xref: /linux/crypto/skcipher.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Symmetric key cipher operations.
4  *
5  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
6  * multiple page boundaries by using temporary blocks.  In user context,
7  * the kernel is given a chance to schedule us once per page.
8  *
9  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
10  */
11 
12 #include <crypto/internal/aead.h>
13 #include <crypto/internal/cipher.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/scatterwalk.h>
16 #include <linux/bug.h>
17 #include <linux/cryptouser.h>
18 #include <linux/err.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <net/netlink.h>
27 #include "skcipher.h"
28 
29 #define CRYPTO_ALG_TYPE_SKCIPHER_MASK	0x0000000e
30 
31 enum {
32 	SKCIPHER_WALK_PHYS = 1 << 0,
33 	SKCIPHER_WALK_SLOW = 1 << 1,
34 	SKCIPHER_WALK_COPY = 1 << 2,
35 	SKCIPHER_WALK_DIFF = 1 << 3,
36 	SKCIPHER_WALK_SLEEP = 1 << 4,
37 };
38 
39 struct skcipher_walk_buffer {
40 	struct list_head entry;
41 	struct scatter_walk dst;
42 	unsigned int len;
43 	u8 *data;
44 	u8 buffer[];
45 };
46 
47 static const struct crypto_type crypto_skcipher_type;
48 
49 static int skcipher_walk_next(struct skcipher_walk *walk);
50 
51 static inline void skcipher_map_src(struct skcipher_walk *walk)
52 {
53 	walk->src.virt.addr = scatterwalk_map(&walk->in);
54 }
55 
56 static inline void skcipher_map_dst(struct skcipher_walk *walk)
57 {
58 	walk->dst.virt.addr = scatterwalk_map(&walk->out);
59 }
60 
61 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
62 {
63 	scatterwalk_unmap(walk->src.virt.addr);
64 }
65 
66 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
67 {
68 	scatterwalk_unmap(walk->dst.virt.addr);
69 }
70 
71 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
72 {
73 	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
74 }
75 
76 /* Get a spot of the specified length that does not straddle a page.
77  * The caller needs to ensure that there is enough space for this operation.
78  */
79 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
80 {
81 	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
82 
83 	return max(start, end_page);
84 }
85 
86 static inline struct skcipher_alg *__crypto_skcipher_alg(
87 	struct crypto_alg *alg)
88 {
89 	return container_of(alg, struct skcipher_alg, base);
90 }
91 
92 static inline struct crypto_istat_cipher *skcipher_get_stat(
93 	struct skcipher_alg *alg)
94 {
95 	return skcipher_get_stat_common(&alg->co);
96 }
97 
98 static inline int crypto_skcipher_errstat(struct skcipher_alg *alg, int err)
99 {
100 	struct crypto_istat_cipher *istat = skcipher_get_stat(alg);
101 
102 	if (!IS_ENABLED(CONFIG_CRYPTO_STATS))
103 		return err;
104 
105 	if (err && err != -EINPROGRESS && err != -EBUSY)
106 		atomic64_inc(&istat->err_cnt);
107 
108 	return err;
109 }
110 
111 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
112 {
113 	u8 *addr;
114 
115 	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
116 	addr = skcipher_get_spot(addr, bsize);
117 	scatterwalk_copychunks(addr, &walk->out, bsize,
118 			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
119 	return 0;
120 }
121 
122 int skcipher_walk_done(struct skcipher_walk *walk, int err)
123 {
124 	unsigned int n = walk->nbytes;
125 	unsigned int nbytes = 0;
126 
127 	if (!n)
128 		goto finish;
129 
130 	if (likely(err >= 0)) {
131 		n -= err;
132 		nbytes = walk->total - n;
133 	}
134 
135 	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
136 				    SKCIPHER_WALK_SLOW |
137 				    SKCIPHER_WALK_COPY |
138 				    SKCIPHER_WALK_DIFF)))) {
139 unmap_src:
140 		skcipher_unmap_src(walk);
141 	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
142 		skcipher_unmap_dst(walk);
143 		goto unmap_src;
144 	} else if (walk->flags & SKCIPHER_WALK_COPY) {
145 		skcipher_map_dst(walk);
146 		memcpy(walk->dst.virt.addr, walk->page, n);
147 		skcipher_unmap_dst(walk);
148 	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
149 		if (err > 0) {
150 			/*
151 			 * Didn't process all bytes.  Either the algorithm is
152 			 * broken, or this was the last step and it turned out
153 			 * the message wasn't evenly divisible into blocks but
154 			 * the algorithm requires it.
