xref: /linux/crypto/skcipher.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Symmetric key cipher operations.
4  *
5  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
6  * multiple page boundaries by using temporary blocks.  In user context,
7  * the kernel is given a chance to schedule us once per page.
8  *
9  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
10  */
11 
12 #include <crypto/internal/aead.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/scatterwalk.h>
15 #include <linux/bug.h>
16 #include <linux/cryptouser.h>
17 #include <linux/compiler.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/seq_file.h>
22 #include <net/netlink.h>
23 
24 #include "internal.h"
25 
26 enum {
27 	SKCIPHER_WALK_PHYS = 1 << 0,
28 	SKCIPHER_WALK_SLOW = 1 << 1,
29 	SKCIPHER_WALK_COPY = 1 << 2,
30 	SKCIPHER_WALK_DIFF = 1 << 3,
31 	SKCIPHER_WALK_SLEEP = 1 << 4,
32 };
33 
34 struct skcipher_walk_buffer {
35 	struct list_head entry;
36 	struct scatter_walk dst;
37 	unsigned int len;
38 	u8 *data;
39 	u8 buffer[];
40 };
41 
42 static int skcipher_walk_next(struct skcipher_walk *walk);
43 
44 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
45 {
46 	if (PageHighMem(scatterwalk_page(walk)))
47 		kunmap_atomic(vaddr);
48 }
49 
50 static inline void *skcipher_map(struct scatter_walk *walk)
51 {
52 	struct page *page = scatterwalk_page(walk);
53 
54 	return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
55 	       offset_in_page(walk->offset);
56 }
57 
58 static inline void skcipher_map_src(struct skcipher_walk *walk)
59 {
60 	walk->src.virt.addr = skcipher_map(&walk->in);
61 }
62 
63 static inline void skcipher_map_dst(struct skcipher_walk *walk)
64 {
65 	walk->dst.virt.addr = skcipher_map(&walk->out);
66 }
67 
68 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
69 {
70 	skcipher_unmap(&walk->in, walk->src.virt.addr);
71 }
72 
73 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
74 {
75 	skcipher_unmap(&walk->out, walk->dst.virt.addr);
76 }
77 
78 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
79 {
80 	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
81 }
82 
83 /* Get a spot of the specified length that does not straddle a page.
84  * The caller needs to ensure that there is enough space for this operation.
85  */
86 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
87 {
88 	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
89 
90 	return max(start, end_page);
91 }
92 
93 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
94 {
95 	u8 *addr;
96 
97 	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
98 	addr = skcipher_get_spot(addr, bsize);
99 	scatterwalk_copychunks(addr, &walk->out, bsize,
100 			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
101 	return 0;
102 }
103 
104 int skcipher_walk_done(struct skcipher_walk *walk, int err)
105 {
106 	unsigned int n = walk->nbytes;
107 	unsigned int nbytes = 0;
108 
109 	if (!n)
110 		goto finish;
111 
112 	if (likely(err >= 0)) {
113 		n -= err;
114 		nbytes = walk->total - n;
115 	}
116 
117 	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
118 				    SKCIPHER_WALK_SLOW |
119 				    SKCIPHER_WALK_COPY |
120 				    SKCIPHER_WALK_DIFF)))) {
121 unmap_src:
122 		skcipher_unmap_src(walk);
123 	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
124 		skcipher_unmap_dst(walk);
125 		goto unmap_src;
126 	} else if (walk->flags & SKCIPHER_WALK_COPY) {
127 		skcipher_map_dst(walk);
128 		memcpy(walk->dst.virt.addr, walk->page, n);
129 		skcipher_unmap_dst(walk);
130 	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
131 		if (err > 0) {
132 			/*
133 			 * Didn't process all bytes.  Either the algorithm is
134 			 * broken, or this was the last step and it turned out
135 			 * the message wasn't evenly divisible into blocks but
136 			 * the algorithm requires it.
