xref: /linux/crypto/jitterentropy.c (revision 702648721db590b3425c31ade294000e18808345)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2020
6  *
7  * Design
8  * ======
9  *
10  * See https://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 2.2.0 provided at https://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 #define NULL    ((void *) 0)
61 
62 /* The entropy pool */
63 struct rand_data {
64 	/* all data values that are vital to maintain the security
65 	 * of the RNG are marked as SENSITIVE. A user must not
66 	 * access that information while the RNG executes its loops to
67 	 * calculate the next random value. */
68 	__u64 data;		/* SENSITIVE Actual random number */
69 	__u64 old_data;		/* SENSITIVE Previous random number */
70 	__u64 prev_time;	/* SENSITIVE Previous time stamp */
71 #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
72 	__u64 last_delta;	/* SENSITIVE stuck test */
73 	__s64 last_delta2;	/* SENSITIVE stuck test */
74 	unsigned int osr;	/* Oversample rate */
75 #define JENT_MEMORY_BLOCKS 64
76 #define JENT_MEMORY_BLOCKSIZE 32
77 #define JENT_MEMORY_ACCESSLOOPS 128
78 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
79 	unsigned char *mem;	/* Memory access location with size of
80 				 * memblocks * memblocksize */
81 	unsigned int memlocation; /* Pointer to byte in *mem */
82 	unsigned int memblocks;	/* Number of memory blocks in *mem */
83 	unsigned int memblocksize; /* Size of one memory block in bytes */
84 	unsigned int memaccessloops; /* Number of memory accesses per random
85 				      * bit generation */
86 
87 	/* Repetition Count Test */
88 	unsigned int rct_count;			/* Number of stuck values */
89 
90 	/* Intermittent health test failure threshold of 2^-30 */
91 #define JENT_RCT_CUTOFF		30	/* Taken from SP800-90B sec 4.4.1 */
92 #define JENT_APT_CUTOFF		325	/* Taken from SP800-90B sec 4.4.2 */
93 	/* Permanent health test failure threshold of 2^-60 */
94 #define JENT_RCT_CUTOFF_PERMANENT	60
95 #define JENT_APT_CUTOFF_PERMANENT	355
96 #define JENT_APT_WINDOW_SIZE	512	/* Data window size */
97 	/* LSB of time stamp to process */
98 #define JENT_APT_LSB		16
99 #define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
100 	unsigned int apt_observations;	/* Number of collected observations */
101 	unsigned int apt_count;		/* APT counter */
102 	unsigned int apt_base;		/* APT base reference */
103 	unsigned int apt_base_set:1;	/* APT base reference set? */
104 };
105 
106 /* Flags that can be used to initialize the RNG */
107 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
108 					   * entropy, saves MEMORY_SIZE RAM for
109 					   * entropy collector */
110 
111 /* -- error codes for init function -- */
112 #define JENT_ENOTIME		1 /* Timer service not available */
113 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
114 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
115 #define JENT_EVARVAR		5 /* Timer does not produce variations of
116 				   * variations (2nd derivation of time is
117 				   * zero). */
118 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
119 #define JENT_EHEALTH		9 /* Health test failed during initialization */
120 #define JENT_ERCT		10 /* RCT failed during initialization */
121 
122 /*
123  * The output n bits can receive more than n bits of min entropy, of course,
124  * but the fixed output of the conditioning function can only asymptotically
125  * approach the output size bits of min entropy, not attain that bound. Random
126  * maps will tend to have output collisions, which reduces the creditable
127  * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
128  *
129  * The value "64" is justified in Appendix A.4 of the current 90C draft,
130  * and aligns with NIST's in "epsilon" definition in this document, which is
131  * that a string can be considered "full entropy" if you can bound the min
132  * entropy in each bit of output to at least 1-epsilon, where epsilon is
133  * required to be <= 2^(-32).
134  */
135 #define JENT_ENTROPY_SAFETY_FACTOR	64
136 
137 #include <linux/fips.h>
138 #include "jitterentropy.h"
139 
140 /***************************************************************************
141  * Adaptive Proportion Test
142  *
143  * This test complies with SP800-90B section 4.4.2.
