia_cbc_tv_template) 4561 }, 4562 }, { 4563 .alg = "cbc(cast5)", 4564 .test = alg_test_skcipher, 4565 .suite = { 4566 .cipher = __VECS(cast5_cbc_tv_template) 4567 }, 4568 }, { 4569 .alg = "cbc(cast6)", 4570 .test = alg_test_skcipher, 4571 .suite = { 4572 .cipher = __VECS(cast6_cbc_tv_template) 4573 }, 4574 }, { 4575 .alg = "cbc(des)", 4576 .test = alg_test_skcipher, 4577 .suite = { 4578 .cipher = __VECS(des_cbc_tv_template) 4579 }, 4580 }, { 4581 .alg = "cbc(des3_ede)", 4582 .test = alg_test_skcipher, 4583 .suite = { 4584 .cipher = __VECS(des3_ede_cbc_tv_template) 4585 }, 4586 }, { 4587 /* Same as cbc(aes) except the key is stored in 4588 * hardware secure memory which we reference by index 4589 */ 4590 .alg = "cbc(paes)", 4591 .test = alg_test_null, 4592 .fips_allowed = 1, 4593 }, { 4594 /* Same as cbc(sm4) except the key is stored in 4595 * hardware secure memory which we reference by index 4596 */ 4597 .alg = "cbc(psm4)", 4598 .test = alg_test_null, 4599 }, { 4600 .alg = "cbc(serpent)", 4601 .test = alg_test_skcipher, 4602 .suite = { 4603 .cipher = __VECS(serpent_cbc_tv_template) 4604 }, 4605 }, { 4606 .alg = "cbc(sm4)", 4607 .test = alg_test_skcipher, 4608 .suite = { 4609 .cipher = __VECS(sm4_cbc_tv_template) 4610 } 4611 }, { 4612 .alg = "cbc(twofish)", 4613 .test = alg_test_skcipher, 4614 .suite = { 4615 .cipher = __VECS(tf_cbc_tv_template) 4616 }, 4617 }, { 4618 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4619 .alg = "cbc-paes-s390", 4620 .fips_allowed = 1, 4621 .test = alg_test_skcipher, 4622 .suite = { 4623 .cipher = __VECS(aes_cbc_tv_template) 4624 } 4625 }, { 4626 #endif 4627 .alg = "cbcmac(aes)", 4628 .test = alg_test_hash, 4629 .suite = { 4630 .hash = __VECS(aes_cbcmac_tv_template) 4631 } 4632 }, { 4633 .alg = "cbcmac(sm4)", 4634 .test = alg_test_hash, 4635 .suite = { 4636 .hash = __VECS(sm4_cbcmac_tv_template) 4637 } 4638 }, { 4639 .alg = "ccm(aes)", 4640 .generic_driver = "ccm_base(ctr(aes-generic),cbcmac(aes-generic))", 4641 .test = alg_test_aead, 4642 .fips_allowed = 1, 4643 .suite = { 4644 .aead = { 4645 ____VECS(aes_ccm_tv_template), 4646 .einval_allowed = 1, 4647 } 4648 } 4649 }, { 4650 .alg = "ccm(sm4)", 4651 .generic_driver = "ccm_base(ctr(sm4-generic),cbcmac(sm4-generic))", 4652 .test = alg_test_aead, 4653 .suite = { 4654 .aead = { 4655 ____VECS(sm4_ccm_tv_template), 4656 .einval_allowed = 1, 4657 } 4658 } 4659 }, { 4660 .alg = "chacha20", 4661 .test = alg_test_skcipher, 4662 .suite = { 4663 .cipher = __VECS(chacha20_tv_template) 4664 }, 4665 }, { 4666 .alg = "cmac(aes)", 4667 .fips_allowed = 1, 4668 .test = alg_test_hash, 4669 .suite = { 4670 .hash = __VECS(aes_cmac128_tv_template) 4671 } 4672 }, { 4673 .alg = "cmac(camellia)", 4674 .test = alg_test_hash, 4675 .suite = { 4676 .hash = __VECS(camellia_cmac128_tv_template) 4677 } 4678 }, { 4679 .alg = "cmac(des3_ede)", 4680 .test = alg_test_hash, 4681 .suite = { 4682 .hash = __VECS(des3_ede_cmac64_tv_template) 4683 } 4684 }, { 4685 .alg = "cmac(sm4)", 4686 .test = alg_test_hash, 4687 .suite = { 4688 .hash = __VECS(sm4_cmac128_tv_template) 4689 } 4690 }, { 4691 .alg = "compress_null", 4692 .test = alg_test_null, 4693 }, { 4694 .alg = "crc32", 4695 .test = alg_test_hash, 4696 .fips_allowed = 1, 4697 .suite = { 4698 .hash = __VECS(crc32_tv_template) 4699 } 4700 }, { 4701 .alg = "crc32c", 4702 .test = alg_test_crc32c, 4703 .fips_allowed = 1, 4704 .suite = { 4705 .hash = __VECS(crc32c_tv_template) 4706 } 4707 }, { 4708 .alg = "crc64-rocksoft", 4709 .test = alg_test_hash, 4710 .fips_allowed = 1, 4711 .suite = { 4712 .hash = __VECS(crc64_rocksoft_tv_template) 4713 } 4714 }, { 4715 .alg = "crct10dif", 4716 .test = alg_test_hash, 4717 .fips_allowed = 1, 4718 .suite = { 4719 .hash = __VECS(crct10dif_tv_template) 4720 } 4721 }, { 4722 .alg = "ctr(aes)", 4723 .test = alg_test_skcipher, 4724 .fips_allowed = 1, 4725 .suite = { 4726 .cipher = __VECS(aes_ctr_tv_template) 4727 } 4728 }, { 4729 .alg = "ctr(aria)", 4730 .test = alg_test_skcipher, 4731 .suite = { 4732 .cipher = __VECS(aria_ctr_tv_template) 4733 } 4734 }, { 4735 .alg = "ctr(blowfish)", 4736 .test = alg_test_skcipher, 4737 .suite = { 4738 .cipher = __VECS(bf_ctr_tv_template) 4739 } 4740 }, { 4741 .alg = "ctr(camellia)", 4742 .test = alg_test_skcipher, 4743 .suite = { 4744 .cipher = __VECS(camellia_ctr_tv_template) 4745 } 4746 }, { 4747 .alg = "ctr(cast5)", 4748 .test = alg_test_skcipher, 4749 .suite = { 4750 .cipher = __VECS(cast5_ctr_tv_template) 4751 } 4752 }, { 4753 .alg = "ctr(cast6)", 4754 .test = alg_test_skcipher, 4755 .suite = { 4756 .cipher = __VECS(cast6_ctr_tv_template) 4757 } 4758 }, { 4759 .alg = "ctr(des)", 4760 .test = alg_test_skcipher, 4761 .suite = { 4762 .cipher = __VECS(des_ctr_tv_template) 4763 } 4764 }, { 4765 .alg = "ctr(des3_ede)", 4766 .test = alg_test_skcipher, 4767 .suite = { 4768 .cipher = __VECS(des3_ede_ctr_tv_template) 4769 } 4770 }, { 4771 /* Same as ctr(aes) except the key is stored in 4772 * hardware secure memory which we reference by index 4773 */ 4774 .alg = "ctr(paes)", 4775 .test = alg_test_null, 4776 .fips_allowed = 1, 4777 }, { 4778 4779 /* Same as ctr(sm4) except the key is stored in 4780 * hardware secure memory which we reference by index 4781 */ 4782 .alg = "ctr(psm4)", 4783 .test = alg_test_null, 4784 }, { 4785 .alg = "ctr(serpent)", 4786 .test = alg_test_skcipher, 4787 .suite = { 4788 .cipher = __VECS(serpent_ctr_tv_template) 4789 } 4790 }, { 4791 .alg = "ctr(sm4)", 4792 .test = alg_test_skcipher, 4793 .suite = { 4794 .cipher = __VECS(sm4_ctr_tv_template) 4795 } 4796 }, { 4797 .alg = "ctr(twofish)", 4798 .test = alg_test_skcipher, 4799 .suite = { 4800 .cipher = __VECS(tf_ctr_tv_template) 4801 } 4802 }, { 4803 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 4804 .alg = "ctr-paes-s390", 4805 .fips_allowed = 1, 4806 .test = alg_test_skcipher, 4807 .suite = { 4808 .cipher = __VECS(aes_ctr_tv_template) 4809 } 4810 }, { 4811 #endif 4812 .alg = "cts(cbc(aes))", 4813 .test = alg_test_skcipher, 4814 .fips_allowed = 1, 4815 .suite = { 4816 .cipher = __VECS(cts_mode_tv_template) 4817 } 4818 }, { 4819 /* Same as cts(cbc((aes)) except the key is stored in 4820 * hardware secure memory which we reference by index 4821 */ 4822 .alg = "cts(cbc(paes))", 4823 .test = alg_test_null, 4824 .fips_allowed = 1, 4825 }, { 4826 .alg = "cts(cbc(sm4))", 4827 .test = alg_test_skcipher, 4828 .suite = { 4829 .cipher = __VECS(sm4_cts_tv_template) 4830 } 4831 }, { 4832 .alg = "curve25519", 4833 .test = alg_test_kpp, 4834 .suite = { 4835 .kpp = __VECS(curve25519_tv_template) 4836 } 4837 }, { 4838 .alg = "deflate", 4839 .test = alg_test_comp, 4840 .fips_allowed = 1, 4841 .suite = { 4842 .comp = { 4843 .comp = __VECS(deflate_comp_tv_template), 4844 .decomp = __VECS(deflate_decomp_tv_template) 4845 } 4846 } 4847 }, { 4848 .alg = "deflate-iaa", 4849 .test = alg_test_comp, 4850 .fips_allowed = 1, 4851 .suite = { 4852 .comp = { 4853 .comp = __VECS(deflate_comp_tv_template), 4854 .decomp = __VECS(deflate_decomp_tv_template) 4855 } 4856 } 4857 }, { 4858 .alg = "dh", 4859 .test = alg_test_kpp, 4860 .suite = { 4861 .kpp = __VECS(dh_tv_template) 4862 } 4863 }, { 4864 .alg = "digest_null", 4865 .test = alg_test_null, 4866 }, { 4867 .alg = "drbg_nopr_ctr_aes128", 4868 .test = alg_test_drbg, 4869 .fips_allowed = 1, 4870 .suite = { 4871 .drbg = __VECS(drbg_nopr_ctr_aes128_tv_template) 4872 } 4873 }, { 4874 .alg = "drbg_nopr_ctr_aes192", 4875 .test = alg_test_drbg, 4876 .fips_allowed = 1, 4877 .suite = { 4878 .drbg = __VECS(drbg_nopr_ctr_aes192_tv_template) 4879 } 4880 }, { 4881 .alg = "drbg_nopr_ctr_aes256", 4882 .test = alg_test_drbg, 4883 .fips_allowed = 1, 4884 .suite = { 4885 .drbg = __VECS(drbg_nopr_ctr_aes256_tv_template) 4886 } 4887 }, { 4888 .alg = "drbg_nopr_hmac_sha256", 4889 .test = alg_test_drbg, 4890 .fips_allowed = 1, 4891 .suite = { 4892 .drbg = __VECS(drbg_nopr_hmac_sha256_tv_template) 4893 } 4894 }, { 4895 /* 4896 * There is no need to specifically test the DRBG with every 4897 * backend cipher -- covered by drbg_nopr_hmac_sha512 test 4898 */ 4899 .alg = "drbg_nopr_hmac_sha384", 4900 .test = alg_test_null, 4901 }, { 4902 .alg = "drbg_nopr_hmac_sha512", 4903 .test = alg_test_drbg, 4904 .fips_allowed = 1, 4905 .suite = { 4906 .drbg = __VECS(drbg_nopr_hmac_sha512_tv_template) 4907 } 4908 }, { 4909 .alg = "drbg_nopr_sha256", 4910 .test = alg_test_drbg, 4911 .fips_allowed = 1, 4912 .suite = { 4913 .drbg = __VECS(drbg_nopr_sha256_tv_template) 4914 } 4915 }, { 4916 /* covered by drbg_nopr_sha256 test */ 4917 .alg = "drbg_nopr_sha384", 4918 .test = alg_test_null, 4919 }, { 4920 .alg = "drbg_nopr_sha512", 4921 .fips_allowed = 1, 4922 .test = alg_test_null, 4923 }, { 4924 .alg = "drbg_pr_ctr_aes128", 4925 .test = alg_test_drbg, 4926 .fips_allowed = 1, 4927 .suite = { 4928 .drbg = __VECS(drbg_pr_ctr_aes128_tv_template) 4929 } 4930 }, { 4931 /* covered by drbg_pr_ctr_aes128 test */ 4932 .alg = "drbg_pr_ctr_aes192", 4933 .fips_allowed = 1, 4934 .test = alg_test_null, 4935 }, { 4936 .alg = "drbg_pr_ctr_aes256", 4937 .fips_allowed = 1, 4938 .test = alg_test_null, 4939 }, { 4940 .alg = "drbg_pr_hmac_sha256", 4941 .test = alg_test_drbg, 4942 .fips_allowed = 1, 4943 .suite = { 4944 .drbg = __VECS(drbg_pr_hmac_sha256_tv_template) 4945 } 4946 }, { 4947 /* covered by drbg_pr_hmac_sha256 test */ 4948 .alg = "drbg_pr_hmac_sha384", 4949 .test = alg_test_null, 4950 }, { 4951 .alg = "drbg_pr_hmac_sha512", 4952 .test = alg_test_null, 4953 .fips_allowed = 1, 4954 }, { 4955 .alg = "drbg_pr_sha256", 4956 .test = alg_test_drbg, 4957 .fips_allowed = 1, 4958 .suite = { 4959 .drbg = __VECS(drbg_pr_sha256_tv_template) 4960 } 4961 }, { 4962 /* covered by drbg_pr_sha256 test */ 4963 .alg = "drbg_pr_sha384", 4964 .test = alg_test_null, 4965 }, { 4966 .alg = "drbg_pr_sha512", 4967 .fips_allowed = 1, 4968 .test = alg_test_null, 4969 }, { 4970 .alg = "ecb(aes)", 4971 .test = alg_test_skcipher, 4972 .fips_allowed = 1, 4973 .suite = { 4974 .cipher = __VECS(aes_tv_template) 4975 } 4976 }, { 4977 .alg = "ecb(anubis)", 4978 .test = alg_test_skcipher, 4979 .suite = { 4980 .cipher = __VECS(anubis_tv_template) 4981 } 4982 }, { 4983 .alg = "ecb(arc4)", 4984 .generic_driver = "arc4-generic", 4985 .test = alg_test_skcipher, 4986 .suite = { 4987 .cipher = __VECS(arc4_tv_template) 4988 } 4989 }, { 4990 .alg = "ecb(aria)", 4991 .test = alg_test_skcipher, 4992 .suite = { 4993 .cipher = __VECS(aria_tv_template) 4994 } 4995 }, { 4996 .alg = "ecb(blowfish)", 4997 .test = alg_test_skcipher, 4998 .suite = { 4999 .cipher = __VECS(bf_tv_template) 5000 } 5001 }, { 5002 .alg = "ecb(camellia)", 5003 .test = alg_test_skcipher, 5004 .suite = { 5005 .cipher = __VECS(camellia_tv_template) 5006 } 5007 }, { 5008 .alg = "ecb(cast5)", 5009 .test = alg_test_skcipher, 5010 .suite = { 5011 .cipher = __VECS(cast5_tv_template) 5012 } 5013 }, { 5014 .alg = "ecb(cast6)", 5015 .test = alg_test_skcipher, 5016 .suite = { 5017 .cipher = __VECS(cast6_tv_template) 5018 } 5019 }, { 5020 .alg = "ecb(cipher_null)", 5021 .test = alg_test_null, 5022 .fips_allowed = 1, 5023 }, { 5024 .alg = "ecb(des)", 5025 .test = alg_test_skcipher, 5026 .suite = { 5027 .cipher = __VECS(des_tv_template) 5028 } 5029 }, { 5030 .alg = "ecb(des3_ede)", 5031 .test = alg_test_skcipher, 5032 .suite = { 5033 .cipher = __VECS(des3_ede_tv_template) 5034 } 5035 }, { 5036 .alg = "ecb(fcrypt)", 5037 .test = alg_test_skcipher, 5038 .suite = { 5039 .cipher = { 5040 .vecs = fcrypt_pcbc_tv_template, 5041 .count = 1 5042 } 5043 } 5044 }, { 5045 .alg = "ecb(khazad)", 5046 .test = alg_test_skcipher, 5047 .suite = { 5048 .cipher = __VECS(khazad_tv_template) 5049 } 5050 }, { 5051 /* Same as ecb(aes) except the key is stored in 5052 * hardware secure memory which we reference by index 5053 */ 5054 .alg = "ecb(paes)", 5055 .test = alg_test_null, 5056 .fips_allowed = 1, 5057 }, { 5058 .alg = "ecb(seed)", 5059 .test = alg_test_skcipher, 5060 .suite = { 5061 .cipher = __VECS(seed_tv_template) 5062 } 5063 }, { 5064 .alg = "ecb(serpent)", 5065 .test = alg_test_skcipher, 5066 .suite = { 5067 .cipher = __VECS(serpent_tv_template) 5068 } 5069 }, { 5070 .alg = "ecb(sm4)", 5071 .test = alg_test_skcipher, 5072 .suite = { 5073 .cipher = __VECS(sm4_tv_template) 5074 } 5075 }, { 5076 .alg = "ecb(tea)", 5077 .test = alg_test_skcipher, 5078 .suite = { 5079 .cipher = __VECS(tea_tv_template) 5080 } 5081 }, { 5082 .alg = "ecb(twofish)", 5083 .test = alg_test_skcipher, 5084 .suite = { 5085 .cipher = __VECS(tf_tv_template) 5086 } 5087 }, { 5088 .alg = "ecb(xeta)", 5089 .test = alg_test_skcipher, 5090 .suite = { 5091 .cipher = __VECS(xeta_tv_template) 5092 } 5093 }, { 5094 .alg = "ecb(xtea)", 5095 .test = alg_test_skcipher, 5096 .suite = { 5097 .cipher = __VECS(xtea_tv_template) 5098 } 5099 }, { 5100 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 5101 .alg = "ecb-paes-s390", 5102 .fips_allowed = 1, 5103 .test = alg_test_skcipher, 5104 .suite = { 5105 .cipher = __VECS(aes_tv_template) 5106 } 5107 }, { 5108 #endif 5109 .alg = "ecdh-nist-p192", 5110 .test = alg_test_kpp, 5111 .suite = { 5112 .kpp = __VECS(ecdh_p192_tv_template) 5113 } 5114 }, { 5115 .alg = "ecdh-nist-p256", 5116 .test = alg_test_kpp, 5117 .fips_allowed = 1, 5118 .suite = { 5119 .kpp = __VECS(ecdh_p256_tv_template) 5120 } 5121 }, { 5122 .alg = "ecdh-nist-p384", 5123 .test = alg_test_kpp, 5124 .fips_allowed = 1, 5125 .suite = { 5126 .kpp = __VECS(ecdh_p384_tv_template) 5127 } 5128 }, { 5129 .alg = "ecdsa-nist-p192", 5130 .test = alg_test_akcipher, 5131 .suite = { 5132 .akcipher = __VECS(ecdsa_nist_p192_tv_template) 5133 } 5134 }, { 5135 .alg = "ecdsa-nist-p256", 5136 .test = alg_test_akcipher, 5137 .fips_allowed = 1, 5138 .suite = { 5139 .akcipher = __VECS(ecdsa_nist_p256_tv_template) 5140 } 5141 }, { 5142 .alg = "ecdsa-nist-p384", 5143 .test = alg_test_akcipher, 5144 .fips_allowed = 1, 5145 .suite = { 5146 .akcipher = __VECS(ecdsa_nist_p384_tv_template) 5147 } 5148 }, { 5149 .alg = "ecdsa-nist-p521", 5150 .test = alg_test_akcipher, 5151 .fips_allowed = 1, 5152 .suite = { 5153 .akcipher = __VECS(ecdsa_nist_p521_tv_template) 5154 } 5155 }, { 5156 .alg = "ecrdsa", 5157 .test = alg_test_akcipher, 5158 .suite = { 5159 .akcipher = __VECS(ecrdsa_tv_template) 5160 } 5161 }, { 5162 .alg = "essiv(authenc(hmac(sha256),cbc(aes)),sha256)", 5163 .test = alg_test_aead, 5164 .fips_allowed = 1, 5165 .suite = { 5166 .aead = __VECS(essiv_hmac_sha256_aes_cbc_tv_temp) 5167 } 5168 }, { 5169 .alg = "essiv(cbc(aes),sha256)", 5170 .test = alg_test_skcipher, 5171 .fips_allowed = 1, 5172 .suite = { 5173 .cipher = __VECS(essiv_aes_cbc_tv_template) 5174 } 5175 }, { 5176 #if IS_ENABLED(CONFIG_CRYPTO_DH_RFC7919_GROUPS) 5177 .alg = "ffdhe2048(dh)", 5178 .test = alg_test_kpp, 5179 .fips_allowed = 1, 5180 .suite = { 5181 .kpp = __VECS(ffdhe2048_dh_tv_template) 5182 } 5183 }, { 5184 .alg = "ffdhe3072(dh)", 5185 .test = alg_test_kpp, 5186 .fips_allowed = 1, 5187 .suite = { 5188 .kpp = __VECS(ffdhe3072_dh_tv_template) 5189 } 5190 }, { 5191 .alg = "ffdhe4096(dh)", 5192 .test = alg_test_kpp, 5193 .fips_allowed = 1, 5194 .suite = { 5195 .kpp = __VECS(ffdhe4096_dh_tv_template) 5196 } 5197 }, { 5198 .alg = "ffdhe6144(dh)", 5199 .test = alg_test_kpp, 5200 .fips_allowed = 1, 5201 .suite = { 5202 .kpp = __VECS(ffdhe6144_dh_tv_template) 5203 } 5204 }, { 5205 .alg = "ffdhe8192(dh)", 5206 .test = alg_test_kpp, 5207 .fips_allowed = 1, 5208 .suite = { 5209 .kpp = __VECS(ffdhe8192_dh_tv_template) 5210 } 5211 }, { 5212 #endif /* CONFIG_CRYPTO_DH_RFC7919_GROUPS */ 5213 .alg = "gcm(aes)", 5214 .generic_driver = "gcm_base(ctr(aes-generic),ghash-generic)", 5215 .test = alg_test_aead, 5216 .fips_allowed = 1, 5217 .suite = { 5218 .aead = __VECS(aes_gcm_tv_template) 5219 } 5220 }, { 5221 .alg = "gcm(aria)", 5222 .generic_driver = "gcm_base(ctr(aria-generic),ghash-generic)", 5223 .test = alg_test_aead, 5224 .suite = { 5225 .aead = __VECS(aria_gcm_tv_template) 5226 } 5227 }, { 5228 .alg = "gcm(sm4)", 5229 .generic_driver = "gcm_base(ctr(sm4-generic),ghash-generic)", 5230 .test = alg_test_aead, 5231 .suite = { 5232 .aead = __VECS(sm4_gcm_tv_template) 5233 } 5234 }, { 5235 .alg = "ghash", 5236 .test = alg_test_hash, 5237 .suite = { 5238 .hash = __VECS(ghash_tv_template) 5239 } 5240 }, { 5241 .alg = "hctr2(aes)", 5242 .generic_driver = 5243 "hctr2_base(xctr(aes-generic),polyval-generic)", 5244 .test = alg_test_skcipher, 5245 .suite = { 5246 .cipher = __VECS(aes_hctr2_tv_template) 5247 } 5248 }, { 5249 .alg = "hmac(md5)", 5250 .test = alg_test_hash, 5251 .suite = { 5252 .hash = __VECS(hmac_md5_tv_template) 5253 } 5254 }, { 5255 .alg = "hmac(rmd160)", 5256 .test = alg_test_hash, 5257 .suite = { 5258 .hash = __VECS(hmac_rmd160_tv_template) 5259 } 5260 }, { 5261 .alg = "hmac(sha1)", 5262 .test = alg_test_hash, 5263 .fips_allowed = 1, 5264 .suite = { 5265 .hash = __VECS(hmac_sha1_tv_template) 5266 } 5267 }, { 5268 .alg = "hmac(sha224)", 5269 .test = alg_test_hash, 5270 .fips_allowed = 1, 5271 .suite = { 5272 .hash = __VECS(hmac_sha224_tv_template) 5273 } 5274 }, { 5275 .alg = "hmac(sha256)", 5276 .test = alg_test_hash, 5277 .fips_allowed = 1, 5278 .suite = { 5279 .hash = __VECS(hmac_sha256_tv_template) 5280 } 5281 }, { 5282 .alg = "hmac(sha3-224)", 5283 .test = alg_test_hash, 5284 .fips_allowed = 1, 5285 .suite = { 5286 .hash = __VECS(hmac_sha3_224_tv_template) 5287 } 5288 }, { 5289 .alg = "hmac(sha3-256)", 5290 .test = alg_test_hash, 5291 .fips_allowed = 1, 5292 .suite = { 5293 .hash = __VECS(hmac_sha3_256_tv_template) 5294 } 5295 }, { 5296 .alg = "hmac(sha3-384)", 5297 .test = alg_test_hash, 5298 .fips_allowed = 1, 5299 .suite = { 5300 .hash = __VECS(hmac_sha3_384_tv_template) 5301 } 5302 }, { 5303 .alg = "hmac(sha3-512)", 5304 .test = alg_test_hash, 5305 .fips_allowed = 1, 5306 .suite = { 5307 .hash = __VECS(hmac_sha3_512_tv_template) 5308 } 5309 }, { 5310 .alg = "hmac(sha384)", 5311 .test = alg_test_hash, 5312 .fips_allowed = 1, 5313 .suite = { 5314 .hash = __VECS(hmac_sha384_tv_template) 5315 } 5316 }, { 5317 .alg = "hmac(sha512)", 5318 .test = alg_test_hash, 5319 .fips_allowed = 1, 5320 .suite = { 5321 .hash = __VECS(hmac_sha512_tv_template) 5322 } 5323 }, { 5324 .alg = "hmac(sm3)", 5325 .test = alg_test_hash, 5326 .suite = { 5327 .hash = __VECS(hmac_sm3_tv_template) 5328 } 5329 }, { 5330 .alg = "hmac(streebog256)", 5331 .test = alg_test_hash, 5332 .suite = { 5333 .hash = __VECS(hmac_streebog256_tv_template) 5334 } 5335 }, { 5336 .alg = "hmac(streebog512)", 5337 .test = alg_test_hash, 5338 .suite = { 5339 .hash = __VECS(hmac_streebog512_tv_template) 5340 } 5341 }, { 5342 .alg = "jitterentropy_rng", 5343 .fips_allowed = 1, 5344 .test = alg_test_null, 5345 }, { 5346 .alg = "kw(aes)", 5347 .test = alg_test_skcipher, 5348 .fips_allowed = 1, 5349 .suite = { 5350 .cipher = __VECS(aes_kw_tv_template) 5351 } 5352 }, { 5353 .alg = "lrw(aes)", 5354 .generic_driver = "lrw(ecb(aes-generic))", 5355 .test = alg_test_skcipher, 5356 .suite = { 5357 .cipher = __VECS(aes_lrw_tv_template) 5358 } 5359 }, { 5360 .alg = "lrw(camellia)", 5361 .generic_driver = "lrw(ecb(camellia-generic))", 5362 .test = alg_test_skcipher, 5363 .suite = { 5364 .cipher = __VECS(camellia_lrw_tv_template) 5365 } 5366 }, { 5367 .alg = "lrw(cast6)", 5368 .generic_driver = "lrw(ecb(cast6-generic))", 5369 .test = alg_test_skcipher, 5370 .suite = { 5371 .cipher = __VECS(cast6_lrw_tv_template) 5372 } 5373 }, { 5374 .alg = "lrw(serpent)", 5375 .generic_driver = "lrw(ecb(serpent-generic))", 5376 .test = alg_test_skcipher, 5377 .suite = { 5378 .cipher = __VECS(serpent_lrw_tv_template) 5379 } 5380 }, { 5381 .alg = "lrw(twofish)", 5382 .generic_driver = "lrw(ecb(twofish-generic))", 5383 .test = alg_test_skcipher, 5384 .suite = { 5385 .cipher = __VECS(tf_lrw_tv_template) 5386 } 5387 }, { 5388 .alg = "lz4", 5389 .test = alg_test_comp, 5390 .fips_allowed = 1, 5391 .suite = { 5392 .comp = { 5393 .comp = __VECS(lz4_comp_tv_template), 5394 .decomp = __VECS(lz4_decomp_tv_template) 5395 } 5396 } 5397 }, { 5398 .alg = "lz4hc", 5399 .test = alg_test_comp, 5400 .fips_allowed = 1, 5401 .suite = { 5402 .comp = { 5403 .comp = __VECS(lz4hc_comp_tv_template), 5404 .decomp = __VECS(lz4hc_decomp_tv_template) 5405 } 5406 } 5407 }, { 5408 .alg = "lzo", 5409 .test = alg_test_comp, 5410 .fips_allowed = 1, 5411 .suite = { 5412 .comp = { 5413 .comp = __VECS(lzo_comp_tv_template), 5414 .decomp = __VECS(lzo_decomp_tv_template) 5415 } 5416 } 5417 }, { 5418 .alg = "lzo-rle", 5419 .test = alg_test_comp, 5420 .fips_allowed = 1, 5421 .suite = { 5422 .comp = { 5423 .comp = __VECS(lzorle_comp_tv_template), 5424 .decomp = __VECS(lzorle_decomp_tv_template) 5425 } 5426 } 5427 }, { 5428 .alg = "md4", 5429 .test = alg_test_hash, 5430 .suite = { 5431 .hash = __VECS(md4_tv_template) 5432 } 5433 }, { 5434 .alg = "md5", 5435 .test = alg_test_hash, 5436 .suite = { 5437 .hash = __VECS(md5_tv_template) 5438 } 5439 }, { 5440 .alg = "michael_mic", 5441 .test = alg_test_hash, 5442 .suite = { 5443 .hash = __VECS(michael_mic_tv_template) 