1 /* SHA-512 code by Jean-Luc Cooke <jlcooke@certainkey.com> 2 * 3 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com> 4 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> 5 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License as published by the 9 * Free Software Foundation; either version 2, or (at your option) any 10 * later version. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/mm.h> 17 #include <linux/init.h> 18 #include <linux/crypto.h> 19 #include <linux/types.h> 20 #include <crypto/sha.h> 21 22 #include <asm/byteorder.h> 23 24 struct sha512_ctx { 25 u64 state[8]; 26 u32 count[4]; 27 u8 buf[128]; 28 u64 W[80]; 29 }; 30 31 static inline u64 Ch(u64 x, u64 y, u64 z) 32 { 33 return z ^ (x & (y ^ z)); 34 } 35 36 static inline u64 Maj(u64 x, u64 y, u64 z) 37 { 38 return (x & y) | (z & (x | y)); 39 } 40 41 static inline u64 RORu64(u64 x, u64 y) 42 { 43 return (x >> y) | (x << (64 - y)); 44 } 45 46 static const u64 sha512_K[80] = { 47 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 48 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 49 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 50 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 51 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 52 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 53 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 54 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 55 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 56 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 57 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 58 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 59 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 60 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 61 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 62 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 63 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 64 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 65 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 66 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 67 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 68 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 69 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 70 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 71 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 72 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 73 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, 74 }; 75 76 #define e0(x) (RORu64(x,28) ^ RORu64(x,34) ^ RORu64(x,39)) 77 #define e1(x) (RORu64(x,14) ^ RORu64(x,18) ^ RORu64(x,41)) 78 #define s0(x) (RORu64(x, 1) ^ RORu64(x, 8) ^ (x >> 7)) 79 #define s1(x) (RORu64(x,19) ^ RORu64(x,61) ^ (x >> 6)) 80 81 static inline void LOAD_OP(int I, u64 *W, const u8 *input) 82 { 83 W[I] = __be64_to_cpu( ((__be64*)(input))[I] ); 84 } 85 86 static inline void BLEND_OP(int I, u64 *W) 87 { 88 W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16]; 89 } 90 91 static void 92 sha512_transform(u64 *state, u64 *W, const u8 *input) 93 { 94 u64 a, b, c, d, e, f, g, h, t1, t2; 95 96 int i; 97 98 /* load the input */ 99 for (i = 0; i < 16; i++) 100 LOAD_OP(i, W, input); 101 102 for (i = 16; i < 80; i++) { 103 BLEND_OP(i, W); 104 } 105 106 /* load the state into our registers */ 107 a=state[0]; b=state[1]; c=state[2]; d=state[3]; 108 e=state[4]; f=state[5]; g=state[6]; h=state[7]; 109 110 /* now iterate */ 111 for (i=0; i<80; i+=8) { 112 t1 = h + e1(e) + Ch(e,f,g) + sha512_K[i ] + W[i ]; 113 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2; 114 t1 = g + e1(d) + Ch(d,e,f) + sha512_K[i+1] + W[i+1]; 115 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2; 116 t1 = f + e1(c) + Ch(c,d,e) + sha512_K[i+2] + W[i+2]; 117 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2; 118 t1 = e + e1(b) + Ch(b,c,d) + sha512_K[i+3] + W[i+3]; 119 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2; 120 t1 = d + e1(a) + Ch(a,b,c) + sha512_K[i+4] + W[i+4]; 121 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2; 122 t1 = c + e1(h) + Ch(h,a,b) + sha512_K[i+5] + W[i+5]; 123 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2; 124 t1 = b + e1(g) + Ch(g,h,a) + sha512_K[i+6] + W[i+6]; 125 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2; 126 t1 = a + e1(f) + Ch(f,g,h) + sha512_K[i+7] + W[i+7]; 127 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2; 128 } 129 130 state[0] += a; state[1] += b; state[2] += c; state[3] += d; 131 state[4] += e; state[5] += f; state[6] += g; state[7] += h; 132 133 /* erase our data */ 134 a = b = c = d = e = f = g = h = t1 = t2 = 0; 135 } 136 137 static void 138 sha512_init(struct