137 			 */
138 			err = -EINVAL;
139 			nbytes = 0;
140 		} else
141 			n = skcipher_done_slow(walk, n);
142 	}
143 
144 	if (err > 0)
145 		err = 0;
146 
147 	walk->total = nbytes;
148 	walk->nbytes = 0;
149 
150 	scatterwalk_advance(&walk->in, n);
151 	scatterwalk_advance(&walk->out, n);
152 	scatterwalk_done(&walk->in, 0, nbytes);
153 	scatterwalk_done(&walk->out, 1, nbytes);
154 
155 	if (nbytes) {
156 		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
157 			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
158 		return skcipher_walk_next(walk);
159 	}
160 
161 finish:
162 	/* Short-circuit for the common/fast path. */
163 	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
164 		goto out;
165 
166 	if (walk->flags & SKCIPHER_WALK_PHYS)
167 		goto out;
168 
169 	if (walk->iv != walk->oiv)
170 		memcpy(walk->oiv, walk->iv, walk->ivsize);
171 	if (walk->buffer != walk->page)
172 		kfree(walk->buffer);
173 	if (walk->page)
174 		free_page((unsigned long)walk->page);
175 
176 out:
177 	return err;
178 }
179 EXPORT_SYMBOL_GPL(skcipher_walk_done);
180 
181 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
182 {
183 	struct skcipher_walk_buffer *p, *tmp;
184 
185 	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
186 		u8 *data;
187 
188 		if (err)
189 			goto done;
190 
191 		data = p->data;
192 		if (!data) {
193 			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
194 			data = skcipher_get_spot(data, walk->stride);
195 		}
196 
197 		scatterwalk_copychunks(data, &p->dst, p->len, 1);
198 
199 		if (offset_in_page(p->data) + p->len + walk->stride >
200 		    PAGE_SIZE)
201 			free_page((unsigned long)p->data);
202 
203 done:
204 		list_del(&p->entry);
205 		kfree(p);
206 	}
207 
208 	if (!err && walk->iv != walk->oiv)
209 		memcpy(walk->oiv, walk->iv, walk->ivsize);
210 	if (walk->buffer != walk->page)
211 		kfree(walk->buffer);
212 	if (walk->page)
213 		free_page((unsigned long)walk->page);
214 }
215 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
216 
217 static void skcipher_queue_write(struct skcipher_walk *walk,
218 				 struct skcipher_walk_buffer *p)
219 {
220 	p->dst = walk->out;
221 	list_add_tail(&p->entry, &walk->buffers);
222 }
223 
224 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
225 {
226 	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
227 	unsigned alignmask = walk->alignmask;
228 	struct skcipher_walk_buffer *p;
229 	unsigned a;
230 	unsigned n;
231 	u8 *buffer;
232 	void *v;
233 
234 	if (!phys) {
235 		if (!walk->buffer)
236 			walk->buffer = walk->page;
237 		buffer = walk->buffer;
238 		if (buffer)
239 			goto ok;
240 	}
241 
242 	/* Start with the minimum alignment of kmalloc. */
243 	a = crypto_tfm_ctx_alignment() - 1;
244 	n = bsize;
245 
246 	if (phys) {
247 		/* Calculate the minimum alignment of p->buffer. */
248 		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
249 		n += sizeof(*p);
250 	}
251 
252 	/* Minimum size to align p->buffer by alignmask. */
253 	n += alignmask & ~a;
254 
255 	/* Minimum size to ensure p->buffer does not straddle a page. */
256 	n += (bsize - 1) & ~(alignmask | a);
257 
258 	v = kzalloc(n, skcipher_walk_gfp(walk));
259 	if (!v)
260 		return skcipher_walk_done(walk, -ENOMEM);
261 
262 	if (phys) {
263 		p = v;
264 		p->len = bsize;
265 		skcipher_queue_write(walk, p);
266 		buffer = p->buffer;
267 	} else {
268 		walk->buffer = v;
269 		buffer = v;
270 	}
271 
272 ok:
273 	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
274 	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
275 	walk->src.virt.addr = walk->dst.virt.addr;
276 
277 	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
278 
279 	walk->nbytes = bsize;
280 	walk->flags |= SKCIPHER_WALK_SLOW;
281 
282 	return 0;
283 }
284 
285 static int skcipher_next_copy(struct skcipher_walk *walk)
286 {
287 	struct skcipher_walk_buffer *p;
288 	u8 *tmp = walk->page;
289 
290 	skcipher_map_src(walk);
291 	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
292 	skcipher_unmap_src(walk);
293 
294 	walk->src.virt.addr = tmp;
295 	walk->dst.virt.addr = tmp;
296 
297 	if (!(walk->flags & SKCIPHER_WALK_PHYS))
298 		return 0;
299 
300 	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
301 	if (!p)
302 		return -ENOMEM;
303 
304 	p->data = walk->page;
305 	p->len = walk->nbytes;
306 	skcipher_queue_write(walk, p);
307 
308 	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
309 	    PAGE_SIZE)
310 		walk->page = NULL;
311 	else
312 		walk->page += walk->nbytes;
313 
314 	return 0;
315 }
316 
317 static int skcipher_next_fast(struct skcipher_walk *walk)
318 {