155 			 */
156 			err = -EINVAL;
157 			nbytes = 0;
158 		} else
159 			n = skcipher_done_slow(walk, n);
160 	}
161 
162 	if (err > 0)
163 		err = 0;
164 
165 	walk->total = nbytes;
166 	walk->nbytes = 0;
167 
168 	scatterwalk_advance(&walk->in, n);
169 	scatterwalk_advance(&walk->out, n);
170 	scatterwalk_done(&walk->in, 0, nbytes);
171 	scatterwalk_done(&walk->out, 1, nbytes);
172 
173 	if (nbytes) {
174 		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
175 			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
176 		return skcipher_walk_next(walk);
177 	}
178 
179 finish:
180 	/* Short-circuit for the common/fast path. */
181 	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
182 		goto out;
183 
184 	if (walk->flags & SKCIPHER_WALK_PHYS)
185 		goto out;
186 
187 	if (walk->iv != walk->oiv)
188 		memcpy(walk->oiv, walk->iv, walk->ivsize);
189 	if (walk->buffer != walk->page)
190 		kfree(walk->buffer);
191 	if (walk->page)
192 		free_page((unsigned long)walk->page);
193 
194 out:
195 	return err;
196 }
197 EXPORT_SYMBOL_GPL(skcipher_walk_done);
198 
199 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
200 {
201 	struct skcipher_walk_buffer *p, *tmp;
202 
203 	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
204 		u8 *data;
205 
206 		if (err)
207 			goto done;
208 
209 		data = p->data;
210 		if (!data) {
211 			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
212 			data = skcipher_get_spot(data, walk->stride);
213 		}
214 
215 		scatterwalk_copychunks(data, &p->dst, p->len, 1);
216 
217 		if (offset_in_page(p->data) + p->len + walk->stride >
218 		    PAGE_SIZE)
219 			free_page((unsigned long)p->data);
220 
221 done:
222 		list_del(&p->entry);
223 		kfree(p);
224 	}
225 
226 	if (!err && walk->iv != walk->oiv)
227 		memcpy(walk->oiv, walk->iv, walk->ivsize);
228 	if (walk->buffer != walk->page)
229 		kfree(walk->buffer);
230 	if (walk->page)
231 		free_page((unsigned long)walk->page);
232 }
233 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
234 
235 static void skcipher_queue_write(struct skcipher_walk *walk,
236 				 struct skcipher_walk_buffer *p)
237 {
238 	p->dst = walk->out;
239 	list_add_tail(&p->entry, &walk->buffers);
240 }
241 
242 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
243 {
244 	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
245 	unsigned alignmask = walk->alignmask;
246 	struct skcipher_walk_buffer *p;
247 	unsigned a;
248 	unsigned n;
249 	u8 *buffer;
250 	void *v;
251 
252 	if (!phys) {
253 		if (!walk->buffer)
254 			walk->buffer = walk->page;
255 		buffer = walk->buffer;
256 		if (buffer)
257 			goto ok;
258 	}
259 
260 	/* Start with the minimum alignment of kmalloc. */
261 	a = crypto_tfm_ctx_alignment() - 1;
262 	n = bsize;
263 
264 	if (phys) {
265 		/* Calculate the minimum alignment of p->buffer. */
266 		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
267 		n += sizeof(*p);
268 	}
269 
270 	/* Minimum size to align p->buffer by alignmask. */
271 	n += alignmask & ~a;
272 
273 	/* Minimum size to ensure p->buffer does not straddle a page. */
274 	n += (bsize - 1) & ~(alignmask | a);
275 
276 	v = kzalloc(n, skcipher_walk_gfp(walk));
277 	if (!v)
278 		return skcipher_walk_done(walk, -ENOMEM);
279 
280 	if (phys) {
281 		p = v;
282 		p->len = bsize;
283 		skcipher_queue_write(walk, p);
284 		buffer = p->buffer;
285 	} else {
286 		walk->buffer = v;
287 		buffer = v;
288 	}
289 
290 ok:
291 	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
292 	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
293 	walk->src.virt.addr = walk->dst.virt.addr;
294 
295 	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
296 
297 	walk->nbytes = bsize;
298 	walk->flags |= SKCIPHER_WALK_SLOW;
299 
300 	return 0;
301 }
302 
303 static int skcipher_next_copy(struct skcipher_walk *walk)
304 {
305 	struct skcipher_walk_buffer *p;
306 	u8 *tmp = walk->page;
