xref: /linux/crypto/jitterentropy.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
6  *
7  * Design
8  * ======
9  *
10  * See https://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 3.4.0 provided at https://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 typedef unsigned char		u8;
61 #define NULL    ((void *) 0)
62 
63 /* The entropy pool */
64 struct rand_data {
65 	/* SHA3-256 is used as conditioner */
66 #define DATA_SIZE_BITS 256
67 	/* all data values that are vital to maintain the security
68 	 * of the RNG are marked as SENSITIVE. A user must not
69 	 * access that information while the RNG executes its loops to
70 	 * calculate the next random value. */
71 	void *hash_state;		/* SENSITIVE hash state entropy pool */
72 	__u64 prev_time;		/* SENSITIVE Previous time stamp */
73 	__u64 last_delta;		/* SENSITIVE stuck test */
74 	__s64 last_delta2;		/* SENSITIVE stuck test */
75 
76 	unsigned int flags;		/* Flags used to initialize */
77 	unsigned int osr;		/* Oversample rate */
78 #define JENT_MEMORY_ACCESSLOOPS 128
79 #define JENT_MEMORY_SIZE						\
80 	(CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS *			\
81 	 CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE)
82 	unsigned char *mem;	/* Memory access location with size of
83 				 * memblocks * memblocksize */
84 	unsigned int memlocation; /* Pointer to byte in *mem */
85 	unsigned int memblocks;	/* Number of memory blocks in *mem */
86 	unsigned int memblocksize; /* Size of one memory block in bytes */
87 	unsigned int memaccessloops; /* Number of memory accesses per random
88 				      * bit generation */
89 
90 	/* Repetition Count Test */
91 	unsigned int rct_count;			/* Number of stuck values */
92 
93 	/* Adaptive Proportion Test cutoff values */
94 	unsigned int apt_cutoff; /* Intermittent health test failure */
95 	unsigned int apt_cutoff_permanent; /* Permanent health test failure */
96 #define JENT_APT_WINDOW_SIZE	512	/* Data window size */
97 	/* LSB of time stamp to process */
98 #define JENT_APT_LSB		16
99 #define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
100 	unsigned int apt_observations;	/* Number of collected observations */
101 	unsigned int apt_count;		/* APT counter */
102 	unsigned int apt_base;		/* APT base reference */
103 	unsigned int health_failure;	/* Record health failure */
104 
105 	unsigned int apt_base_set:1;	/* APT base reference set? */
106 };
107 
108 /* Flags that can be used to initialize the RNG */
109 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
110 					   * entropy, saves MEMORY_SIZE RAM for
111 					   * entropy collector */
112 
113 /* -- error codes for init function -- */
114 #define JENT_ENOTIME		1 /* Timer service not available */
115 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
116 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
117 #define JENT_EVARVAR		5 /* Timer does not produce variations of
118 				   * variations (2nd derivation of time is
119 				   * zero). */
120 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
121 #define JENT_EHEALTH		9 /* Health test failed during initialization */
122 #define JENT_ERCT	       10 /* RCT failed during initialization */
123 #define JENT_EHASH	       11 /* Hash self test failed */
124 #define JENT_EMEM	       12 /* Can't allocate memory for initialization */
125 
126 #define JENT_RCT_FAILURE	1 /* Failure in RCT health test. */
127 #define JENT_APT_FAILURE	2 /* Failure in APT health test. */
128 #define JENT_PERMANENT_FAILURE_SHIFT	16
129 #define JENT_PERMANENT_FAILURE(x)	(x << JENT_PERMANENT_FAILURE_SHIFT)
130 #define JENT_RCT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_RCT_FAILURE)
131 #define JENT_APT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_APT_FAILURE)
132 
133 /*
134  * The output n bits can receive more than n bits of min entropy, of course,
135  * but the fixed output of the conditioning function can only asymptotically
136  * approach the output size bits of min entropy, not attain that bound. Random
137  * maps will tend to have output collisions, which reduces the creditable
138  * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
139  *
140  * The value "64" is justified in Appendix A.4 of the current 90C draft,
141  * and aligns with NIST's in "epsilon" definition in this document, which is
142  * that a string can be considered "full entropy" if you can bound the min
143  * entropy in each bit of output to at least 1-epsilon, where epsilon is
144  * required to be <= 2^(-32).