319 	unsigned long diff;
320 
321 	walk->src.phys.page = scatterwalk_page(&walk->in);
322 	walk->src.phys.offset = offset_in_page(walk->in.offset);
323 	walk->dst.phys.page = scatterwalk_page(&walk->out);
324 	walk->dst.phys.offset = offset_in_page(walk->out.offset);
325 
326 	if (walk->flags & SKCIPHER_WALK_PHYS)
327 		return 0;
328 
329 	diff = walk->src.phys.offset - walk->dst.phys.offset;
330 	diff |= walk->src.virt.page - walk->dst.virt.page;
331 
332 	skcipher_map_src(walk);
333 	walk->dst.virt.addr = walk->src.virt.addr;
334 
335 	if (diff) {
336 		walk->flags |= SKCIPHER_WALK_DIFF;
337 		skcipher_map_dst(walk);
338 	}
339 
340 	return 0;
341 }
342 
343 static int skcipher_walk_next(struct skcipher_walk *walk)
344 {
345 	unsigned int bsize;
346 	unsigned int n;
347 	int err;
348 
349 	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
350 			 SKCIPHER_WALK_DIFF);
351 
352 	n = walk->total;
353 	bsize = min(walk->stride, max(n, walk->blocksize));
354 	n = scatterwalk_clamp(&walk->in, n);
355 	n = scatterwalk_clamp(&walk->out, n);
356 
357 	if (unlikely(n < bsize)) {
358 		if (unlikely(walk->total < walk->blocksize))
359 			return skcipher_walk_done(walk, -EINVAL);
360 
361 slow_path:
362 		err = skcipher_next_slow(walk, bsize);
363 		goto set_phys_lowmem;
364 	}
365 
366 	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
367 		if (!walk->page) {
368 			gfp_t gfp = skcipher_walk_gfp(walk);
369 
370 			walk->page = (void *)__get_free_page(gfp);
371 			if (!walk->page)
372 				goto slow_path;
373 		}
374 
375 		walk->nbytes = min_t(unsigned, n,
376 				     PAGE_SIZE - offset_in_page(walk->page));
377 		walk->flags |= SKCIPHER_WALK_COPY;
378 		err = skcipher_next_copy(walk);
379 		goto set_phys_lowmem;
380 	}
381 
382 	walk->nbytes = n;
383 
384 	return skcipher_next_fast(walk);
385 
386 set_phys_lowmem:
387 	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
388 		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
389 		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
390 		walk->src.phys.offset &= PAGE_SIZE - 1;
391 		walk->dst.phys.offset &= PAGE_SIZE - 1;
392 	}
393 	return err;
394 }
395 
396 static int skcipher_copy_iv(struct skcipher_walk *walk)
397 {
398 	unsigned a = crypto_tfm_ctx_alignment() - 1;
399 	unsigned alignmask = walk->alignmask;
400 	unsigned ivsize = walk->ivsize;
401 	unsigned bs = walk->stride;
402 	unsigned aligned_bs;
403 	unsigned size;
404 	u8 *iv;
405 
406 	aligned_bs = ALIGN(bs, alignmask + 1);
407 
408 	/* Minimum size to align buffer by alignmask. */
409 	size = alignmask & ~a;
410 
411 	if (walk->flags & SKCIPHER_WALK_PHYS)
412 		size += ivsize;
413 	else {
414 		size += aligned_bs + ivsize;
415 
416 		/* Minimum size to ensure buffer does not straddle a page. */
417 		size += (bs - 1) & ~(alignmask | a);
418 	}
419 
420 	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
421 	if (!walk->buffer)
422 		return -ENOMEM;
423 
424 	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
425 	iv = skcipher_get_spot(iv, bs) + aligned_bs;
426 
427 	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
428 	return 0;
429 }
430 
431 static int skcipher_walk_first(struct skcipher_walk *walk)
432 {
433 	if (WARN_ON_ONCE(in_irq()))
434 		return -EDEADLK;
435 
436 	walk->buffer = NULL;
437 	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
438 		int err = skcipher_copy_iv(walk);
439 		if (err)
440 			return err;
441 	}
442 
443 	walk->page = NULL;
444 
445 	return skcipher_walk_next(walk);
446 }
447 
448 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
449 				  struct skcipher_request *req)
450 {
451 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
452 
453 	walk->total = req->cryptlen;
454 	walk->nbytes = 0;
455 	walk->iv = req->iv;
456 	walk->oiv = req->iv;
457 
458 	if (unlikely(!walk->total))
459 		return 0;
460 
461 	scatterwalk_start(&walk->in, req->src);
462 	scatterwalk_start(&walk->out, req->dst);
463 
464 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
465 	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
466 		       SKCIPHER_WALK_SLEEP : 0;
467 
468 	walk->blocksize = crypto_skcipher_blocksize(tfm);
469 	walk->stride = crypto_skcipher_walksize(tfm);
470 	walk->ivsize = crypto_skcipher_ivsize(tfm);
471 	walk->alignmask = crypto_skcipher_alignmask(tfm);
472 
473 	return skcipher_walk_first(walk);
474 }
475 
476 int skcipher_walk_virt(struct skcipher_walk *walk,
477 		       struct skcipher_request *req, bool atomic)
478 {
479 	int err;
480 
481 	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
482 
483 	walk->flags &= ~SKCIPHER_WALK_PHYS;
484 