307 
308 	skcipher_map_src(walk);
309 	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
310 	skcipher_unmap_src(walk);
311 
312 	walk->src.virt.addr = tmp;
313 	walk->dst.virt.addr = tmp;
314 
315 	if (!(walk->flags & SKCIPHER_WALK_PHYS))
316 		return 0;
317 
318 	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
319 	if (!p)
320 		return -ENOMEM;
321 
322 	p->data = walk->page;
323 	p->len = walk->nbytes;
324 	skcipher_queue_write(walk, p);
325 
326 	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
327 	    PAGE_SIZE)
328 		walk->page = NULL;
329 	else
330 		walk->page += walk->nbytes;
331 
332 	return 0;
333 }
334 
335 static int skcipher_next_fast(struct skcipher_walk *walk)
336 {
337 	unsigned long diff;
338 
339 	walk->src.phys.page = scatterwalk_page(&walk->in);
340 	walk->src.phys.offset = offset_in_page(walk->in.offset);
341 	walk->dst.phys.page = scatterwalk_page(&walk->out);
342 	walk->dst.phys.offset = offset_in_page(walk->out.offset);
343 
344 	if (walk->flags & SKCIPHER_WALK_PHYS)
345 		return 0;
346 
347 	diff = walk->src.phys.offset - walk->dst.phys.offset;
348 	diff |= walk->src.virt.page - walk->dst.virt.page;
349 
350 	skcipher_map_src(walk);
351 	walk->dst.virt.addr = walk->src.virt.addr;
352 
353 	if (diff) {
354 		walk->flags |= SKCIPHER_WALK_DIFF;
355 		skcipher_map_dst(walk);
356 	}
357 
358 	return 0;
359 }
360 
361 static int skcipher_walk_next(struct skcipher_walk *walk)
362 {
363 	unsigned int bsize;
364 	unsigned int n;
365 	int err;
366 
367 	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
368 			 SKCIPHER_WALK_DIFF);
369 
370 	n = walk->total;
371 	bsize = min(walk->stride, max(n, walk->blocksize));
372 	n = scatterwalk_clamp(&walk->in, n);
373 	n = scatterwalk_clamp(&walk->out, n);
374 
375 	if (unlikely(n < bsize)) {
376 		if (unlikely(walk->total < walk->blocksize))
377 			return skcipher_walk_done(walk, -EINVAL);
378 
379 slow_path:
380 		err = skcipher_next_slow(walk, bsize);
381 		goto set_phys_lowmem;
382 	}
383 
384 	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
385 		if (!walk->page) {
386 			gfp_t gfp = skcipher_walk_gfp(walk);
387 
388 			walk->page = (void *)__get_free_page(gfp);
389 			if (!walk->page)
390 				goto slow_path;
391 		}
392 
393 		walk->nbytes = min_t(unsigned, n,
394 				     PAGE_SIZE - offset_in_page(walk->page));
395 		walk->flags |= SKCIPHER_WALK_COPY;
396 		err = skcipher_next_copy(walk);
397 		goto set_phys_lowmem;
398 	}
399 
400 	walk->nbytes = n;
401 
402 	return skcipher_next_fast(walk);
403 
404 set_phys_lowmem:
405 	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
406 		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
407 		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
408 		walk->src.phys.offset &= PAGE_SIZE - 1;
409 		walk->dst.phys.offset &= PAGE_SIZE - 1;
410 	}
411 	return err;
412 }
413 
414 static int skcipher_copy_iv(struct skcipher_walk *walk)
415 {
416 	unsigned a = crypto_tfm_ctx_alignment() - 1;
417 	unsigned alignmask = walk->alignmask;
418 	unsigned ivsize = walk->ivsize;
419 	unsigned bs = walk->stride;
420 	unsigned aligned_bs;
421 	unsigned size;
422 	u8 *iv;
423 
424 	aligned_bs = ALIGN(bs, alignmask + 1);
425 
426 	/* Minimum size to align buffer by alignmask. */
427 	size = alignmask & ~a;
428 
429 	if (walk->flags & SKCIPHER_WALK_PHYS)
430 		size += ivsize;
431 	else {
432 		size += aligned_bs + ivsize;
433 
434 		/* Minimum size to ensure buffer does not straddle a page. */
435 		size += (bs - 1) & ~(alignmask | a);
436 	}
437 
438 	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
439 	if (!walk->buffer)
440 		return -ENOMEM;
441 
442 	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
443 	iv = skcipher_get_spot(iv, bs) + aligned_bs;
444 
445 	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
446 	return 0;
447 }
448 
449 static int skcipher_walk_first(struct skcipher_walk *walk)