145  */
146 #define JENT_ENTROPY_SAFETY_FACTOR	64
147 
148 #include <linux/fips.h>
149 #include <linux/minmax.h>
150 #include "jitterentropy.h"
151 
152 /***************************************************************************
153  * Adaptive Proportion Test
154  *
155  * This test complies with SP800-90B section 4.4.2.
156  ***************************************************************************/
157 
158 /*
159  * See the SP 800-90B comment #10b for the corrected cutoff for the SP 800-90B
160  * APT.
161  * https://www.untruth.org/~josh/sp80090b/UL%20SP800-90B-final%20comments%20v1.9%2020191212.pdf
162  * In the syntax of R, this is C = 2 + qbinom(1 − 2^(−30), 511, 2^(-1/osr)).
163  * (The original formula wasn't correct because the first symbol must
164  * necessarily have been observed, so there is no chance of observing 0 of these
165  * symbols.)
166  *
167  * For the alpha < 2^-53, R cannot be used as it uses a float data type without
168  * arbitrary precision. A SageMath script is used to calculate those cutoff
169  * values.
170  *
171  * For any value above 14, this yields the maximal allowable value of 512
172  * (by FIPS 140-2 IG 7.19 Resolution # 16, we cannot choose a cutoff value that
173  * renders the test unable to fail).
174  */
175 static const unsigned int jent_apt_cutoff_lookup[15] = {
176 	325, 422, 459, 477, 488, 494, 499, 502,
177 	505, 507, 508, 509, 510, 511, 512 };
178 static const unsigned int jent_apt_cutoff_permanent_lookup[15] = {
179 	355, 447, 479, 494, 502, 507, 510, 512,
180 	512, 512, 512, 512, 512, 512, 512 };
181 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
182 
183 static void jent_apt_init(struct rand_data *ec, unsigned int osr)
184 {
185 	/*
186 	 * Establish the apt_cutoff based on the presumed entropy rate of
187 	 * 1/osr.
188 	 */
189 	if (osr >= ARRAY_SIZE(jent_apt_cutoff_lookup)) {
190 		ec->apt_cutoff = jent_apt_cutoff_lookup[
191 			ARRAY_SIZE(jent_apt_cutoff_lookup) - 1];
192 		ec->apt_cutoff_permanent = jent_apt_cutoff_permanent_lookup[
193 			ARRAY_SIZE(jent_apt_cutoff_permanent_lookup) - 1];
194 	} else {
195 		ec->apt_cutoff = jent_apt_cutoff_lookup[osr - 1];
196 		ec->apt_cutoff_permanent =
197 				jent_apt_cutoff_permanent_lookup[osr - 1];
198 	}
199 }
200 /*
201  * Reset the APT counter
202  *
203  * @ec [in] Reference to entropy collector
204  */
205 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
206 {
207 	/* Reset APT counter */
208 	ec->apt_count = 0;
209 	ec->apt_base = delta_masked;
210 	ec->apt_observations = 0;
211 }
212 
213 /*
214  * Insert a new entropy event into APT
215  *
216  * @ec [in] Reference to entropy collector
217  * @delta_masked [in] Masked time delta to process
218  */
219 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
220 {
221 	/* Initialize the base reference */
222 	if (!ec->apt_base_set) {
223 		ec->apt_base = delta_masked;
224 		ec->apt_base_set = 1;
225 		return;
226 	}
227 
228 	if (delta_masked == ec->apt_base) {
229 		ec->apt_count++;
230 
231 		/* Note, ec->apt_count starts with one. */
232 		if (ec->apt_count >= ec->apt_cutoff_permanent)
233 			ec->health_failure |= JENT_APT_FAILURE_PERMANENT;
234 		else if (ec->apt_count >= ec->apt_cutoff)
235 			ec->health_failure |= JENT_APT_FAILURE;
236 	}
237 
238 	ec->apt_observations++;
239 
240 	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
241 		jent_apt_reset(ec, delta_masked);
242 }
243 
244 /***************************************************************************
245  * Stuck Test and its use as Repetition Count Test
246  *
247  * The Jitter RNG uses an enhanced version of the Repetition Count Test
248  * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
249  * back-to-back values, the input to the RCT is the counting of the stuck
250  * values during the generation of one Jitter RNG output block.
