1 /* 2 * RSA padding templates. 3 * 4 * Copyright (c) 2015 Intel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 */ 11 12 #include <crypto/algapi.h> 13 #include <crypto/akcipher.h> 14 #include <crypto/internal/akcipher.h> 15 #include <linux/err.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/random.h> 20 21 /* 22 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. 23 */ 24 static const u8 rsa_digest_info_md5[] = { 25 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 26 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 27 0x05, 0x00, 0x04, 0x10 28 }; 29 30 static const u8 rsa_digest_info_sha1[] = { 31 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 32 0x2b, 0x0e, 0x03, 0x02, 0x1a, 33 0x05, 0x00, 0x04, 0x14 34 }; 35 36 static const u8 rsa_digest_info_rmd160[] = { 37 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 38 0x2b, 0x24, 0x03, 0x02, 0x01, 39 0x05, 0x00, 0x04, 0x14 40 }; 41 42 static const u8 rsa_digest_info_sha224[] = { 43 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 44 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 45 0x05, 0x00, 0x04, 0x1c 46 }; 47 48 static const u8 rsa_digest_info_sha256[] = { 49 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 50 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 51 0x05, 0x00, 0x04, 0x20 52 }; 53 54 static const u8 rsa_digest_info_sha384[] = { 55 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 56 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 57 0x05, 0x00, 0x04, 0x30 58 }; 59 60 static const u8 rsa_digest_info_sha512[] = { 61 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 62 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 63 0x05, 0x00, 0x04, 0x40 64 }; 65 66 static const struct rsa_asn1_template { 67 const char *name; 68 const u8 *data; 69 size_t size; 70 } rsa_asn1_templates[] = { 71 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) } 72 _(md5), 73 _(sha1), 74 _(rmd160), 75 _(sha256), 76 _(sha384), 77 _(sha512), 78 _(sha224), 79 { NULL } 80 #undef _ 81 }; 82 83 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name) 84 { 85 const struct rsa_asn1_template *p; 86 87 for (p = rsa_asn1_templates; p->name; p++) 88 if (strcmp(name, p->name) == 0) 89 return p; 90 return NULL; 91 } 92 93 struct pkcs1pad_ctx { 94 struct crypto_akcipher *child; 95 unsigned int key_size; 96 }; 97 98 struct pkcs1pad_inst_ctx { 99 struct crypto_akcipher_spawn spawn; 100 const struct rsa_asn1_template *digest_info; 101 }; 102 103 struct pkcs1pad_request { 104 struct scatterlist in_sg[2], out_sg[1]; 105 uint8_t *in_buf, *out_buf; 106 struct akcipher_request child_req; 107 }; 108 109 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, 110 unsigned int keylen) 111 { 112 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 113 int err; 114 115 ctx->key_size = 0; 116 117 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); 118 if (err) 119 return err; 120 121 /* Find out new modulus size from rsa implementation */ 122 err = crypto_akcipher_maxsize(ctx->child); 123 if (err < 0) 124 return err; 125 126 if (err > PAGE_SIZE) 127 return -ENOTSUPP; 128 129 ctx->key_size = err; 130 return 0; 131 } 132 133 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, 134 unsigned int keylen) 135 { 136 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 137 int err; 138 139 ctx->key_size = 0; 140 141 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); 142 if (err) 143 return err; 144 145 /* Find out new modulus size from rsa implementation */ 146 err = crypto_akcipher_maxsize(ctx->child); 147 if (err < 0) 148 return err; 149 150 if (err > PAGE_SIZE) 151 return -ENOTSUPP; 152 153 ctx->key_size = err; 154 return 0; 155 } 156 157 static int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) 158 { 159 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 160 161 /* 162 * The maximum destination buffer size for the encrypt/sign operations 163 * will be the same as for RSA, even though it's smaller for 164 * decrypt/verify. 165 */ 166 167 return ctx->key_size ?: -EINVAL; 168 } 169 170 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, 171 struct scatterlist *next) 172 { 173 int nsegs = next ? 