crypto_tfm *tfm) 139 { 140 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm); 141 sctx->state[0] = SHA512_H0; 142 sctx->state[1] = SHA512_H1; 143 sctx->state[2] = SHA512_H2; 144 sctx->state[3] = SHA512_H3; 145 sctx->state[4] = SHA512_H4; 146 sctx->state[5] = SHA512_H5; 147 sctx->state[6] = SHA512_H6; 148 sctx->state[7] = SHA512_H7; 149 sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0; 150 } 151 152 static void 153 sha384_init(struct crypto_tfm *tfm) 154 { 155 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm); 156 sctx->state[0] = SHA384_H0; 157 sctx->state[1] = SHA384_H1; 158 sctx->state[2] = SHA384_H2; 159 sctx->state[3] = SHA384_H3; 160 sctx->state[4] = SHA384_H4; 161 sctx->state[5] = SHA384_H5; 162 sctx->state[6] = SHA384_H6; 163 sctx->state[7] = SHA384_H7; 164 sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0; 165 } 166 167 static void 168 sha512_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len) 169 { 170 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm); 171 172 unsigned int i, index, part_len; 173 174 /* Compute number of bytes mod 128 */ 175 index = (unsigned int)((sctx->count[0] >> 3) & 0x7F); 176 177 /* Update number of bits */ 178 if ((sctx->count[0] += (len << 3)) < (len << 3)) { 179 if ((sctx->count[1] += 1) < 1) 180 if ((sctx->count[2] += 1) < 1) 181 sctx->count[3]++; 182 sctx->count[1] += (len >> 29); 183 } 184 185 part_len = 128 - index; 186 187 /* Transform as many times as possible. */ 188 if (len >= part_len) { 189 memcpy(&sctx->buf[index], data, part_len); 190 sha512_transform(sctx->state, sctx->W, sctx->buf); 191 192 for (i = part_len; i + 127 < len; i+=128) 193 sha512_transform(sctx->state, sctx->W, &data[i]); 194 195 index = 0; 196 } else { 197 i = 0; 198 } 199 200 /* Buffer remaining input */ 201 memcpy(&sctx->buf[index], &data[i], len - i); 202 203 /* erase our data */ 204 memset(sctx->W, 0, sizeof(sctx->W)); 205 } 206 207 static void 208 sha512_final(struct crypto_tfm *tfm, u8 *hash) 209 { 210 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm); 211 static u8 padding[128] = { 0x80, }; 212 __be64 *dst = (__be64 *)hash; 213 __be32 bits[4]; 214 unsigned int index, pad_len; 215 int i; 216 217 /* Save number of bits */ 218 bits[3] = cpu_to_be32(sctx->count[0]); 219 bits[2] = cpu_to_be32(sctx->count[1]); 220 bits[1] = cpu_to_be32(sctx->count[2]); 221 bits[0] = cpu_to_be32(sctx->count[3]); 222 223 /* Pad out to 112 mod 128. */ 224 index = (sctx->count[0] >> 3) & 0x7f; 225 pad_len = (index < 112) ? (112 - index) : ((128+112) - index); 226 sha512_update(tfm, padding, pad_len); 227 228 /* Append length (before padding) */ 229 sha512_update(tfm, (const u8 *)bits, sizeof(bits)); 230 231 /* Store state in digest */ 232 for (i = 0; i < 8; i++) 233 dst[i] = cpu_to_be64(sctx->state[i]); 234 235 /* Zeroize sensitive information. */ 236 memset(sctx, 0, sizeof(struct sha512_ctx)); 237 } 238 239 static void sha384_final(struct crypto_tfm *tfm, u8 *hash) 240 { 241 u8 D[64]; 242 243 sha512_final(tfm, D); 244 245 memcpy(hash, D, 48); 246 memset(D, 0, 64); 247 } 248 249 static struct crypto_alg sha512 = { 250 .cra_name = "sha512", 251 .cra_flags = CRYPTO_ALG_TYPE_DIGEST, 252 .cra_blocksize = SHA512_BLOCK_SIZE, 253 .cra_ctxsize = sizeof(struct sha512_ctx), 254 .cra_module = THIS_MODULE, 255 .cra_alignmask = 3, 256 .cra_list = LIST_HEAD_INIT(sha512.cra_list), 257 .cra_u = { .digest = { 258 .dia_digestsize = SHA512_DIGEST_SIZE, 259 .dia_init = sha512_init, 260 .dia_update = sha512_update, 261 .dia_final = sha512_final } 262 } 263 }; 264 265 static struct crypto_alg sha384 = { 266 .cra_name = "sha384", 267 .cra_flags = CRYPTO_ALG_TYPE_DIGEST, 268 .cra_blocksize = SHA384_BLOCK_SIZE, 269 .cra_ctxsize = sizeof(struct sha512_ctx), 270 .cra_alignmask = 3, 271 .cra_module = THIS_MODULE, 272 .cra_list = LIST_HEAD_INIT(sha384.cra_list), 273 .cra_u = { .digest = { 274 .dia_digestsize = SHA384_DIGEST_SIZE, 275 .dia_init = sha384_init, 276 .dia_update = sha512_update, 277 .dia_final = sha384_final } 278 } 279 }; 280 281 static int __init sha512_generic_mod_init(void) 282 { 283 int ret = 0; 284 285 if ((ret = crypto_register_alg(&sha384)) < 0) 286 goto out; 287 if ((ret = crypto_register_alg(&sha512)) < 0) 288 crypto_unregister_alg(&sha384); 289 out: 290 return ret; 291 } 292 293 static void __exit sha512_generic_mod_fini(void) 294 { 295 crypto_unregister_alg(&sha384); 296 crypto_unregister_alg(&sha512); 297 } 298 299 module_init(sha512_generic_mod_init); 300 module_exit(sha512_generic_mod_fini); 301 302 MODULE_LICENSE("GPL"); 303 MODULE_DESCRIPTION("SHA-512 and SHA-384 Secure Hash Algorithms"); 304 305 MODULE_ALIAS("sha384"); 306 MODULE_ALIAS("sha512"); 307