144  ***************************************************************************/
145 
146 /*
147  * Reset the APT counter
148  *
149  * @ec [in] Reference to entropy collector
150  */
151 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
152 {
153 	/* Reset APT counter */
154 	ec->apt_count = 0;
155 	ec->apt_base = delta_masked;
156 	ec->apt_observations = 0;
157 }
158 
159 /*
160  * Insert a new entropy event into APT
161  *
162  * @ec [in] Reference to entropy collector
163  * @delta_masked [in] Masked time delta to process
164  */
165 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
166 {
167 	/* Initialize the base reference */
168 	if (!ec->apt_base_set) {
169 		ec->apt_base = delta_masked;
170 		ec->apt_base_set = 1;
171 		return;
172 	}
173 
174 	if (delta_masked == ec->apt_base)
175 		ec->apt_count++;
176 
177 	ec->apt_observations++;
178 
179 	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
180 		jent_apt_reset(ec, delta_masked);
181 }
182 
183 /* APT health test failure detection */
184 static int jent_apt_permanent_failure(struct rand_data *ec)
185 {
186 	return (ec->apt_count >= JENT_APT_CUTOFF_PERMANENT) ? 1 : 0;
187 }
188 
189 static int jent_apt_failure(struct rand_data *ec)
190 {
191 	return (ec->apt_count >= JENT_APT_CUTOFF) ? 1 : 0;
192 }
193 
194 /***************************************************************************
195  * Stuck Test and its use as Repetition Count Test
196  *
197  * The Jitter RNG uses an enhanced version of the Repetition Count Test
198  * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
199  * back-to-back values, the input to the RCT is the counting of the stuck
200  * values during the generation of one Jitter RNG output block.
201  *
202  * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
203  *
204  * During the counting operation, the Jitter RNG always calculates the RCT
205  * cut-off value of C. If that value exceeds the allowed cut-off value,
206  * the Jitter RNG output block will be calculated completely but discarded at
207  * the end. The caller of the Jitter RNG is informed with an error code.
208  ***************************************************************************/
209 
210 /*
211  * Repetition Count Test as defined in SP800-90B section 4.4.1
212  *
213  * @ec [in] Reference to entropy collector
214  * @stuck [in] Indicator whether the value is stuck
215  */
216 static void jent_rct_insert(struct rand_data *ec, int stuck)
217 {
218 	if (stuck) {
219 		ec->rct_count++;
220 	} else {
221 		/* Reset RCT */
222 		ec->rct_count = 0;
223 	}
224 }
225 
226 static inline __u64 jent_delta(__u64 prev, __u64 next)
227 {
228 #define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
229 	return (prev < next) ? (next - prev) :
230 			       (JENT_UINT64_MAX - prev + 1 + next);
231 }
232 
233 /*
234  * Stuck test by checking the:
235  * 	1st derivative of the jitter measurement (time delta)
236  * 	2nd derivative of the jitter measurement (delta of time deltas)
237  * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
238  *
239  * All values must always be non-zero.
240  *
241  * @ec [in] Reference to entropy collector
242  * @current_delta [in] Jitter time delta
243  *
244  * @return
245  * 	0 jitter measurement not stuck (good bit)
246  * 	1 jitter measurement stuck (reject bit)
247  */
248 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
249 {
250 	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
251 	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
252 
253 	ec->last_delta = current_delta;
254 	ec->last_delta2 = delta2;
255 
256 	/*
257 	 * Insert the result of the comparison of two back-to-back time
258 	 * deltas.
259 	 */
260 	jent_apt_insert(ec, current_delta);
261 
262 	if (!current_delta || !delta2 || !delta3) {
263 		/* RCT with a stuck bit */
264 		jent_rct_insert(ec, 1);
265 		return 1;
266 	}
267 
268 	/* RCT with a non-stuck bit */
269 	jent_rct_insert(ec, 0);
270 
271 	return 0;
272 }
273 
274 /* RCT health test failure detection */
275 static int jent_rct_permanent_failure(struct rand_data *ec)
276 {
277 	return (ec->rct_count >= JENT_RCT_CUTOFF_PERMANENT) ? 1 : 0;
278 }
279 
280 static int jent_rct_failure(struct rand_data *ec)
281 {
282 	return (ec->rct_count >= JENT_RCT_CUTOFF) ? 1 : 0;
283 }
284 
285 /* Report of health test failures */
286 static int jent_health_failure(struct rand_data *ec)
287 {
288 	return jent_rct_failure(ec) | jent_apt_failure(ec);
289 }
290 
291 static int jent_permanent_health_failure(struct rand_data *ec)
292 {
293 	return jent_rct_permanent_failure(ec) | jent_apt_permanent_failure(ec);
294 }
295 
296 /***************************************************************************
297  * Noise sources
298  ***************************************************************************/
299 
300 /*
301  * Update of the loop count used for the next round of
302  * an entropy collection.
