xref: /linux/crypto/jitterentropy.c (revision bfb921b2a9d5d1123d1d10b196a39db629ddef87)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
6  *
7  * Design
8  * ======
9  *
10  * See https://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 3.4.0 provided at https://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 typedef unsigned char		u8;
61 #define NULL    ((void *) 0)
62 
63 /* The entropy pool */
64 struct rand_data {
65 	/* SHA3-256 is used as conditioner */
66 #define DATA_SIZE_BITS 256
67 	/* all data values that are vital to maintain the security
68 	 * of the RNG are marked as SENSITIVE. A user must not
69 	 * access that information while the RNG executes its loops to
70 	 * calculate the next random value. */
71 	void *hash_state;		/* SENSITIVE hash state entropy pool */
72 	__u64 prev_time;		/* SENSITIVE Previous time stamp */
73 	__u64 last_delta;		/* SENSITIVE stuck test */
74 	__s64 last_delta2;		/* SENSITIVE stuck test */
75 
76 	unsigned int flags;		/* Flags used to initialize */
77 	unsigned int osr;		/* Oversample rate */
78 #define JENT_MEMORY_ACCESSLOOPS 128
79 #define JENT_MEMORY_SIZE						\
80 	(CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS *			\
81 	 CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE)
82 	unsigned char *mem;	/* Memory access location with size of
83 				 * memblocks * memblocksize */
84 	unsigned int memlocation; /* Pointer to byte in *mem */
85 	unsigned int memblocks;	/* Number of memory blocks in *mem */
86 	unsigned int memblocksize; /* Size of one memory block in bytes */
87 	unsigned int memaccessloops; /* Number of memory accesses per random
88 				      * bit generation */
89 
90 	/* Repetition Count Test */
91 	unsigned int rct_count;			/* Number of stuck values */
92 
93 	/* Adaptive Proportion Test cutoff values */
94 	unsigned int apt_cutoff; /* Intermittent health test failure */
95 	unsigned int apt_cutoff_permanent; /* Permanent health test failure */
96 #define JENT_APT_WINDOW_SIZE	512	/* Data window size */
97 	/* LSB of time stamp to process */
98 #define JENT_APT_LSB		16
99 #define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
100 	unsigned int apt_observations;	/* Number of collected observations */
101 	unsigned int apt_count;		/* APT counter */
102 	unsigned int apt_base;		/* APT base reference */
103 	unsigned int health_failure;	/* Record health failure */
104 
105 	unsigned int apt_base_set:1;	/* APT base reference set? */
106 };
107 
108 /* Flags that can be used to initialize the RNG */
109 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
110 					   * entropy, saves MEMORY_SIZE RAM for
111 					   * entropy collector */
112 
113 /* -- error codes for init function -- */
114 #define JENT_ENOTIME		1 /* Timer service not available */
115 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
116 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
117 #define JENT_EVARVAR		5 /* Timer does not produce variations of
118 				   * variations (2nd derivation of time is
119 				   * zero). */
120 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
121 #define JENT_EHEALTH		9 /* Health test failed during initialization */
122 #define JENT_ERCT	       10 /* RCT failed during initialization */
123 #define JENT_EHASH	       11 /* Hash self test failed */
124 #define JENT_EMEM	       12 /* Can't allocate memory for initialization */
125 
126 #define JENT_RCT_FAILURE	1 /* Failure in RCT health test. */
127 #define JENT_APT_FAILURE	2 /* Failure in APT health test. */
128 #define JENT_PERMANENT_FAILURE_SHIFT	16
129 #define JENT_PERMANENT_FAILURE(x)	(x << JENT_PERMANENT_FAILURE_SHIFT)
130 #define JENT_RCT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_RCT_FAILURE)
131 #define JENT_APT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_APT_FAILURE)
132 
133 /*
134  * The output n bits can receive more than n bits of min entropy, of course,
135  * but the fixed output of the conditioning function can only asymptotically
136  * approach the output size bits of min entropy, not attain that bound. Random
137  * maps will tend to have output collisions, which reduces the creditable
138  * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
139  *
140  * The value "64" is justified in Appendix A.4 of the current 90C draft,
141  * and aligns with NIST's in "epsilon" definition in this document, which is
142  * that a string can be considered "full entropy" if you can bound the min
143  * entropy in each bit of output to at least 1-epsilon, where epsilon is
144  * required to be <= 2^(-32).