450 {
451 	if (WARN_ON_ONCE(in_hardirq()))
452 		return -EDEADLK;
453 
454 	walk->buffer = NULL;
455 	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
456 		int err = skcipher_copy_iv(walk);
457 		if (err)
458 			return err;
459 	}
460 
461 	walk->page = NULL;
462 
463 	return skcipher_walk_next(walk);
464 }
465 
466 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
467 				  struct skcipher_request *req)
468 {
469 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
470 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
471 
472 	walk->total = req->cryptlen;
473 	walk->nbytes = 0;
474 	walk->iv = req->iv;
475 	walk->oiv = req->iv;
476 
477 	if (unlikely(!walk->total))
478 		return 0;
479 
480 	scatterwalk_start(&walk->in, req->src);
481 	scatterwalk_start(&walk->out, req->dst);
482 
483 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
484 	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
485 		       SKCIPHER_WALK_SLEEP : 0;
486 
487 	walk->blocksize = crypto_skcipher_blocksize(tfm);
488 	walk->ivsize = crypto_skcipher_ivsize(tfm);
489 	walk->alignmask = crypto_skcipher_alignmask(tfm);
490 
491 	if (alg->co.base.cra_type != &crypto_skcipher_type)
492 		walk->stride = alg->co.chunksize;
493 	else
494 		walk->stride = alg->walksize;
495 
496 	return skcipher_walk_first(walk);
497 }
498 
499 int skcipher_walk_virt(struct skcipher_walk *walk,
500 		       struct skcipher_request *req, bool atomic)
501 {
502 	int err;
503 
504 	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
505 
506 	walk->flags &= ~SKCIPHER_WALK_PHYS;
507 
508 	err = skcipher_walk_skcipher(walk, req);
509 
510 	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
511 
512 	return err;
513 }
514 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
515 
516 int skcipher_walk_async(struct skcipher_walk *walk,
517 			struct skcipher_request *req)
518 {
519 	walk->flags |= SKCIPHER_WALK_PHYS;
520 
521 	INIT_LIST_HEAD(&walk->buffers);
522 
523 	return skcipher_walk_skcipher(walk, req);
524 }
525 EXPORT_SYMBOL_GPL(skcipher_walk_async);
526 
527 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
528 				     struct aead_request *req, bool atomic)
529 {
530 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
531 	int err;
532 
533 	walk->nbytes = 0;
534 	walk->iv = req->iv;
535 	walk->oiv = req->iv;
536 
537 	if (unlikely(!walk->total))
538 		return 0;
539 
540 	walk->flags &= ~SKCIPHER_WALK_PHYS;
541 
542 	scatterwalk_start(&walk->in, req->src);
543 	scatterwalk_start(&walk->out, req->dst);
544 
545 	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
546 	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
547 
548 	scatterwalk_done(&walk->in, 0, walk->total);
549 	scatterwalk_done(&walk->out, 0, walk->total);
550 
551 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
552 		walk->flags |= SKCIPHER_WALK_SLEEP;
553 	else
554 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
555 
556 	walk->blocksize = crypto_aead_blocksize(tfm);
557 	walk->stride = crypto_aead_chunksize(tfm);
558 	walk->ivsize = crypto_aead_ivsize(tfm);
559 	walk->alignmask = crypto_aead_alignmask(tfm);
560 
561 	err = skcipher_walk_first(walk);
562 
563 	if (atomic)
564 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
565 
566 	return err;
567 }
568 
569 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
570 			       struct aead_request *req, bool atomic)
571 {
572 	walk->total = req->cryptlen;
573 
574 	return skcipher_walk_aead_common(walk, req, atomic);
575 }
576 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
577 
578 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
579 			       struct aead_request *req, bool atomic)
580 {
581 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
582 
583 	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
584 
585 	return skcipher_walk_aead_common(walk, req, atomic);
586 }