303  *
304  * Input:
305  * @ec entropy collector struct -- may be NULL
306  * @bits is the number of low bits of the timer to consider
307  * @min is the number of bits we shift the timer value to the right at
308  *	the end to make sure we have a guaranteed minimum value
309  *
310  * @return Newly calculated loop counter
311  */
312 static __u64 jent_loop_shuffle(struct rand_data *ec,
313 			       unsigned int bits, unsigned int min)
314 {
315 	__u64 time = 0;
316 	__u64 shuffle = 0;
317 	unsigned int i = 0;
318 	unsigned int mask = (1<<bits) - 1;
319 
320 	jent_get_nstime(&time);
321 	/*
322 	 * Mix the current state of the random number into the shuffle
323 	 * calculation to balance that shuffle a bit more.
324 	 */
325 	if (ec)
326 		time ^= ec->data;
327 	/*
328 	 * We fold the time value as much as possible to ensure that as many
329 	 * bits of the time stamp are included as possible.
330 	 */
331 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
332 		shuffle ^= time & mask;
333 		time = time >> bits;
334 	}
335 
336 	/*
337 	 * We add a lower boundary value to ensure we have a minimum
338 	 * RNG loop count.
339 	 */
340 	return (shuffle + (1<<min));
341 }
342 
343 /*
344  * CPU Jitter noise source -- this is the noise source based on the CPU
345  *			      execution time jitter
346  *
347  * This function injects the individual bits of the time value into the
348  * entropy pool using an LFSR.
349  *
350  * The code is deliberately inefficient with respect to the bit shifting
351  * and shall stay that way. This function is the root cause why the code
352  * shall be compiled without optimization. This function not only acts as
353  * folding operation, but this function's execution is used to measure
354  * the CPU execution time jitter. Any change to the loop in this function
355  * implies that careful retesting must be done.
356  *
357  * @ec [in] entropy collector struct
358  * @time [in] time stamp to be injected
359  * @loop_cnt [in] if a value not equal to 0 is set, use the given value as
360  *		  number of loops to perform the folding
361  * @stuck [in] Is the time stamp identified as stuck?
362  *
363  * Output:
364  * updated ec->data
365  *
366  * @return Number of loops the folding operation is performed
367  */
368 static void jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt,
369 			   int stuck)
370 {
371 	unsigned int i;
372 	__u64 j = 0;
373 	__u64 new = 0;
374 #define MAX_FOLD_LOOP_BIT 4
375 #define MIN_FOLD_LOOP_BIT 0
376 	__u64 fold_loop_cnt =
377 		jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
378 
379 	/*
380 	 * testing purposes -- allow test app to set the counter, not
381 	 * needed during runtime
382 	 */
383 	if (loop_cnt)
384 		fold_loop_cnt = loop_cnt;
385 	for (j = 0; j < fold_loop_cnt; j++) {
386 		new = ec->data;
387 		for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
388 			__u64 tmp = time << (DATA_SIZE_BITS - i);
389 
390 			tmp = tmp >> (DATA_SIZE_BITS - 1);
391 
392 			/*
393 			* Fibonacci LSFR with polynomial of
394 			*  x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
395 			*  primitive according to
396 			*   http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
397 			* (the shift values are the polynomial values minus one
398 			* due to counting bits from 0 to 63). As the current
399 			* position is always the LSB, the polynomial only needs
400 			* to shift data in from the left without wrap.
401 			*/
402 			tmp ^= ((new >> 63) & 1);
403 			tmp ^= ((new >> 60) & 1);
404 			tmp ^= ((new >> 55) & 1);
405 			tmp ^= ((new >> 30) & 1);
406 			tmp ^= ((new >> 27) & 1);
407 			tmp ^= ((new >> 22) & 1);
408 			new <<= 1;
409 			new ^= tmp;
410 		}
411 	}
412 
413 	/*
414 	 * If the time stamp is stuck, do not finally insert the value into
415 	 * the entropy pool. Although this operation should not do any harm
416 	 * even when the time stamp has no entropy, SP800-90B requires that
417 	 * any conditioning operation (SP800-90B considers the LFSR to be a
418 	 * conditioning operation) to have an identical amount of input
419 	 * data according to section 3.1.5.