485 	err = skcipher_walk_skcipher(walk, req);
486 
487 	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
488 
489 	return err;
490 }
491 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
492 
493 void skcipher_walk_atomise(struct skcipher_walk *walk)
494 {
495 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
496 }
497 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
498 
499 int skcipher_walk_async(struct skcipher_walk *walk,
500 			struct skcipher_request *req)
501 {
502 	walk->flags |= SKCIPHER_WALK_PHYS;
503 
504 	INIT_LIST_HEAD(&walk->buffers);
505 
506 	return skcipher_walk_skcipher(walk, req);
507 }
508 EXPORT_SYMBOL_GPL(skcipher_walk_async);
509 
510 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
511 				     struct aead_request *req, bool atomic)
512 {
513 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
514 	int err;
515 
516 	walk->nbytes = 0;
517 	walk->iv = req->iv;
518 	walk->oiv = req->iv;
519 
520 	if (unlikely(!walk->total))
521 		return 0;
522 
523 	walk->flags &= ~SKCIPHER_WALK_PHYS;
524 
525 	scatterwalk_start(&walk->in, req->src);
526 	scatterwalk_start(&walk->out, req->dst);
527 
528 	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
529 	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
530 
531 	scatterwalk_done(&walk->in, 0, walk->total);
532 	scatterwalk_done(&walk->out, 0, walk->total);
533 
534 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
535 		walk->flags |= SKCIPHER_WALK_SLEEP;
536 	else
537 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
538 
539 	walk->blocksize = crypto_aead_blocksize(tfm);
540 	walk->stride = crypto_aead_chunksize(tfm);
541 	walk->ivsize = crypto_aead_ivsize(tfm);
542 	walk->alignmask = crypto_aead_alignmask(tfm);
543 
544 	err = skcipher_walk_first(walk);
545 
546 	if (atomic)
547 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
548 
549 	return err;
550 }
551 
552 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
553 		       bool atomic)
554 {
555 	walk->total = req->cryptlen;
556 
557 	return skcipher_walk_aead_common(walk, req, atomic);
558 }
559 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
560 
561 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
562 			       struct aead_request *req, bool atomic)
563 {
564 	walk->total = req->cryptlen;
565 
566 	return skcipher_walk_aead_common(walk, req, atomic);
567 }
568 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
569 
570 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
571 			       struct aead_request *req, bool atomic)
572 {
573 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
574 
575 	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
576 
577 	return skcipher_walk_aead_common(walk, req, atomic);
578 }
579 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
580 
581 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
582 {
583 	return crypto_alg_extsize(alg);
584 }
585 
586 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
587 {
588 	if (tfm->keysize)
589 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
590 }
591 
592 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
593 				     const u8 *key, unsigned int keylen)
594 {
595 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
596 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
597 	u8 *buffer, *alignbuffer;
598 	unsigned long absize;
599 	int ret;
600 
601 	absize = keylen + alignmask;
602 	buffer = kmalloc(absize, GFP_ATOMIC);
603 	if (!buffer)
604 		return -ENOMEM;
605 
606 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
607 	memcpy(alignbuffer, key, keylen);
608 	ret = cipher->setkey(tfm, alignbuffer, keylen);
609 	kzfree(buffer);
610 	return ret;
611 }
612 
613 static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
614 			   unsigned int keylen)
615 {
616 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
617 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
618 	int err;
619 
620 	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
621 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
622 		return -EINVAL;
623 	}
624 
625 	if ((unsigned long)key & alignmask)
626 		err = skcipher_setkey_unaligned(tfm, key, keylen);
627 	else
628 		err = cipher->setkey(tfm, key, keylen);
629 
630 	if (unlikely(err)) {
631 		skcipher_set_needkey(tfm);
632 		return err;
633 	}
634 
635 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
636 	return 0;
637 }
638 
639 int crypto_skcipher_encrypt(struct skcipher_request *req)
640 {
641 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
642 	struct crypto_alg *alg = tfm->base.__crt_alg;