587 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
588 
589 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
590 {
591 	if (crypto_skcipher_max_keysize(tfm) != 0)
592 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
593 }
594 
595 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
596 				     const u8 *key, unsigned int keylen)
597 {
598 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
599 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
600 	u8 *buffer, *alignbuffer;
601 	unsigned long absize;
602 	int ret;
603 
604 	absize = keylen + alignmask;
605 	buffer = kmalloc(absize, GFP_ATOMIC);
606 	if (!buffer)
607 		return -ENOMEM;
608 
609 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
610 	memcpy(alignbuffer, key, keylen);
611 	ret = cipher->setkey(tfm, alignbuffer, keylen);
612 	kfree_sensitive(buffer);
613 	return ret;
614 }
615 
616 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
617 			   unsigned int keylen)
618 {
619 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
620 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
621 	int err;
622 
623 	if (cipher->co.base.cra_type != &crypto_skcipher_type) {
624 		struct crypto_lskcipher **ctx = crypto_skcipher_ctx(tfm);
625 
626 		crypto_lskcipher_clear_flags(*ctx, CRYPTO_TFM_REQ_MASK);
627 		crypto_lskcipher_set_flags(*ctx,
628 					   crypto_skcipher_get_flags(tfm) &
629 					   CRYPTO_TFM_REQ_MASK);
630 		err = crypto_lskcipher_setkey(*ctx, key, keylen);
631 		goto out;
632 	}
633 
634 	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
635 		return -EINVAL;
636 
637 	if ((unsigned long)key & alignmask)
638 		err = skcipher_setkey_unaligned(tfm, key, keylen);
639 	else
640 		err = cipher->setkey(tfm, key, keylen);
641 
642 out:
643 	if (unlikely(err)) {
644 		skcipher_set_needkey(tfm);
645 		return err;
646 	}
647 
648 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
649 	return 0;
650 }
651 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
652 
653 int crypto_skcipher_encrypt(struct skcipher_request *req)
654 {
655 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
656 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
657 	int ret;
658 
659 	if (IS_ENABLED(CONFIG_CRYPTO_STATS)) {
660 		struct crypto_istat_cipher *istat = skcipher_get_stat(alg);
661 
662 		atomic64_inc(&istat->encrypt_cnt);
663 		atomic64_add(req->cryptlen, &istat->encrypt_tlen);
664 	}
665 
666 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
667 		ret = -ENOKEY;
668 	else if (alg->co.base.cra_type != &crypto_skcipher_type)
669 		ret = crypto_lskcipher_encrypt_sg(req);
670 	else
671 		ret = alg->encrypt(req);
672 
673 	return crypto_skcipher_errstat(alg, ret);
674 }
675 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
676 
677 int crypto_skcipher_decrypt(struct skcipher_request *req)
678 {
679 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
680 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
681 	int ret;
682 
683 	if (IS_ENABLED(CONFIG_CRYPTO_STATS)) {
684 		struct crypto_istat_cipher *istat = skcipher_get_stat(alg);
685 
686 		atomic64_inc(&istat->decrypt_cnt);
687 		atomic64_add(req->cryptlen, &istat->decrypt_tlen);
688 	}
689 
690 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
691 		ret = -ENOKEY;
692 	else if (alg->co.base.cra_type != &crypto_skcipher_type)
693 		ret = crypto_lskcipher_decrypt_sg(req);
694 	else
695 		ret = alg->decrypt(req);
696 
697 	return crypto_skcipher_errstat(alg, ret);
698 }
699 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
700 
701 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
702 {
703 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
704 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
705 
706 	alg->exit(skcipher);
707 }
708 
709 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
710 {
711 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