420 	 */
421 	if (!stuck)
422 		ec->data = new;
423 }
424 
425 /*
426  * Memory Access noise source -- this is a noise source based on variations in
427  *				 memory access times
428  *
429  * This function performs memory accesses which will add to the timing
430  * variations due to an unknown amount of CPU wait states that need to be
431  * added when accessing memory. The memory size should be larger than the L1
432  * caches as outlined in the documentation and the associated testing.
433  *
434  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
435  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
436  * variations as the CPU has hardly to wait. Starting with L2, significant
437  * variations are added because L2 typically does not belong to the CPU any more
438  * and therefore a wider range of CPU wait states is necessary for accesses.
439  * L3 and real memory accesses have even a wider range of wait states. However,
440  * to reliably access either L3 or memory, the ec->mem memory must be quite
441  * large which is usually not desirable.
442  *
443  * @ec [in] Reference to the entropy collector with the memory access data -- if
444  *	    the reference to the memory block to be accessed is NULL, this noise
445  *	    source is disabled
446  * @loop_cnt [in] if a value not equal to 0 is set, use the given value
447  *		  number of loops to perform the LFSR
448  */
449 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
450 {
451 	unsigned int wrap = 0;
452 	__u64 i = 0;
453 #define MAX_ACC_LOOP_BIT 7
454 #define MIN_ACC_LOOP_BIT 0
455 	__u64 acc_loop_cnt =
456 		jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
457 
458 	if (NULL == ec || NULL == ec->mem)
459 		return;
460 	wrap = ec->memblocksize * ec->memblocks;
461 
462 	/*
463 	 * testing purposes -- allow test app to set the counter, not
464 	 * needed during runtime
465 	 */
466 	if (loop_cnt)
467 		acc_loop_cnt = loop_cnt;
468 
469 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
470 		unsigned char *tmpval = ec->mem + ec->memlocation;
471 		/*
472 		 * memory access: just add 1 to one byte,
473 		 * wrap at 255 -- memory access implies read
474 		 * from and write to memory location
475 		 */
476 		*tmpval = (*tmpval + 1) & 0xff;
477 		/*
478 		 * Addition of memblocksize - 1 to pointer
479 		 * with wrap around logic to ensure that every
480 		 * memory location is hit evenly
481 		 */
482 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
483 		ec->memlocation = ec->memlocation % wrap;
484 	}
485 }
486 
487 /***************************************************************************
488  * Start of entropy processing logic
489  ***************************************************************************/
490 /*
491  * This is the heart of the entropy generation: calculate time deltas and
492  * use the CPU jitter in the time deltas. The jitter is injected into the
493  * entropy pool.
494  *
495  * WARNING: ensure that ->prev_time is primed before using the output
496  *	    of this function! This can be done by calling this function
497  *	    and not using its result.
498  *
499  * @ec [in] Reference to entropy collector
500  *
501  * @return result of stuck test
502  */
503 static int jent_measure_jitter(struct rand_data *ec)
504 {
505 	__u64 time = 0;
506 	__u64 current_delta = 0;
507 	int stuck;
508 
509 	/* Invoke one noise source before time measurement to add variations */
510 	jent_memaccess(ec, 0);
511 
512 	/*
513 	 * Get time stamp and calculate time delta to previous
514 	 * invocation to measure the timing variations
515 	 */
516 	jent_get_nstime(&time);
517 	current_delta = jent_delta(ec->prev_time, time);
518 	ec->prev_time = time;
519 
520 	/* Check whether we have a stuck measurement. */
521 	stuck = jent_stuck(ec, current_delta);
522 
523 	/* Now call the next noise sources which also injects the data */
524 	jent_lfsr_time(ec, current_delta, 0, stuck);
525 
526 	return stuck;
527 }
528 
529 /*
530  * Generator of one 64 bit random number
531  * Function fills rand_data->data
532  *
533  * @ec [in] Reference to entropy collector
534  */
535 static void jent_gen_entropy(struct rand_data *ec)
536 {
537 	unsigned int k = 0, safety_factor = 0;
538 
539 	if (fips_enabled)
540 		safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
541 
542 	/* priming of the ->prev_time value */
543 	jent_measure_jitter(ec);
544 
545 	while (!jent_health_failure(ec)) {
546 		/* If a stuck measurement is received, repeat measurement */
547 		if (jent_measure_jitter(ec))
548 			continue;
549 
550 		/*
551 		 * We multiply the loop value with ->osr to obtain the
552 		 * oversampling rate requested by the caller
553 		 */
554 		if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
555 			break;
556 	}
557 }
558 
559 /*
560  * Entry function: Obtain entropy for the caller.