145  */
146 #define JENT_ENTROPY_SAFETY_FACTOR	64
147 
148 #include <linux/fips.h>
149 #include "jitterentropy.h"
150 
151 /***************************************************************************
152  * Adaptive Proportion Test
153  *
154  * This test complies with SP800-90B section 4.4.2.
155  ***************************************************************************/
156 
157 /*
158  * See the SP 800-90B comment #10b for the corrected cutoff for the SP 800-90B
159  * APT.
160  * https://www.untruth.org/~josh/sp80090b/UL%20SP800-90B-final%20comments%20v1.9%2020191212.pdf
161  * In the syntax of R, this is C = 2 + qbinom(1 − 2^(−30), 511, 2^(-1/osr)).
162  * (The original formula wasn't correct because the first symbol must
163  * necessarily have been observed, so there is no chance of observing 0 of these
164  * symbols.)
165  *
166  * For the alpha < 2^-53, R cannot be used as it uses a float data type without
167  * arbitrary precision. A SageMath script is used to calculate those cutoff
168  * values.
169  *
170  * For any value above 14, this yields the maximal allowable value of 512
171  * (by FIPS 140-2 IG 7.19 Resolution # 16, we cannot choose a cutoff value that
172  * renders the test unable to fail).
173  */
174 static const unsigned int jent_apt_cutoff_lookup[15] = {
175 	325, 422, 459, 477, 488, 494, 499, 502,
176 	505, 507, 508, 509, 510, 511, 512 };
177 static const unsigned int jent_apt_cutoff_permanent_lookup[15] = {
178 	355, 447, 479, 494, 502, 507, 510, 512,
179 	512, 512, 512, 512, 512, 512, 512 };
180 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
181 
182 static void jent_apt_init(struct rand_data *ec, unsigned int osr)
183 {
184 	/*
185 	 * Establish the apt_cutoff based on the presumed entropy rate of
186 	 * 1/osr.
187 	 */
188 	if (osr >= ARRAY_SIZE(jent_apt_cutoff_lookup)) {
189 		ec->apt_cutoff = jent_apt_cutoff_lookup[
190 			ARRAY_SIZE(jent_apt_cutoff_lookup) - 1];
191 		ec->apt_cutoff_permanent = jent_apt_cutoff_permanent_lookup[
192 			ARRAY_SIZE(jent_apt_cutoff_permanent_lookup) - 1];
193 	} else {
194 		ec->apt_cutoff = jent_apt_cutoff_lookup[osr - 1];
195 		ec->apt_cutoff_permanent =
196 				jent_apt_cutoff_permanent_lookup[osr - 1];
197 	}
198 }
199 /*
200  * Reset the APT counter
201  *
202  * @ec [in] Reference to entropy collector
203  */
204 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
205 {
206 	/* Reset APT counter */
207 	ec->apt_count = 0;
208 	ec->apt_base = delta_masked;
209 	ec->apt_observations = 0;
210 }
211 
212 /*
213  * Insert a new entropy event into APT
214  *
215  * @ec [in] Reference to entropy collector
216  * @delta_masked [in] Masked time delta to process
217  */
218 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
219 {
220 	/* Initialize the base reference */
221 	if (!ec->apt_base_set) {
222 		ec->apt_base = delta_masked;
223 		ec->apt_base_set = 1;
224 		return;
225 	}
226 
227 	if (delta_masked == ec->apt_base) {
228 		ec->apt_count++;
229 
230 		/* Note, ec->apt_count starts with one. */
231 		if (ec->apt_count >= ec->apt_cutoff_permanent)
232 			ec->health_failure |= JENT_APT_FAILURE_PERMANENT;
233 		else if (ec->apt_count >= ec->apt_cutoff)
234 			ec->health_failure |= JENT_APT_FAILURE;
235 	}
236 
237 	ec->apt_observations++;
238 
239 	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
240 		jent_apt_reset(ec, delta_masked);
241 }
242 
243 /***************************************************************************
244  * Stuck Test and its use as Repetition Count Test
245  *
246  * The Jitter RNG uses an enhanced version of the Repetition Count Test
247  * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
248  * back-to-back values, the input to the RCT is the counting of the stuck
249  * values during the generation of one Jitter RNG output block.