712 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
713 
714 	skcipher_set_needkey(skcipher);
715 
716 	if (tfm->__crt_alg->cra_type != &crypto_skcipher_type)
717 		return crypto_init_lskcipher_ops_sg(tfm);
718 
719 	if (alg->exit)
720 		skcipher->base.exit = crypto_skcipher_exit_tfm;
721 
722 	if (alg->init)
723 		return alg->init(skcipher);
724 
725 	return 0;
726 }
727 
728 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
729 {
730 	if (alg->cra_type != &crypto_skcipher_type)
731 		return sizeof(struct crypto_lskcipher *);
732 
733 	return crypto_alg_extsize(alg);
734 }
735 
736 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
737 {
738 	struct skcipher_instance *skcipher =
739 		container_of(inst, struct skcipher_instance, s.base);
740 
741 	skcipher->free(skcipher);
742 }
743 
744 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
745 	__maybe_unused;
746 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
747 {
748 	struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg);
749 
750 	seq_printf(m, "type         : skcipher\n");
751 	seq_printf(m, "async        : %s\n",
752 		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
753 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
754 	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
755 	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
756 	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
757 	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
758 	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
759 }
760 
761 static int __maybe_unused crypto_skcipher_report(
762 	struct sk_buff *skb, struct crypto_alg *alg)
763 {
764 	struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg);
765 	struct crypto_report_blkcipher rblkcipher;
766 
767 	memset(&rblkcipher, 0, sizeof(rblkcipher));
768 
769 	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
770 	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
771 
772 	rblkcipher.blocksize = alg->cra_blocksize;
773 	rblkcipher.min_keysize = skcipher->min_keysize;
774 	rblkcipher.max_keysize = skcipher->max_keysize;
775 	rblkcipher.ivsize = skcipher->ivsize;
776 
777 	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
778 		       sizeof(rblkcipher), &rblkcipher);
779 }
780 
781 static int __maybe_unused crypto_skcipher_report_stat(
782 	struct sk_buff *skb, struct crypto_alg *alg)
783 {
784 	struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg);
785 	struct crypto_istat_cipher *istat;
786 	struct crypto_stat_cipher rcipher;
787 
788 	istat = skcipher_get_stat(skcipher);
789 
790 	memset(&rcipher, 0, sizeof(rcipher));
791 
792 	strscpy(rcipher.type, "cipher", sizeof(rcipher.type));
793 
794 	rcipher.stat_encrypt_cnt = atomic64_read(&istat->encrypt_cnt);
795 	rcipher.stat_encrypt_tlen = atomic64_read(&istat->encrypt_tlen);
796 	rcipher.stat_decrypt_cnt =  atomic64_read(&istat->decrypt_cnt);
797 	rcipher.stat_decrypt_tlen = atomic64_read(&istat->decrypt_tlen);
798 	rcipher.stat_err_cnt =  atomic64_read(&istat->err_cnt);
799 
800 	return nla_put(skb, CRYPTOCFGA_STAT_CIPHER, sizeof(rcipher), &rcipher);
801 }
802 
803 static const struct crypto_type crypto_skcipher_type = {
804 	.extsize = crypto_skcipher_extsize,
805 	.init_tfm = crypto_skcipher_init_tfm,
806 	.free = crypto_skcipher_free_instance,
807 #ifdef CONFIG_PROC_FS
808 	.show = crypto_skcipher_show,
809 #endif
810 #if IS_ENABLED(CONFIG_CRYPTO_USER)
811 	.report = crypto_skcipher_report,
812 #endif
813 #ifdef CONFIG_CRYPTO_STATS
814 	.report_stat = crypto_skcipher_report_stat,
815 #endif
816 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
817 	.maskset = CRYPTO_ALG_TYPE_SKCIPHER_MASK,
818 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
819 	.tfmsize = offsetof(struct crypto_skcipher, base),
820 };
821 
822 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
823 			 struct crypto_instance *inst,