561  *
562  * This function invokes the entropy gathering logic as often to generate
563  * as many bytes as requested by the caller. The entropy gathering logic
564  * creates 64 bit per invocation.
565  *
566  * This function truncates the last 64 bit entropy value output to the exact
567  * size specified by the caller.
568  *
569  * @ec [in] Reference to entropy collector
570  * @data [in] pointer to buffer for storing random data -- buffer must already
571  *	      exist
572  * @len [in] size of the buffer, specifying also the requested number of random
573  *	     in bytes
574  *
575  * @return 0 when request is fulfilled or an error
576  *
577  * The following error codes can occur:
578  *	-1	entropy_collector is NULL
579  *	-2	Intermittent health failure
580  *	-3	Permanent health failure
581  */
582 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
583 		      unsigned int len)
584 {
585 	unsigned char *p = data;
586 
587 	if (!ec)
588 		return -1;
589 
590 	while (len > 0) {
591 		unsigned int tocopy;
592 
593 		jent_gen_entropy(ec);
594 
595 		if (jent_permanent_health_failure(ec)) {
596 			/*
597 			 * At this point, the Jitter RNG instance is considered
598 			 * as a failed instance. There is no rerun of the
599 			 * startup test any more, because the caller
600 			 * is assumed to not further use this instance.
601 			 */
602 			return -3;
603 		} else if (jent_health_failure(ec)) {
604 			/*
605 			 * Perform startup health tests and return permanent
606 			 * error if it fails.
607 			 */
608 			if (jent_entropy_init())
609 				return -3;
610 
611 			return -2;
612 		}
613 
614 		if ((DATA_SIZE_BITS / 8) < len)
615 			tocopy = (DATA_SIZE_BITS / 8);
616 		else
617 			tocopy = len;
618 		jent_memcpy(p, &ec->data, tocopy);
619 
620 		len -= tocopy;
621 		p += tocopy;
622 	}
623 
624 	return 0;
625 }
626 
627 /***************************************************************************
628  * Initialization logic
629  ***************************************************************************/
630 
631 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
632 					       unsigned int flags)
633 {
634 	struct rand_data *entropy_collector;
635 
636 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
637 	if (!entropy_collector)
638 		return NULL;
639 
640 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
641 		/* Allocate memory for adding variations based on memory
642 		 * access
643 		 */
644 		entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
645 		if (!entropy_collector->mem) {
646 			jent_zfree(entropy_collector);
647 			return NULL;
648 		}
649 		entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
650 		entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
651 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
652 	}
653 
654 	/* verify and set the oversampling rate */
655 	if (osr == 0)
656 		osr = 1; /* minimum sampling rate is 1 */
657 	entropy_collector->osr = osr;
658 
659 	/* fill the data pad with non-zero values */
660 	jent_gen_entropy(entropy_collector);
661 
662 	return entropy_collector;
663 }
664 
665 void jent_entropy_collector_free(struct rand_data *entropy_collector)
666 {
667 	jent_zfree(entropy_collector->mem);
668 	entropy_collector->mem = NULL;
669 	jent_zfree(entropy_collector);
670 }
671 
672 int jent_entropy_init(void)
673 {
674 	int i;
675 	__u64 delta_sum = 0;
676 	__u64 old_delta = 0;
677 	unsigned int nonstuck = 0;
678 	int time_backwards = 0;
679 	int count_mod = 0;
680 	int count_stuck = 0;
681 	struct rand_data ec = { 0 };
682 
683 	/* Required for RCT */
684 	ec.osr = 1;
685 
686 	/* We could perform statistical tests here, but the problem is
687 	 * that we only have a few loop counts to do testing. These
688 	 * loop counts may show some slight skew and we produce
689 	 * false positives.
690 	 *
691 	 * Moreover, only old systems show potentially problematic
692 	 * jitter entropy that could potentially be caught here. But
693 	 * the RNG is intended for hardware that is available or widely
694 	 * used, but not old systems that are long out of favor. Thus,
695 	 * no statistical tests.