250  *
251  * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
252  *
253  * During the counting operation, the Jitter RNG always calculates the RCT
254  * cut-off value of C. If that value exceeds the allowed cut-off value,
255  * the Jitter RNG output block will be calculated completely but discarded at
256  * the end. The caller of the Jitter RNG is informed with an error code.
257  ***************************************************************************/
258 
259 /*
260  * Repetition Count Test as defined in SP800-90B section 4.4.1
261  *
262  * @ec [in] Reference to entropy collector
263  * @stuck [in] Indicator whether the value is stuck
264  */
265 static void jent_rct_insert(struct rand_data *ec, int stuck)
266 {
267 	if (stuck) {
268 		ec->rct_count++;
269 
270 		/*
271 		 * The cutoff value is based on the following consideration:
272 		 * alpha = 2^-30 or 2^-60 as recommended in SP800-90B.
273 		 * In addition, we require an entropy value H of 1/osr as this
274 		 * is the minimum entropy required to provide full entropy.
275 		 * Note, we collect (DATA_SIZE_BITS + ENTROPY_SAFETY_FACTOR)*osr
276 		 * deltas for inserting them into the entropy pool which should
277 		 * then have (close to) DATA_SIZE_BITS bits of entropy in the
278 		 * conditioned output.
279 		 *
280 		 * Note, ec->rct_count (which equals to value B in the pseudo
281 		 * code of SP800-90B section 4.4.1) starts with zero. Hence
282 		 * we need to subtract one from the cutoff value as calculated
283 		 * following SP800-90B. Thus C = ceil(-log_2(alpha)/H) = 30*osr
284 		 * or 60*osr.
285 		 */
286 		if ((unsigned int)ec->rct_count >= (60 * ec->osr)) {
287 			ec->rct_count = -1;
288 			ec->health_failure |= JENT_RCT_FAILURE_PERMANENT;
289 		} else if ((unsigned int)ec->rct_count >= (30 * ec->osr)) {
290 			ec->rct_count = -1;
291 			ec->health_failure |= JENT_RCT_FAILURE;
292 		}
293 	} else {
294 		/* Reset RCT */
295 		ec->rct_count = 0;
296 	}
297 }
298 
299 static inline __u64 jent_delta(__u64 prev, __u64 next)
300 {
301 #define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
302 	return (prev < next) ? (next - prev) :
303 			       (JENT_UINT64_MAX - prev + 1 + next);
304 }
305 
306 /*
307  * Stuck test by checking the:
308  * 	1st derivative of the jitter measurement (time delta)
309  * 	2nd derivative of the jitter measurement (delta of time deltas)
310  * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
311  *
312  * All values must always be non-zero.
313  *
314  * @ec [in] Reference to entropy collector
315  * @current_delta [in] Jitter time delta
316  *
317  * @return
318  * 	0 jitter measurement not stuck (good bit)
319  * 	1 jitter measurement stuck (reject bit)
320  */
321 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
322 {
323 	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
324 	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
325 
326 	ec->last_delta = current_delta;
327 	ec->last_delta2 = delta2;
328 
329 	/*
330 	 * Insert the result of the comparison of two back-to-back time
331 	 * deltas.