5444 } 5445 }, { 5446 .alg = "nhpoly1305", 5447 .test = alg_test_hash, 5448 .suite = { 5449 .hash = __VECS(nhpoly1305_tv_template) 5450 } 5451 }, { 5452 .alg = "pcbc(fcrypt)", 5453 .test = alg_test_skcipher, 5454 .suite = { 5455 .cipher = __VECS(fcrypt_pcbc_tv_template) 5456 } 5457 }, { 5458 .alg = "pkcs1pad(rsa,sha224)", 5459 .test = alg_test_null, 5460 .fips_allowed = 1, 5461 }, { 5462 .alg = "pkcs1pad(rsa,sha256)", 5463 .test = alg_test_akcipher, 5464 .fips_allowed = 1, 5465 .suite = { 5466 .akcipher = __VECS(pkcs1pad_rsa_tv_template) 5467 } 5468 }, { 5469 .alg = "pkcs1pad(rsa,sha3-256)", 5470 .test = alg_test_null, 5471 .fips_allowed = 1, 5472 }, { 5473 .alg = "pkcs1pad(rsa,sha3-384)", 5474 .test = alg_test_null, 5475 .fips_allowed = 1, 5476 }, { 5477 .alg = "pkcs1pad(rsa,sha3-512)", 5478 .test = alg_test_null, 5479 .fips_allowed = 1, 5480 }, { 5481 .alg = "pkcs1pad(rsa,sha384)", 5482 .test = alg_test_null, 5483 .fips_allowed = 1, 5484 }, { 5485 .alg = "pkcs1pad(rsa,sha512)", 5486 .test = alg_test_null, 5487 .fips_allowed = 1, 5488 }, { 5489 .alg = "poly1305", 5490 .test = alg_test_hash, 5491 .suite = { 5492 .hash = __VECS(poly1305_tv_template) 5493 } 5494 }, { 5495 .alg = "polyval", 5496 .test = alg_test_hash, 5497 .suite = { 5498 .hash = __VECS(polyval_tv_template) 5499 } 5500 }, { 5501 .alg = "rfc3686(ctr(aes))", 5502 .test = alg_test_skcipher, 5503 .fips_allowed = 1, 5504 .suite = { 5505 .cipher = __VECS(aes_ctr_rfc3686_tv_template) 5506 } 5507 }, { 5508 .alg = "rfc3686(ctr(sm4))", 5509 .test = alg_test_skcipher, 5510 .suite = { 5511 .cipher = __VECS(sm4_ctr_rfc3686_tv_template) 5512 } 5513 }, { 5514 .alg = "rfc4106(gcm(aes))", 5515 .generic_driver = "rfc4106(gcm_base(ctr(aes-generic),ghash-generic))", 5516 .test = alg_test_aead, 5517 .fips_allowed = 1, 5518 .suite = { 5519 .aead = { 5520 ____VECS(aes_gcm_rfc4106_tv_template), 5521 .einval_allowed = 1, 5522 .aad_iv = 1, 5523 } 5524 } 5525 }, { 5526 .alg = "rfc4309(ccm(aes))", 5527 .generic_driver = "rfc4309(ccm_base(ctr(aes-generic),cbcmac(aes-generic)))", 5528 .test = alg_test_aead, 5529 .fips_allowed = 1, 5530 .suite = { 5531 .aead = { 5532 ____VECS(aes_ccm_rfc4309_tv_template), 5533 .einval_allowed = 1, 5534 .aad_iv = 1, 5535 } 5536 } 5537 }, { 5538 .alg = "rfc4543(gcm(aes))", 5539 .generic_driver = "rfc4543(gcm_base(ctr(aes-generic),ghash-generic))", 5540 .test = alg_test_aead, 5541 .suite = { 5542 .aead = { 5543 ____VECS(aes_gcm_rfc4543_tv_template), 5544 .einval_allowed = 1, 5545 .aad_iv = 1, 5546 } 5547 } 5548 }, { 5549 .alg = "rfc7539(chacha20,poly1305)", 5550 .test = alg_test_aead, 5551 .suite = { 5552 .aead = __VECS(rfc7539_tv_template) 5553 } 5554 }, { 5555 .alg = "rfc7539esp(chacha20,poly1305)", 5556 .test = alg_test_aead, 5557 .suite = { 5558 .aead = { 5559 ____VECS(rfc7539esp_tv_template), 5560 .einval_allowed = 1, 5561 .aad_iv = 1, 5562 } 5563 } 5564 }, { 5565 .alg = "rmd160", 5566 .test = alg_test_hash, 5567 .suite = { 5568 .hash = __VECS(rmd160_tv_template) 5569 } 5570 }, { 5571 .alg = "rsa", 5572 .test = alg_test_akcipher, 5573 .fips_allowed = 1, 5574 .suite = { 5575 .akcipher = __VECS(rsa_tv_template) 5576 } 5577 }, { 5578 .alg = "sha1", 5579 .test = alg_test_hash, 5580 .fips_allowed = 1, 5581 .suite = { 5582 .hash = __VECS(sha1_tv_template) 5583 } 5584 }, { 5585 .alg = "sha224", 5586 .test = alg_test_hash, 5587 .fips_allowed = 1, 5588 .suite = { 5589 .hash = __VECS(sha224_tv_template) 5590 } 5591 }, { 5592 .alg = "sha256", 5593 .test = alg_test_hash, 5594 .fips_allowed = 1, 5595 .suite = { 5596 .hash = __VECS(sha256_tv_template) 5597 } 5598 }, { 5599 .alg = "sha3-224", 5600 .test = alg_test_hash, 5601 .fips_allowed = 1, 5602 .suite = { 5603 .hash = __VECS(sha3_224_tv_template) 5604 } 5605 }, { 5606 .alg = "sha3-256", 5607 .test = alg_test_hash, 5608 .fips_allowed = 1, 5609 .suite = { 5610 .hash = __VECS(sha3_256_tv_template) 5611 } 5612 }, { 5613 .alg = "sha3-384", 5614 .test = alg_test_hash, 5615 .fips_allowed = 1, 5616 .suite = { 5617 .hash = __VECS(sha3_384_tv_template) 5618 } 5619 }, { 5620 .alg = "sha3-512", 5621 .test = alg_test_hash, 5622 .fips_allowed = 1, 5623 .suite = { 5624 .hash = __VECS(sha3_512_tv_template) 