643 	unsigned int cryptlen = req->cryptlen;
644 	int ret;
645 
646 	crypto_stats_get(alg);
647 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
648 		ret = -ENOKEY;
649 	else
650 		ret = tfm->encrypt(req);
651 	crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
652 	return ret;
653 }
654 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
655 
656 int crypto_skcipher_decrypt(struct skcipher_request *req)
657 {
658 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
659 	struct crypto_alg *alg = tfm->base.__crt_alg;
660 	unsigned int cryptlen = req->cryptlen;
661 	int ret;
662 
663 	crypto_stats_get(alg);
664 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
665 		ret = -ENOKEY;
666 	else
667 		ret = tfm->decrypt(req);
668 	crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
669 	return ret;
670 }
671 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
672 
673 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
674 {
675 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
676 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
677 
678 	alg->exit(skcipher);
679 }
680 
681 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
682 {
683 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
684 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
685 
686 	skcipher->setkey = skcipher_setkey;
687 	skcipher->encrypt = alg->encrypt;
688 	skcipher->decrypt = alg->decrypt;
689 	skcipher->ivsize = alg->ivsize;
690 	skcipher->keysize = alg->max_keysize;
691 
692 	skcipher_set_needkey(skcipher);
693 
694 	if (alg->exit)
695 		skcipher->base.exit = crypto_skcipher_exit_tfm;
696 
697 	if (alg->init)
698 		return alg->init(skcipher);
699 
700 	return 0;
701 }
702 
703 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
704 {
705 	struct skcipher_instance *skcipher =
706 		container_of(inst, struct skcipher_instance, s.base);
707 
708 	skcipher->free(skcipher);
709 }
710 
711 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
712 	__maybe_unused;
713 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
714 {
715 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
716 						     base);
717 
718 	seq_printf(m, "type         : skcipher\n");
719 	seq_printf(m, "async        : %s\n",
720 		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
721 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
722 	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
723 	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
724 	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
725 	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
726 	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
727 }
728 
729 #ifdef CONFIG_NET
730 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
731 {
732 	struct crypto_report_blkcipher rblkcipher;
733 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
734 						     base);
735 
736 	memset(&rblkcipher, 0, sizeof(rblkcipher));
737 
738 	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
739 	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
740 
741 	rblkcipher.blocksize = alg->cra_blocksize;
742 	rblkcipher.min_keysize = skcipher->min_keysize;
743 	rblkcipher.max_keysize = skcipher->max_keysize;
744 	rblkcipher.ivsize = skcipher->ivsize;
745 
746 	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
747 		       sizeof(rblkcipher), &rblkcipher);
748 }
749 #else
750 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
751 {
752 	return -ENOSYS;
753 }
754 #endif
755 
756 static const struct crypto_type crypto_skcipher_type = {
757 	.extsize = crypto_skcipher_extsize,
758 	.init_tfm = crypto_skcipher_init_tfm,
759 	.free = crypto_skcipher_free_instance,
760 #ifdef CONFIG_PROC_FS
761 	.show = crypto_skcipher_show,
762 #endif
763 	.report = crypto_skcipher_report,
764 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
765 	.maskset = CRYPTO_ALG_TYPE_MASK,
766 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
767 	.tfmsize = offsetof(struct crypto_skcipher, base),
768 };
769 
770 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
771 			  const char *name, u32 type, u32 mask)
772 {
773 	spawn->base.frontend = &crypto_skcipher_type;
774 	return crypto_grab_spawn(&spawn->base, name, type, mask);
775 }
776 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
777 
778 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
779 					      u32 type, u32 mask)
780 {
781 	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
782 }
783 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
784 
785 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
786 				const char *alg_name, u32 type, u32 mask)