332 	 */
333 	jent_apt_insert(ec, current_delta);
334 
335 	if (!current_delta || !delta2 || !delta3) {
336 		/* RCT with a stuck bit */
337 		jent_rct_insert(ec, 1);
338 		return 1;
339 	}
340 
341 	/* RCT with a non-stuck bit */
342 	jent_rct_insert(ec, 0);
343 
344 	return 0;
345 }
346 
347 /*
348  * Report any health test failures
349  *
350  * @ec [in] Reference to entropy collector
351  *
352  * @return a bitmask indicating which tests failed
353  *	0 No health test failure
354  *	1 RCT failure
355  *	2 APT failure
356  *	1<<JENT_PERMANENT_FAILURE_SHIFT RCT permanent failure
357  *	2<<JENT_PERMANENT_FAILURE_SHIFT APT permanent failure
358  */
359 static unsigned int jent_health_failure(struct rand_data *ec)
360 {
361 	/* Test is only enabled in FIPS mode */
362 	if (!fips_enabled)
363 		return 0;
364 
365 	return ec->health_failure;
366 }
367 
368 /***************************************************************************
369  * Noise sources
370  ***************************************************************************/
371 
372 /*
373  * Update of the loop count used for the next round of
374  * an entropy collection.
375  *
376  * Input:
377  * @bits is the number of low bits of the timer to consider
378  * @min is the number of bits we shift the timer value to the right at
379  *	the end to make sure we have a guaranteed minimum value
380  *
381  * @return Newly calculated loop counter
382  */
383 static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
384 {
385 	__u64 time = 0;
386 	__u64 shuffle = 0;
387 	unsigned int i = 0;
388 	unsigned int mask = (1<<bits) - 1;
389 
390 	jent_get_nstime(&time);
391 
392 	/*
393 	 * We fold the time value as much as possible to ensure that as many
394 	 * bits of the time stamp are included as possible.
395 	 */
396 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
397 		shuffle ^= time & mask;
398 		time = time >> bits;
399 	}
400 
401 	/*
402 	 * We add a lower boundary value to ensure we have a minimum
403 	 * RNG loop count.
404 	 */
405 	return (shuffle + (1<<min));
406 }
407 
408 /*
409  * CPU Jitter noise source -- this is the noise source based on the CPU
410  *			      execution time jitter
411  *
412  * This function injects the individual bits of the time value into the
413  * entropy pool using a hash.
414  *
415  * ec [in] entropy collector
416  * time [in] time stamp to be injected
417  * stuck [in] Is the time stamp identified as stuck?
418  *
419  * Output:
420  * updated hash context in the entropy collector or error code
421  */
422 static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
423 {
424 #define SHA3_HASH_LOOP (1<<3)
425 	struct {
426 		int rct_count;
427 		unsigned int apt_observations;
428 		unsigned int apt_count;
429 		unsigned int apt_base;
430 	} addtl = {
431 		ec->rct_count,
432 		ec->apt_observations,
433 		ec->apt_count,
434 		ec->apt_base
435 	};
436 
437 	return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
438 			      SHA3_HASH_LOOP, stuck);
439 }
440 
441 /*
442  * Memory Access noise source -- this is a noise source based on variations in
443  *				 memory access times
444  *
445  * This function performs memory accesses which will add to the timing
446  * variations due to an unknown amount of CPU wait states that need to be
447  * added when accessing memory. The memory size should be larger than the L1
448  * caches as outlined in the documentation and the associated testing.
449  *
450  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
451  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
452  * variations as the CPU has hardly to wait. Starting with L2, significant
453  * variations are added because L2 typically does not belong to the CPU any more
454  * and therefore a wider range of CPU wait states is necessary for accesses.
455  * L3 and real memory accesses have even a wider range of wait states. However,
456  * to reliably access either L3 or memory, the ec->mem memory must be quite
457  * large which is usually not desirable.