696 	 */
697 
698 	/*
699 	 * We could add a check for system capabilities such as clock_getres or
700 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
701 	 * following sanity checks verify that we have a high-resolution
702 	 * timer.
703 	 */
704 	/*
705 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
706 	 * definitely too little.
707 	 *
708 	 * SP800-90B requires at least 1024 initial test cycles.
709 	 */
710 #define TESTLOOPCOUNT 1024
711 #define CLEARCACHE 100
712 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
713 		__u64 time = 0;
714 		__u64 time2 = 0;
715 		__u64 delta = 0;
716 		unsigned int lowdelta = 0;
717 		int stuck;
718 
719 		/* Invoke core entropy collection logic */
720 		jent_get_nstime(&time);
721 		ec.prev_time = time;
722 		jent_lfsr_time(&ec, time, 0, 0);
723 		jent_get_nstime(&time2);
724 
725 		/* test whether timer works */
726 		if (!time || !time2)
727 			return JENT_ENOTIME;
728 		delta = jent_delta(time, time2);
729 		/*
730 		 * test whether timer is fine grained enough to provide
731 		 * delta even when called shortly after each other -- this
732 		 * implies that we also have a high resolution timer
733 		 */
734 		if (!delta)
735 			return JENT_ECOARSETIME;
736 
737 		stuck = jent_stuck(&ec, delta);
738 
739 		/*
740 		 * up to here we did not modify any variable that will be
741 		 * evaluated later, but we already performed some work. Thus we
742 		 * already have had an impact on the caches, branch prediction,
743 		 * etc. with the goal to clear it to get the worst case
744 		 * measurements.
745 		 */
746 		if (i < CLEARCACHE)
747 			continue;
748 
749 		if (stuck)
750 			count_stuck++;
751 		else {
752 			nonstuck++;
753 
754 			/*
755 			 * Ensure that the APT succeeded.
756 			 *
757 			 * With the check below that count_stuck must be less
758 			 * than 10% of the overall generated raw entropy values
759 			 * it is guaranteed that the APT is invoked at
760 			 * floor((TESTLOOPCOUNT * 0.9) / 64) == 14 times.
761 			 */
762 			if ((nonstuck % JENT_APT_WINDOW_SIZE) == 0) {
763 				jent_apt_reset(&ec,
764 					       delta & JENT_APT_WORD_MASK);
765 				if (jent_health_failure(&ec))
766 					return JENT_EHEALTH;
767 			}
768 		}
769 
770 		/* Validate RCT */
771 		if (jent_rct_failure(&ec))
772 			return JENT_ERCT;
773 
774 		/* test whether we have an increasing timer */
775 		if (!(time2 > time))
776 			time_backwards++;
777 
778 		/* use 32 bit value to ensure compilation on 32 bit arches */
779 		lowdelta = time2 - time;
780 		if (!(lowdelta % 100))
781 			count_mod++;
782 
783 		/*
784 		 * ensure that we have a varying delta timer which is necessary
785 		 * for the calculation of entropy -- perform this check
786 		 * only after the first loop is executed as we need to prime
787 		 * the old_data value
788 		 */
789 		if (delta > old_delta)
790 			delta_sum += (delta - old_delta);
791 		else
792 			delta_sum += (old_delta - delta);
793 		old_delta = delta;
794 	}
795 
796 	/*
797 	 * we allow up to three times the time running backwards.
798 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
799 	 * if such an operation just happens to interfere with our test, it
800 	 * should not fail. The value of 3 should cover the NTP case being
801 	 * performed during our test run.
802 	 */
803 	if (time_backwards > 3)
804 		return JENT_ENOMONOTONIC;
805 
806 	/*
807 	 * Variations of deltas of time must on average be larger
808 	 * than 1 to ensure the entropy estimation
809 	 * implied with 1 is preserved
810 	 */
811 	if ((delta_sum) <= 1)
812 		return JENT_EVARVAR;
813 
814 	/*
815 	 * Ensure that we have variations in the time stamp below 10 for at
816 	 * least 10% of all checks -- on some platforms, the counter increments
817 	 * in multiples of 100, but not always
818 	 */
819 	if ((TESTLOOPCOUNT/10 * 9) < count_mod)
820 		return JENT_ECOARSETIME;
821 
822 	/*
823 	 * If we have more than 90% stuck results, then this Jitter RNG is
824 	 * likely to not work well.
825 	 */
826 	if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
827 		return JENT_ESTUCK;
828 
829 	return 0;
830 }
831