824 			 const char *name, u32 type, u32 mask)
825 {
826 	spawn->base.frontend = &crypto_skcipher_type;
827 	return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
828 }
829 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
830 
831 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
832 					      u32 type, u32 mask)
833 {
834 	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
835 }
836 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
837 
838 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
839 				const char *alg_name, u32 type, u32 mask)
840 {
841 	struct crypto_skcipher *tfm;
842 
843 	/* Only sync algorithms allowed. */
844 	mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE;
845 
846 	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
847 
848 	/*
849 	 * Make sure we do not allocate something that might get used with
850 	 * an on-stack request: check the request size.
851 	 */
852 	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
853 				    MAX_SYNC_SKCIPHER_REQSIZE)) {
854 		crypto_free_skcipher(tfm);
855 		return ERR_PTR(-EINVAL);
856 	}
857 
858 	return (struct crypto_sync_skcipher *)tfm;
859 }
860 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
861 
862 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
863 {
864 	return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
865 }
866 EXPORT_SYMBOL_GPL(crypto_has_skcipher);
867 
868 int skcipher_prepare_alg_common(struct skcipher_alg_common *alg)
869 {
870 	struct crypto_istat_cipher *istat = skcipher_get_stat_common(alg);
871 	struct crypto_alg *base = &alg->base;
872 
873 	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8)
874 		return -EINVAL;
875 
876 	if (!alg->chunksize)
877 		alg->chunksize = base->cra_blocksize;
878 
879 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
880 
881 	if (IS_ENABLED(CONFIG_CRYPTO_STATS))
882 		memset(istat, 0, sizeof(*istat));
883 
884 	return 0;
885 }
886 
887 static int skcipher_prepare_alg(struct skcipher_alg *alg)
888 {
889 	struct crypto_alg *base = &alg->base;
890 	int err;
891 
892 	err = skcipher_prepare_alg_common(&alg->co);
893 	if (err)
894 		return err;
895 
896 	if (alg->walksize > PAGE_SIZE / 8)
897 		return -EINVAL;
898 
899 	if (!alg->walksize)
900 		alg->walksize = alg->chunksize;
901 
902 	base->cra_type = &crypto_skcipher_type;
903 	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
904 
905 	return 0;
906 }
907 
908 int crypto_register_skcipher(struct skcipher_alg *alg)
909 {
910 	struct crypto_alg *base = &alg->base;
911 	int err;
912 
913 	err = skcipher_prepare_alg(alg);
914 	if (err)
915 		return err;
916 
917 	return crypto_register_alg(base);
918 }
919 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
920 
921 void crypto_unregister_skcipher(struct skcipher_alg *alg)
922 {
923 	crypto_unregister_alg(&alg->base);
924 }
925 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
926 
927 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
928 {
929 	int i, ret;
930 
931 	for (i = 0; i < count; i++) {
932 		ret = crypto_register_skcipher(&algs[i]);
933 		if (ret)
934 			goto err;
935 	}
936 
937 	return 0;
938 
939 err:
940 	for (--i; i >= 0; --i)
941 		crypto_unregister_skcipher(&algs[i]);
942 
943 	return ret;
944 }
945 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
946 
947 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
948 {
949 	int i;
950 
951 	for (i = count - 1; i >= 0; --i)
952 		crypto_unregister_skcipher(&algs[i]);
953 }
954 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
955 
956 int skcipher_register_instance(struct crypto_template *tmpl,
957 			   struct skcipher_instance *inst)
958 {
959 	int err;
960 
961 	if (WARN_ON(!inst->free))
962 		return -EINVAL;
963 
964 	err = skcipher_prepare_alg(&inst->alg);
965 	if (err)
966 		return err;
967 
968 	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
969 }