2 : 1; 174 175 sg_init_table(sg, nsegs); 176 sg_set_buf(sg, buf, len); 177 178 if (next) 179 sg_chain(sg, nsegs, next); 180 } 181 182 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) 183 { 184 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 185 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 186 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 187 unsigned int pad_len; 188 unsigned int len; 189 u8 *out_buf; 190 191 if (err) 192 goto out; 193 194 len = req_ctx->child_req.dst_len; 195 pad_len = ctx->key_size - len; 196 197 /* Four billion to one */ 198 if (likely(!pad_len)) 199 goto out; 200 201 out_buf = kzalloc(ctx->key_size, GFP_ATOMIC); 202 err = -ENOMEM; 203 if (!out_buf) 204 goto out; 205 206 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), 207 out_buf + pad_len, len); 208 sg_copy_from_buffer(req->dst, 209 sg_nents_for_len(req->dst, ctx->key_size), 210 out_buf, ctx->key_size); 211 kzfree(out_buf); 212 213 out: 214 req->dst_len = ctx->key_size; 215 216 kfree(req_ctx->in_buf); 217 218 return err; 219 } 220 221 static void pkcs1pad_encrypt_sign_complete_cb( 222 struct crypto_async_request *child_async_req, int err) 223 { 224 struct akcipher_request *req = child_async_req->data; 225 struct crypto_async_request async_req; 226 227 if (err == -EINPROGRESS) 228 return; 229 230 async_req.data = req->base.data; 231 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 232 async_req.flags = child_async_req->flags; 233 req->base.complete(&async_req, 234 pkcs1pad_encrypt_sign_complete(req, err)); 235 } 236 237 static int pkcs1pad_encrypt(struct akcipher_request *req) 238 { 239 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 240 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 241 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 242 int err; 243 unsigned int i, ps_end; 244 245 if (!ctx->key_size) 246 return -EINVAL; 247 248 if (req->src_len > ctx->key_size - 11) 249 return -EOVERFLOW; 250 251 if (req->dst_len < ctx->key_size) { 252 req->dst_len = ctx->key_size; 253 return -EOVERFLOW; 254 } 255 256 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 257 GFP_KERNEL); 258 if (!req_ctx->in_buf) 259 return -ENOMEM; 260 261 ps_end = ctx->key_size - req->src_len - 2; 262 req_ctx->in_buf[0] = 0x02; 263 for (i = 1; i < ps_end; i++) 264 req_ctx->in_buf[i] = 1 + prandom_u32_max(255); 265 req_ctx->in_buf[ps_end] = 0x00; 266 267 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 268 ctx->key_size - 1 - req->src_len, req->src); 269 270 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 271 if (!req_ctx->out_buf) { 272 kfree(req_ctx->in_buf); 273 return -ENOMEM; 274 } 275 276 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 277 ctx->key_size, NULL); 278 279 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 280 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 281 pkcs1pad_encrypt_sign_complete_cb, req); 282 283 /* Reuse output buffer */ 284 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 285 req->dst, ctx->key_size - 1, req->dst_len); 286 287 err = crypto_akcipher_encrypt(&req_ctx->child_req); 288 if (err != -EINPROGRESS && 289 (err != -EBUSY || 290 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) 291 return pkcs1pad_encrypt_sign_complete(req, err); 292 293 return err; 294 } 295 296 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) 297 { 298 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 299 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 300 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 301 unsigned int pos; 302 303 if (err == -EOVERFLOW) 304 /* Decrypted value had no leading 0 byte */ 305 err = -EINVAL; 306 307 if (err) 308 goto done; 309 310 if (req_ctx->child_req.dst_len != ctx->key_size - 1) { 311 err = -EINVAL; 312 goto done; 313 } 314 315 if (req_ctx->out_buf[0] != 0x02) { 316 err = -EINVAL; 317 goto done; 318 } 319 for (pos = 1; pos < req_ctx->child_req.dst_len; pos++) 320 if (req_ctx->out_buf[pos] == 0x00) 321 break; 322 if (pos < 9 || pos == req_ctx->child_req.dst_len) { 323 err = -EINVAL; 324 goto done; 325 } 326 pos++; 327 328 if (req->dst_len < req_ctx->child_req.dst_len - pos) 329 err = -EOVERFLOW; 330 req->dst_len = req_ctx->child_req.dst_len - pos; 331 332 if (!err) 333 sg_copy_from_buffer(req->dst, 334 sg_nents_for_len(req->dst, req->dst_len), 335 req_ctx->out_buf + pos, req->dst_len); 336 337 done: 338 kzfree(req_ctx->out_buf); 339 340 return err; 341 } 342 343 static void pkcs1pad_decrypt_complete_cb( 344 struct crypto_async_request *child_async_req, int err) 345 { 346 struct akcipher_request *req = child_async_req->data; 347 struct crypto_async_request async_req; 348 349 if (err == -EINPROGRESS) 350 return; 351 352 async_req.data = req->base.data; 353 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 354 async_req.flags = child_async_req->flags; 355 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err)); 356 } 357 358 static int pkcs1pad_decrypt(struct akcipher_request *req) 359 { 360 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 361 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 362 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 363 int err; 364 365 if (!ctx->key_size || req->src_len != ctx->key_size) 366 return -EINVAL; 367 368 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 369 if (!req_ctx->out_buf) 370 return -ENOMEM; 371 372 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 