458  *
459  * @ec [in] Reference to the entropy collector with the memory access data -- if
460  *	    the reference to the memory block to be accessed is NULL, this noise
461  *	    source is disabled
462  * @loop_cnt [in] if a value not equal to 0 is set, use the given value
463  *		  number of loops to perform the LFSR
464  */
465 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
466 {
467 	unsigned int wrap = 0;
468 	__u64 i = 0;
469 #define MAX_ACC_LOOP_BIT 7
470 #define MIN_ACC_LOOP_BIT 0
471 	__u64 acc_loop_cnt =
472 		jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
473 
474 	if (NULL == ec || NULL == ec->mem)
475 		return;
476 	wrap = ec->memblocksize * ec->memblocks;
477 
478 	/*
479 	 * testing purposes -- allow test app to set the counter, not
480 	 * needed during runtime
481 	 */
482 	if (loop_cnt)
483 		acc_loop_cnt = loop_cnt;
484 
485 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
486 		unsigned char *tmpval = ec->mem + ec->memlocation;
487 		/*
488 		 * memory access: just add 1 to one byte,
489 		 * wrap at 255 -- memory access implies read
490 		 * from and write to memory location
491 		 */
492 		*tmpval = (*tmpval + 1) & 0xff;
493 		/*
494 		 * Addition of memblocksize - 1 to pointer
495 		 * with wrap around logic to ensure that every
496 		 * memory location is hit evenly
497 		 */
498 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
499 		ec->memlocation = ec->memlocation % wrap;
500 	}
501 }
502 
503 /***************************************************************************
504  * Start of entropy processing logic
505  ***************************************************************************/
506 /*
507  * This is the heart of the entropy generation: calculate time deltas and
508  * use the CPU jitter in the time deltas. The jitter is injected into the
509  * entropy pool.
510  *
511  * WARNING: ensure that ->prev_time is primed before using the output
512  *	    of this function! This can be done by calling this function
513  *	    and not using its result.
514  *
515  * @ec [in] Reference to entropy collector
516  *
517  * @return result of stuck test
518  */
519 static int jent_measure_jitter(struct rand_data *ec, __u64 *ret_current_delta)
520 {
521 	__u64 time = 0;
522 	__u64 current_delta = 0;
523 	int stuck;
524 
525 	/* Invoke one noise source before time measurement to add variations */
526 	jent_memaccess(ec, 0);
527 
528 	/*
529 	 * Get time stamp and calculate time delta to previous
530 	 * invocation to measure the timing variations
531 	 */
532 	jent_get_nstime(&time);
533 	current_delta = jent_delta(ec->prev_time, time);
534 	ec->prev_time = time;
535 
536 	/* Check whether we have a stuck measurement. */
537 	stuck = jent_stuck(ec, current_delta);
538 
539 	/* Now call the next noise sources which also injects the data */
540 	if (jent_condition_data(ec, current_delta, stuck))
541 		stuck = 1;
542 
543 	/* return the raw entropy value */
544 	if (ret_current_delta)
545 		*ret_current_delta = current_delta;
546 
547 	return stuck;
548 }
549 
550 /*
551  * Generator of one 64 bit random number
552  * Function fills rand_data->hash_state
553  *
554  * @ec [in] Reference to entropy collector
555  */
556 static void jent_gen_entropy(struct rand_data *ec)
557 {
558 	unsigned int k = 0, safety_factor = 0;
559 
560 	if (fips_enabled)
561 		safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
562 
563 	/* priming of the ->prev_time value */
564 	jent_measure_jitter(ec, NULL);
565 
566 	while (!jent_health_failure(ec)) {
567 		/* If a stuck measurement is received, repeat measurement */
568 		if (jent_measure_jitter(ec, NULL))
569 			continue;
570 
571 		/*
572 		 * We multiply the loop value with ->osr to obtain the
573 		 * oversampling rate requested by the caller
574 		 */
575 		if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
576 			break;
577 	}
578 }
579 
580 /*
581  * Entry function: Obtain entropy for the caller.
582  *
583  * This function invokes the entropy gathering logic as often to generate
584  * as many bytes as requested by the caller. The entropy gathering logic
585  * creates 64 bit per invocation.