5625 } 5626 }, { 5627 .alg = "sha384", 5628 .test = alg_test_hash, 5629 .fips_allowed = 1, 5630 .suite = { 5631 .hash = __VECS(sha384_tv_template) 5632 } 5633 }, { 5634 .alg = "sha512", 5635 .test = alg_test_hash, 5636 .fips_allowed = 1, 5637 .suite = { 5638 .hash = __VECS(sha512_tv_template) 5639 } 5640 }, { 5641 .alg = "sm3", 5642 .test = alg_test_hash, 5643 .suite = { 5644 .hash = __VECS(sm3_tv_template) 5645 } 5646 }, { 5647 .alg = "streebog256", 5648 .test = alg_test_hash, 5649 .suite = { 5650 .hash = __VECS(streebog256_tv_template) 5651 } 5652 }, { 5653 .alg = "streebog512", 5654 .test = alg_test_hash, 5655 .suite = { 5656 .hash = __VECS(streebog512_tv_template) 5657 } 5658 }, { 5659 .alg = "vmac64(aes)", 5660 .test = alg_test_hash, 5661 .suite = { 5662 .hash = __VECS(vmac64_aes_tv_template) 5663 } 5664 }, { 5665 .alg = "wp256", 5666 .test = alg_test_hash, 5667 .suite = { 5668 .hash = __VECS(wp256_tv_template) 5669 } 5670 }, { 5671 .alg = "wp384", 5672 .test = alg_test_hash, 5673 .suite = { 5674 .hash = __VECS(wp384_tv_template) 5675 } 5676 }, { 5677 .alg = "wp512", 5678 .test = alg_test_hash, 5679 .suite = { 5680 .hash = __VECS(wp512_tv_template) 5681 } 5682 }, { 5683 .alg = "xcbc(aes)", 5684 .test = alg_test_hash, 5685 .suite = { 5686 .hash = __VECS(aes_xcbc128_tv_template) 5687 } 5688 }, { 5689 .alg = "xcbc(sm4)", 5690 .test = alg_test_hash, 5691 .suite = { 5692 .hash = __VECS(sm4_xcbc128_tv_template) 5693 } 5694 }, { 5695 .alg = "xchacha12", 5696 .test = alg_test_skcipher, 5697 .suite = { 5698 .cipher = __VECS(xchacha12_tv_template) 5699 }, 5700 }, { 5701 .alg = "xchacha20", 5702 .test = alg_test_skcipher, 5703 .suite = { 5704 .cipher = __VECS(xchacha20_tv_template) 5705 }, 5706 }, { 5707 .alg = "xctr(aes)", 5708 .test = alg_test_skcipher, 5709 .suite = { 5710 .cipher = __VECS(aes_xctr_tv_template) 5711 } 5712 }, { 5713 .alg = "xts(aes)", 5714 .generic_driver = "xts(ecb(aes-generic))", 5715 .test = alg_test_skcipher, 5716 .fips_allowed = 1, 5717 .suite = { 5718 .cipher = __VECS(aes_xts_tv_template) 5719 } 5720 }, { 5721 .alg = "xts(camellia)", 5722 .generic_driver = "xts(ecb(camellia-generic))", 5723 .test = alg_test_skcipher, 5724 .suite = { 5725 .cipher = __VECS(camellia_xts_tv_template) 5726 } 5727 }, { 5728 .alg = "xts(cast6)", 5729 .generic_driver = "xts(ecb(cast6-generic))", 5730 .test = alg_test_skcipher, 5731 .suite = { 5732 .cipher = __VECS(cast6_xts_tv_template) 5733 } 5734 }, { 5735 /* Same as xts(aes) except the key is stored in 5736 * hardware secure memory which we reference by index 5737 */ 5738 .alg = "xts(paes)", 5739 .test = alg_test_null, 5740 .fips_allowed = 1, 5741 }, { 5742 .alg = "xts(serpent)", 5743 .generic_driver = "xts(ecb(serpent-generic))", 5744 .test = alg_test_skcipher, 5745 .suite = { 5746 .cipher = __VECS(serpent_xts_tv_template) 5747 } 5748 }, { 5749 .alg = "xts(sm4)", 5750 .generic_driver = "xts(ecb(sm4-generic))", 5751 .test = alg_test_skcipher, 5752 .suite = { 5753 .cipher = __VECS(sm4_xts_tv_template) 5754 } 5755 }, { 5756 .alg = "xts(twofish)", 5757 .generic_driver = "xts(ecb(twofish-generic))", 5758 .test = alg_test_skcipher, 5759 .suite = { 5760 .cipher = __VECS(tf_xts_tv_template) 5761 } 5762 }, { 5763 #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) 5764 .alg = "xts-paes-s390", 5765 .fips_allowed = 1, 5766 .test = alg_test_skcipher, 5767 .suite = { 5768 .cipher = __VECS(aes_xts_tv_template) 5769 } 5770 }, { 5771 #endif 5772 .alg = "xxhash64", 5773 .test = alg_test_hash, 5774 .fips_allowed = 1, 5775 .suite = { 5776 .hash = __VECS(xxhash64_tv_template) 5777 } 5778 }, { 5779 .alg = "zstd", 5780 .test = alg_test_comp, 5781 .fips_allowed = 1, 5782 .suite = { 5783 .comp = { 5784 .comp = __VECS(zstd_comp_tv_template), 5785 .decomp = __VECS(zstd_decomp_tv_template) 5786 } 5787 } 5788 } 5789 }; 5790 5791 static void alg_check_test_descs_order(void) 5792 { 5793 int i; 5794 5795 for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) { 5796 int diff = strcmp(alg_test_descs[i - 1].alg, 5797 alg_test_descs[i].alg); 5798 5799 if (WARN_ON(diff > 0)) { 5800 pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n", 5801 alg_test_descs[i - 1].alg, 5802 