373 ctx->key_size, NULL); 374 375 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 376 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 377 pkcs1pad_decrypt_complete_cb, req); 378 379 /* Reuse input buffer, output to a new buffer */ 380 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 381 req_ctx->out_sg, req->src_len, 382 ctx->key_size); 383 384 err = crypto_akcipher_decrypt(&req_ctx->child_req); 385 if (err != -EINPROGRESS && 386 (err != -EBUSY || 387 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) 388 return pkcs1pad_decrypt_complete(req, err); 389 390 return err; 391 } 392 393 static int pkcs1pad_sign(struct akcipher_request *req) 394 { 395 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 396 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 397 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 398 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 399 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 400 const struct rsa_asn1_template *digest_info = ictx->digest_info; 401 int err; 402 unsigned int ps_end, digest_size = 0; 403 404 if (!ctx->key_size) 405 return -EINVAL; 406 407 digest_size = digest_info->size; 408 409 if (req->src_len + digest_size > ctx->key_size - 11) 410 return -EOVERFLOW; 411 412 if (req->dst_len < ctx->key_size) { 413 req->dst_len = ctx->key_size; 414 return -EOVERFLOW; 415 } 416 417 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 418 GFP_KERNEL); 419 if (!req_ctx->in_buf) 420 return -ENOMEM; 421 422 ps_end = ctx->key_size - digest_size - req->src_len - 2; 423 req_ctx->in_buf[0] = 0x01; 424 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); 425 req_ctx->in_buf[ps_end] = 0x00; 426 427 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data, 428 digest_info->size); 429 430 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 431 ctx->key_size - 1 - req->src_len, req->src); 432 433 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 434 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 435 pkcs1pad_encrypt_sign_complete_cb, req); 436 437 /* Reuse output buffer */ 438 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 439 req->dst, ctx->key_size - 1, req->dst_len); 440 441 err = crypto_akcipher_sign(&req_ctx->child_req); 442 if (err != -EINPROGRESS && 443 (err != -EBUSY || 444 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) 445 return pkcs1pad_encrypt_sign_complete(req, err); 446 447 return err; 448 } 449 450 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) 451 { 452 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 453 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 454 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 455 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 456 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 457 const struct rsa_asn1_template *digest_info = ictx->digest_info; 458 unsigned int dst_len; 459 unsigned int pos; 460 u8 *out_buf; 461 462 if (err) 463 goto done; 464 465 err = -EINVAL; 466 dst_len = req_ctx->child_req.dst_len; 467 if (dst_len < ctx->key_size - 1) 468 goto done; 469 470 out_buf = req_ctx->out_buf; 471 if (dst_len == ctx->key_size) { 472 if (out_buf[0] != 0x00) 473 /* Decrypted value had no leading 0 byte */ 474 goto done; 475 476 dst_len--; 477 out_buf++; 478 } 479 480 err = -EBADMSG; 481 if (out_buf[0] != 0x01) 482 goto done; 483 484 for (pos = 1; pos < dst_len; pos++) 485 if (out_buf[pos] != 0xff) 486 break; 487 488 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) 489 goto done; 490 pos++; 491 492 if (memcmp(out_buf + pos, digest_info->data, digest_info->size)) 493 goto done; 494 495 pos += digest_info->size; 496 497 err = 0; 498 499 if (req->dst_len < dst_len - pos) 500 err = -EOVERFLOW; 501 req->dst_len = dst_len - pos; 502 503 if (!err) 504 sg_copy_from_buffer(req->dst, 505 sg_nents_for_len(req->dst, req->dst_len), 506 out_buf + pos, req->dst_len); 507 done: 508 kzfree(req_ctx->out_buf); 509 510 return err; 511 } 512 513 static void pkcs1pad_verify_complete_cb( 514 struct crypto_async_request *child_async_req, int err) 515 { 516 struct akcipher_request *req = child_async_req->data; 517 struct crypto_async_request async_req; 518 519 if (err == -EINPROGRESS) 520 return; 521 522 async_req.data = req->base.data; 523 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); 524 async_req.flags = child_async_req->flags; 525 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err)); 526 } 527 528 /* 529 * The verify operation is here for completeness similar to the verification 530 * defined in RFC2313 section 10.2 except that block type 0 is not accepted, 531 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to 532 * retrieve the DigestInfo from a signature, instead the user is expected 533 * to call the sign operation to generate the expected signature and compare 534 * signatures instead of the message-digests. 