970 EXPORT_SYMBOL_GPL(skcipher_register_instance);
971 
972 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
973 				  unsigned int keylen)
974 {
975 	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
976 
977 	crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
978 	crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
979 				CRYPTO_TFM_REQ_MASK);
980 	return crypto_cipher_setkey(cipher, key, keylen);
981 }
982 
983 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
984 {
985 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
986 	struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
987 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
988 	struct crypto_cipher *cipher;
989 
990 	cipher = crypto_spawn_cipher(spawn);
991 	if (IS_ERR(cipher))
992 		return PTR_ERR(cipher);
993 
994 	ctx->cipher = cipher;
995 	return 0;
996 }
997 
998 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
999 {
1000 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1001 
1002 	crypto_free_cipher(ctx->cipher);
1003 }
1004 
1005 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
1006 {
1007 	crypto_drop_cipher(skcipher_instance_ctx(inst));
1008 	kfree(inst);
1009 }
1010 
1011 /**
1012  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
1013  *
1014  * Allocate an skcipher_instance for a simple block cipher mode of operation,
1015  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
1016  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
1017  * alignmask, and priority are set from the underlying cipher but can be
1018  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
1019  * default ->setkey(), ->init(), and ->exit() methods are installed.
1020  *
1021  * @tmpl: the template being instantiated
1022  * @tb: the template parameters
1023  *
1024  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
1025  *	   needs to register the instance.
1026  */
1027 struct skcipher_instance *skcipher_alloc_instance_simple(
1028 	struct crypto_template *tmpl, struct rtattr **tb)
1029 {
1030 	u32 mask;
1031 	struct skcipher_instance *inst;
1032 	struct crypto_cipher_spawn *spawn;
1033 	struct crypto_alg *cipher_alg;
1034 	int err;
1035 
1036 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
1037 	if (err)
1038 		return ERR_PTR(err);
1039 
1040 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
1041 	if (!inst)
1042 		return ERR_PTR(-ENOMEM);
1043 	spawn = skcipher_instance_ctx(inst);
1044 
1045 	err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
1046 				 crypto_attr_alg_name(tb[1]), 0, mask);
1047 	if (err)
1048 		goto err_free_inst;
1049 	cipher_alg = crypto_spawn_cipher_alg(spawn);
1050 
1051 	err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
1052 				  cipher_alg);
1053 	if (err)
1054 		goto err_free_inst;
1055 
1056 	inst->free = skcipher_free_instance_simple;
1057 
1058 	/* Default algorithm properties, can be overridden */
1059 	inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
1060 	inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
1061 	inst->alg.base.cra_priority = cipher_alg->cra_priority;
1062 	inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
1063 	inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
1064 	inst->alg.ivsize = cipher_alg->cra_blocksize;
1065 
1066 	/* Use skcipher_ctx_simple by default, can be overridden */
1067 	inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
1068 	inst->alg.setkey = skcipher_setkey_simple;
1069 	inst->alg.init = skcipher_init_tfm_simple;
1070 	inst->alg.exit = skcipher_exit_tfm_simple;
1071 
1072 	return inst;
1073 
1074 err_free_inst:
1075 	skcipher_free_instance_simple(inst);
1076 	return ERR_PTR(err);
1077 }
1078 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
1079 
1080 MODULE_LICENSE("GPL");
1081 MODULE_DESCRIPTION("Symmetric key cipher type");
1082 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
1083