787 {
788 	struct crypto_skcipher *tfm;
789 
790 	/* Only sync algorithms allowed. */
791 	mask |= CRYPTO_ALG_ASYNC;
792 
793 	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
794 
795 	/*
796 	 * Make sure we do not allocate something that might get used with
797 	 * an on-stack request: check the request size.
798 	 */
799 	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
800 				    MAX_SYNC_SKCIPHER_REQSIZE)) {
801 		crypto_free_skcipher(tfm);
802 		return ERR_PTR(-EINVAL);
803 	}
804 
805 	return (struct crypto_sync_skcipher *)tfm;
806 }
807 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
808 
809 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
810 {
811 	return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
812 }
813 EXPORT_SYMBOL_GPL(crypto_has_skcipher);
814 
815 static int skcipher_prepare_alg(struct skcipher_alg *alg)
816 {
817 	struct crypto_alg *base = &alg->base;
818 
819 	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
820 	    alg->walksize > PAGE_SIZE / 8)
821 		return -EINVAL;
822 
823 	if (!alg->chunksize)
824 		alg->chunksize = base->cra_blocksize;
825 	if (!alg->walksize)
826 		alg->walksize = alg->chunksize;
827 
828 	base->cra_type = &crypto_skcipher_type;
829 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
830 	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
831 
832 	return 0;
833 }
834 
835 int crypto_register_skcipher(struct skcipher_alg *alg)
836 {
837 	struct crypto_alg *base = &alg->base;
838 	int err;
839 
840 	err = skcipher_prepare_alg(alg);
841 	if (err)
842 		return err;
843 
844 	return crypto_register_alg(base);
845 }
846 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
847 
848 void crypto_unregister_skcipher(struct skcipher_alg *alg)
849 {
850 	crypto_unregister_alg(&alg->base);
851 }
852 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
853 
854 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
855 {
856 	int i, ret;
857 
858 	for (i = 0; i < count; i++) {
859 		ret = crypto_register_skcipher(&algs[i]);
860 		if (ret)
861 			goto err;
862 	}
863 
864 	return 0;
865 
866 err:
867 	for (--i; i >= 0; --i)
868 		crypto_unregister_skcipher(&algs[i]);
869 
870 	return ret;
871 }
872 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
873 
874 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
875 {
876 	int i;
877 
878 	for (i = count - 1; i >= 0; --i)
879 		crypto_unregister_skcipher(&algs[i]);
880 }
881 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
882 
883 int skcipher_register_instance(struct crypto_template *tmpl,
884 			   struct skcipher_instance *inst)
885 {
886 	int err;
887 
888 	err = skcipher_prepare_alg(&inst->alg);
889 	if (err)
890 		return err;
891 
892 	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
893 }
894 EXPORT_SYMBOL_GPL(skcipher_register_instance);
895 
896 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
897 				  unsigned int keylen)
898 {
899 	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
900 	int err;
901 
902 	crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
903 	crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
904 				CRYPTO_TFM_REQ_MASK);
905 	err = crypto_cipher_setkey(cipher, key, keylen);
906 	crypto_skcipher_set_flags(tfm, crypto_cipher_get_flags(cipher) &
907 				  CRYPTO_TFM_RES_MASK);
908 	return err;
909 }
910 
911 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
912 {
913 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
914 	struct crypto_spawn *spawn = skcipher_instance_ctx(inst);
915 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
916 	struct crypto_cipher *cipher;
917 
918 	cipher = crypto_spawn_cipher(spawn);
919 	if (IS_ERR(cipher))
920 		return PTR_ERR(cipher);
921 
922 	ctx->cipher = cipher;
923 	return 0;
924 }
925 
926 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
927 {
928 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
929 
930 	crypto_free_cipher(ctx->cipher);
931 }
932 
933 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
934 {
935 	crypto_drop_spawn(skcipher_instance_ctx(inst));
936 	kfree(inst);
937 }
938 
939 /**
940  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
941  *
942  * Allocate an skcipher_instance for a simple block cipher mode of operation,
943  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
944  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
945  * alignmask, and priority are set from the underlying cipher but can be
946  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
947  * default ->setkey(), ->init(), and ->exit() methods are installed.