535 */ 536 static int pkcs1pad_verify(struct akcipher_request *req) 537 { 538 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 539 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 540 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 541 int err; 542 543 if (!ctx->key_size || req->src_len < ctx->key_size) 544 return -EINVAL; 545 546 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 547 if (!req_ctx->out_buf) 548 return -ENOMEM; 549 550 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 551 ctx->key_size, NULL); 552 553 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 554 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 555 pkcs1pad_verify_complete_cb, req); 556 557 /* Reuse input buffer, output to a new buffer */ 558 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 559 req_ctx->out_sg, req->src_len, 560 ctx->key_size); 561 562 err = crypto_akcipher_verify(&req_ctx->child_req); 563 if (err != -EINPROGRESS && 564 (err != -EBUSY || 565 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) 566 return pkcs1pad_verify_complete(req, err); 567 568 return err; 569 } 570 571 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) 572 { 573 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 574 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 575 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 576 struct crypto_akcipher *child_tfm; 577 578 child_tfm = crypto_spawn_akcipher(&ictx->spawn); 579 if (IS_ERR(child_tfm)) 580 return PTR_ERR(child_tfm); 581 582 ctx->child = child_tfm; 583 return 0; 584 } 585 586 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) 587 { 588 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 589 590 crypto_free_akcipher(ctx->child); 591 } 592 593 static void pkcs1pad_free(struct akcipher_instance *inst) 594 { 595 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst); 596 struct crypto_akcipher_spawn *spawn = &ctx->spawn; 597 598 crypto_drop_akcipher(spawn); 599 kfree(inst); 600 } 601 602 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) 603 { 604 const struct rsa_asn1_template *digest_info; 605 struct crypto_attr_type *algt; 606 struct akcipher_instance *inst; 607 struct pkcs1pad_inst_ctx *ctx; 608 struct crypto_akcipher_spawn *spawn; 609 struct akcipher_alg *rsa_alg; 610 const char *rsa_alg_name; 611 const char *hash_name; 612 int err; 613 614 algt = crypto_get_attr_type(tb); 615 if (IS_ERR(algt)) 616 return PTR_ERR(algt); 617 618 if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask) 619 return -EINVAL; 620 621 rsa_alg_name = crypto_attr_alg_name(tb[1]); 622 if (IS_ERR(rsa_alg_name)) 623 return PTR_ERR(rsa_alg_name); 624 625 hash_name = crypto_attr_alg_name(tb[2]); 626 if (IS_ERR(hash_name)) 627 return PTR_ERR(hash_name); 628 629 digest_info = rsa_lookup_asn1(hash_name); 630 if (!digest_info) 631 return -EINVAL; 632 633 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 634 if (!inst) 635 return -ENOMEM; 636 637 ctx = akcipher_instance_ctx(inst); 638 spawn = &ctx->spawn; 639 ctx->digest_info = digest_info; 640 641 crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst)); 642 err = crypto_grab_akcipher(spawn, rsa_alg_name, 0, 643 crypto_requires_sync(algt->type, algt->mask)); 644 if (err) 645 goto out_free_inst; 646 647 rsa_alg = crypto_spawn_akcipher_alg(spawn); 648 649 err = -ENAMETOOLONG; 650 651 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 652 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >= 653 CRYPTO_MAX_ALG_NAME || 654 snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, 655 "pkcs1pad(%s,%s)", 656 rsa_alg->base.cra_driver_name, hash_name) >= 657 CRYPTO_MAX_ALG_NAME) 658 goto out_drop_alg; 659 660 inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC; 661 inst->alg.base.cra_priority = rsa_alg->base.cra_priority; 662 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); 663 664 inst->alg.init = pkcs1pad_init_tfm; 665 inst->alg.exit = pkcs1pad_exit_tfm; 666 667 inst->alg.encrypt = pkcs1pad_encrypt; 668 inst->alg.decrypt = pkcs1pad_decrypt; 669 inst->alg.sign = pkcs1pad_sign; 670 inst->alg.verify = pkcs1pad_verify; 671 inst->alg.set_pub_key = pkcs1pad_set_pub_key; 672 inst->alg.set_priv_key = pkcs1pad_set_priv_key; 673 inst->alg.max_size = pkcs1pad_get_max_size; 674 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize; 675 676 inst->free = pkcs1pad_free; 677 678 err = akcipher_register_instance(tmpl, inst); 679 if (err) 680 goto out_drop_alg; 681 682 return 0; 683 684 out_drop_alg: 685 crypto_drop_akcipher(spawn); 686 out_free_inst: 687 kfree(inst); 688 return err; 689 } 690 691 struct crypto_template rsa_pkcs1pad_tmpl = { 692 .name = "pkcs1pad", 693 .create = pkcs1pad_create, 694 .module = THIS_MODULE, 695 }; 696