586  *
587  * This function truncates the last 64 bit entropy value output to the exact
588  * size specified by the caller.
589  *
590  * @ec [in] Reference to entropy collector
591  * @data [in] pointer to buffer for storing random data -- buffer must already
592  *	      exist
593  * @len [in] size of the buffer, specifying also the requested number of random
594  *	     in bytes
595  *
596  * @return 0 when request is fulfilled or an error
597  *
598  * The following error codes can occur:
599  *	-1	entropy_collector is NULL or the generation failed
600  *	-2	Intermittent health failure
601  *	-3	Permanent health failure
602  */
603 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
604 		      unsigned int len)
605 {
606 	unsigned char *p = data;
607 
608 	if (!ec)
609 		return -1;
610 
611 	while (len > 0) {
612 		unsigned int tocopy, health_test_result;
613 
614 		jent_gen_entropy(ec);
615 
616 		health_test_result = jent_health_failure(ec);
617 		if (health_test_result > JENT_PERMANENT_FAILURE_SHIFT) {
618 			/*
619 			 * At this point, the Jitter RNG instance is considered
620 			 * as a failed instance. There is no rerun of the
621 			 * startup test any more, because the caller
622 			 * is assumed to not further use this instance.
623 			 */
624 			return -3;
625 		} else if (health_test_result) {
626 			/*
627 			 * Perform startup health tests and return permanent
628 			 * error if it fails.
629 			 */
630 			if (jent_entropy_init(0, 0, NULL, ec)) {
631 				/* Mark the permanent error */
632 				ec->health_failure &=
633 					JENT_RCT_FAILURE_PERMANENT |
634 					JENT_APT_FAILURE_PERMANENT;
635 				return -3;
636 			}
637 
638 			return -2;
639 		}
640 
641 		if ((DATA_SIZE_BITS / 8) < len)
642 			tocopy = (DATA_SIZE_BITS / 8);
643 		else
644 			tocopy = len;
645 		if (jent_read_random_block(ec->hash_state, p, tocopy))
646 			return -1;
647 
648 		len -= tocopy;
649 		p += tocopy;
650 	}
651 
652 	return 0;
653 }
654 
655 /***************************************************************************
656  * Initialization logic
657  ***************************************************************************/
658 
659 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
660 					       unsigned int flags,
661 					       void *hash_state)
662 {
663 	struct rand_data *entropy_collector;
664 
665 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
666 	if (!entropy_collector)
667 		return NULL;
668 
669 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
670 		/* Allocate memory for adding variations based on memory
671 		 * access
672 		 */
673 		entropy_collector->mem = jent_kvzalloc(JENT_MEMORY_SIZE);
674 		if (!entropy_collector->mem) {
675 			jent_zfree(entropy_collector);
676 			return NULL;
677 		}
678 		entropy_collector->memblocksize =
679 			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE;
680 		entropy_collector->memblocks =
681 			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS;
682 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
683 	}
684 
685 	/* verify and set the oversampling rate */
686 	if (osr == 0)
687 		osr = 1; /* H_submitter = 1 / osr */
688 	entropy_collector->osr = osr;
689 	entropy_collector->flags = flags;
690 
691 	entropy_collector->hash_state = hash_state;
692 
693 	/* Initialize the APT */
694 	jent_apt_init(entropy_collector, osr);
695 
696 	/* fill the data pad with non-zero values */
697 	jent_gen_entropy(entropy_collector);
698 
699 	return entropy_collector;
700 }
701 
702 void jent_entropy_collector_free(struct rand_data *entropy_collector)
703 {
704 	jent_kvzfree(entropy_collector->mem, JENT_MEMORY_SIZE);
705 	entropy_collector->mem = NULL;
706 	jent_zfree(entropy_collector);
707 }
708 
709 int jent_entropy_init(unsigned int osr, unsigned int flags, void *hash_state,
710 		      struct rand_data *p_ec)
711 {
712 	/*
713 	 * If caller provides an allocated ec, reuse it which implies that the
714 	 * health test entropy data is used to further still the available
715 	 * entropy pool.