948  *
949  * @tmpl: the template being instantiated
950  * @tb: the template parameters
951  * @cipher_alg_ret: on success, a pointer to the underlying cipher algorithm is
952  *		    returned here.  It must be dropped with crypto_mod_put().
953  *
954  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
955  *	   needs to register the instance.
956  */
957 struct skcipher_instance *
958 skcipher_alloc_instance_simple(struct crypto_template *tmpl, struct rtattr **tb,
959 			       struct crypto_alg **cipher_alg_ret)
960 {
961 	struct crypto_attr_type *algt;
962 	struct crypto_alg *cipher_alg;
963 	struct skcipher_instance *inst;
964 	struct crypto_spawn *spawn;
965 	u32 mask;
966 	int err;
967 
968 	algt = crypto_get_attr_type(tb);
969 	if (IS_ERR(algt))
970 		return ERR_CAST(algt);
971 
972 	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
973 		return ERR_PTR(-EINVAL);
974 
975 	mask = CRYPTO_ALG_TYPE_MASK |
976 		crypto_requires_off(algt->type, algt->mask,
977 				    CRYPTO_ALG_NEED_FALLBACK);
978 
979 	cipher_alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, mask);
980 	if (IS_ERR(cipher_alg))
981 		return ERR_CAST(cipher_alg);
982 
983 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
984 	if (!inst) {
985 		err = -ENOMEM;
986 		goto err_put_cipher_alg;
987 	}
988 	spawn = skcipher_instance_ctx(inst);
989 
990 	err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
991 				  cipher_alg);
992 	if (err)
993 		goto err_free_inst;
994 
995 	err = crypto_init_spawn(spawn, cipher_alg,
996 				skcipher_crypto_instance(inst),
997 				CRYPTO_ALG_TYPE_MASK);
998 	if (err)
999 		goto err_free_inst;
1000 	inst->free = skcipher_free_instance_simple;
1001 
1002 	/* Default algorithm properties, can be overridden */
1003 	inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
1004 	inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
1005 	inst->alg.base.cra_priority = cipher_alg->cra_priority;
1006 	inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
1007 	inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
1008 	inst->alg.ivsize = cipher_alg->cra_blocksize;
1009 
1010 	/* Use skcipher_ctx_simple by default, can be overridden */
1011 	inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
1012 	inst->alg.setkey = skcipher_setkey_simple;
1013 	inst->alg.init = skcipher_init_tfm_simple;
1014 	inst->alg.exit = skcipher_exit_tfm_simple;
1015 
1016 	*cipher_alg_ret = cipher_alg;
1017 	return inst;
1018 
1019 err_free_inst:
1020 	kfree(inst);
1021 err_put_cipher_alg:
1022 	crypto_mod_put(cipher_alg);
1023 	return ERR_PTR(err);
1024 }
1025 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
1026 
1027 MODULE_LICENSE("GPL");
1028 MODULE_DESCRIPTION("Symmetric key cipher type");
1029