alg_test_descs[i].alg); 5803 } 5804 5805 if (WARN_ON(diff == 0)) { 5806 pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n", 5807 alg_test_descs[i].alg); 5808 } 5809 } 5810 } 5811 5812 static void alg_check_testvec_configs(void) 5813 { 5814 int i; 5815 5816 for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) 5817 WARN_ON(!valid_testvec_config( 5818 &default_cipher_testvec_configs[i])); 5819 5820 for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) 5821 WARN_ON(!valid_testvec_config( 5822 &default_hash_testvec_configs[i])); 5823 } 5824 5825 static void testmgr_onetime_init(void) 5826 { 5827 alg_check_test_descs_order(); 5828 alg_check_testvec_configs(); 5829 5830 #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS 5831 pr_warn("alg: extra crypto tests enabled. This is intended for developer use only.\n"); 5832 #endif 5833 } 5834 5835 static int alg_find_test(const char *alg) 5836 { 5837 int start = 0; 5838 int end = ARRAY_SIZE(alg_test_descs); 5839 5840 while (start < end) { 5841 int i = (start + end) / 2; 5842 int diff = strcmp(alg_test_descs[i].alg, alg); 5843 5844 if (diff > 0) { 5845 end = i; 5846 continue; 5847 } 5848 5849 if (diff < 0) { 5850 start = i + 1; 5851 continue; 5852 } 5853 5854 return i; 5855 } 5856 5857 return -1; 5858 } 5859 5860 static int alg_fips_disabled(const char *driver, const char *alg) 5861 { 5862 pr_info("alg: %s (%s) is disabled due to FIPS\n", alg, driver); 5863 5864 return -ECANCELED; 5865 } 5866 5867 int alg_test(const char *driver, const char *alg, u32 type, u32 mask) 5868 { 5869 int i; 5870 int j; 5871 int rc; 5872 5873 if (!fips_enabled && notests) { 5874 printk_once(KERN_INFO "alg: self-tests disabled\n"); 5875 return 0; 5876 } 5877 5878 DO_ONCE(testmgr_onetime_init); 5879 5880 if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) { 5881 char nalg[CRYPTO_MAX_ALG_NAME]; 5882 5883 if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= 5884 sizeof(nalg)) 5885 return -ENAMETOOLONG; 5886 5887 i = alg_find_test(nalg); 5888 if (i < 0) 5889 goto notest; 5890 5891 if (fips_enabled && !alg_test_descs[i].fips_allowed) 5892 goto non_fips_alg; 5893 5894 rc = alg_test_cipher(alg_test_descs + i, driver, type, mask); 5895 goto test_done; 5896 } 5897 5898 i = alg_find_test(alg); 5899 j = alg_find_test(driver); 5900 if (i < 0 && j < 0) 5901 goto notest; 5902 5903 if (fips_enabled) { 5904 if (j >= 0 && !alg_test_descs[j].fips_allowed) 5905 return -EINVAL; 5906 5907 if (i >= 0 && !alg_test_descs[i].fips_allowed) 5908 goto non_fips_alg; 5909 } 5910 5911 rc = 0; 5912 if (i >= 0) 5913 rc |= alg_test_descs[i].test(alg_test_descs + i, driver, 5914 type, mask); 5915 if (j >= 0 && j != i) 5916 rc |= alg_test_descs[j].test(alg_test_descs + j, driver, 5917 type, mask); 5918 5919 test_done: 5920 if (rc) { 5921 if (fips_enabled || panic_on_fail) { 5922 fips_fail_notify(); 5923 panic("alg: self-tests for %s (%s) failed in %s mode!\n", 5924 driver, alg, 5925 fips_enabled ? "fips" : "panic_on_fail"); 5926 } 5927 pr_warn("alg: self-tests for %s using %s failed (rc=%d)", 5928 alg, driver, rc); 5929 WARN(rc != -ENOENT, 5930 "alg: self-tests for %s using %s failed (rc=%d)", 5931 alg, driver, rc); 5932 } else { 5933 if (fips_enabled) 5934 pr_info("alg: self-tests for %s (%s) passed\n", 5935 driver, alg); 5936 } 5937 5938 return rc; 5939 5940 notest: 5941 if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_LSKCIPHER) { 5942 char nalg[CRYPTO_MAX_ALG_NAME]; 5943 5944 if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= 5945 sizeof(nalg)) 5946 goto notest2; 5947 5948 i = alg_find_test(nalg); 5949 if (i < 0) 5950 goto notest2; 5951 5952 if (fips_enabled && !alg_test_descs[i].fips_allowed) 5953 goto non_fips_alg; 5954 5955 rc = alg_test_skcipher(alg_test_descs + i, driver, type, mask); 5956 goto test_done; 5957 } 5958 5959 notest2: 5960 printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver); 5961 5962 if (type & CRYPTO_ALG_FIPS_INTERNAL) 5963 return alg_fips_disabled(driver, alg); 5964 5965 return 0; 5966 non_fips_alg: 5967 return alg_fips_disabled(driver, alg); 5968 } 5969 5970 #endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */ 5971 5972 EXPORT_SYMBOL_GPL(alg_test); 5973