716 	 */
717 	struct rand_data *ec = p_ec;
718 	int i, time_backwards = 0, ret = 0, ec_free = 0;
719 	unsigned int health_test_result;
720 
721 	if (!ec) {
722 		ec = jent_entropy_collector_alloc(osr, flags, hash_state);
723 		if (!ec)
724 			return JENT_EMEM;
725 		ec_free = 1;
726 	} else {
727 		/* Reset the APT */
728 		jent_apt_reset(ec, 0);
729 		/* Ensure that a new APT base is obtained */
730 		ec->apt_base_set = 0;
731 		/* Reset the RCT */
732 		ec->rct_count = 0;
733 		/* Reset intermittent, leave permanent health test result */
734 		ec->health_failure &= (~JENT_RCT_FAILURE);
735 		ec->health_failure &= (~JENT_APT_FAILURE);
736 	}
737 
738 	/* We could perform statistical tests here, but the problem is
739 	 * that we only have a few loop counts to do testing. These
740 	 * loop counts may show some slight skew and we produce
741 	 * false positives.
742 	 *
743 	 * Moreover, only old systems show potentially problematic
744 	 * jitter entropy that could potentially be caught here. But
745 	 * the RNG is intended for hardware that is available or widely
746 	 * used, but not old systems that are long out of favor. Thus,
747 	 * no statistical tests.
748 	 */
749 
750 	/*
751 	 * We could add a check for system capabilities such as clock_getres or
752 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
753 	 * following sanity checks verify that we have a high-resolution
754 	 * timer.
755 	 */
756 	/*
757 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
758 	 * definitely too little.
759 	 *
760 	 * SP800-90B requires at least 1024 initial test cycles.
761 	 */
762 #define TESTLOOPCOUNT 1024
763 #define CLEARCACHE 100
764 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
765 		__u64 start_time = 0, end_time = 0, delta = 0;
766 
767 		/* Invoke core entropy collection logic */
768 		jent_measure_jitter(ec, &delta);
769 		end_time = ec->prev_time;
770 		start_time = ec->prev_time - delta;
771 
772 		/* test whether timer works */
773 		if (!start_time || !end_time) {
774 			ret = JENT_ENOTIME;
775 			goto out;
776 		}
777 
778 		/*
779 		 * test whether timer is fine grained enough to provide
780 		 * delta even when called shortly after each other -- this
781 		 * implies that we also have a high resolution timer
782 		 */
783 		if (!delta || (end_time == start_time)) {
784 			ret = JENT_ECOARSETIME;
785 			goto out;
786 		}
787 
788 		/*
789 		 * up to here we did not modify any variable that will be
790 		 * evaluated later, but we already performed some work. Thus we
791 		 * already have had an impact on the caches, branch prediction,
792 		 * etc. with the goal to clear it to get the worst case
793 		 * measurements.
794 		 */
795 		if (i < CLEARCACHE)
796 			continue;
797 
798 		/* test whether we have an increasing timer */
799 		if (!(end_time > start_time))
800 			time_backwards++;
801 	}
802 
803 	/*
804 	 * we allow up to three times the time running backwards.
805 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
806 	 * if such an operation just happens to interfere with our test, it
807 	 * should not fail. The value of 3 should cover the NTP case being
808 	 * performed during our test run.
809 	 */
810 	if (time_backwards > 3) {
811 		ret = JENT_ENOMONOTONIC;
812 		goto out;
813 	}
814 
815 	/* Did we encounter a health test failure? */
816 	health_test_result = jent_health_failure(ec);
817 	if (health_test_result) {
818 		ret = (health_test_result & JENT_RCT_FAILURE) ? JENT_ERCT :
819 								JENT_EHEALTH;
820 		goto out;
821 	}
822 
823 out:
824 	if (ec_free)
825 		jent_entropy_collector_free(ec);
826 
827 	return ret;
828 }
829