251  *
252  * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
253  *
254  * During the counting operation, the Jitter RNG always calculates the RCT
255  * cut-off value of C. If that value exceeds the allowed cut-off value,
256  * the Jitter RNG output block will be calculated completely but discarded at
257  * the end. The caller of the Jitter RNG is informed with an error code.
258  ***************************************************************************/
259 
260 /*
261  * Repetition Count Test as defined in SP800-90B section 4.4.1
262  *
263  * @ec [in] Reference to entropy collector
264  * @stuck [in] Indicator whether the value is stuck
265  */
266 static void jent_rct_insert(struct rand_data *ec, int stuck)
267 {
268 	if (stuck) {
269 		ec->rct_count++;
270 
271 		/*
272 		 * The cutoff value is based on the following consideration:
273 		 * alpha = 2^-30 or 2^-60 as recommended in SP800-90B.
274 		 * In addition, we require an entropy value H of 1/osr as this
275 		 * is the minimum entropy required to provide full entropy.
276 		 * Note, we collect (DATA_SIZE_BITS + ENTROPY_SAFETY_FACTOR)*osr
277 		 * deltas for inserting them into the entropy pool which should
278 		 * then have (close to) DATA_SIZE_BITS bits of entropy in the
279 		 * conditioned output.
280 		 *
281 		 * Note, ec->rct_count (which equals to value B in the pseudo
282 		 * code of SP800-90B section 4.4.1) starts with zero. Hence
283 		 * we need to subtract one from the cutoff value as calculated
284 		 * following SP800-90B. Thus C = ceil(-log_2(alpha)/H) = 30*osr
285 		 * or 60*osr.
286 		 */
287 		if ((unsigned int)ec->rct_count >= (60 * ec->osr)) {
288 			ec->rct_count = -1;
289 			ec->health_failure |= JENT_RCT_FAILURE_PERMANENT;
290 		} else if ((unsigned int)ec->rct_count >= (30 * ec->osr)) {
291 			ec->rct_count = -1;
292 			ec->health_failure |= JENT_RCT_FAILURE;
293 		}
294 	} else {
295 		/* Reset RCT */
296 		ec->rct_count = 0;
297 	}
298 }
299 
300 static inline __u64 jent_delta(__u64 prev, __u64 next)
301 {
302 #define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
303 	return (prev < next) ? (next - prev) :
304 			       (JENT_UINT64_MAX - prev + 1 + next);
305 }
306 
307 /*
308  * Stuck test by checking the:
309  * 	1st derivative of the jitter measurement (time delta)
310  * 	2nd derivative of the jitter measurement (delta of time deltas)
311  * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
312  *
313  * All values must always be non-zero.
314  *
315  * @ec [in] Reference to entropy collector
316  * @current_delta [in] Jitter time delta
317  *
318  * @return
319  * 	0 jitter measurement not stuck (good bit)
320  * 	1 jitter measurement stuck (reject bit)
321  */
322 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
323 {
324 	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
325 	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
326 
327 	ec->last_delta = current_delta;
328 	ec->last_delta2 = delta2;
329 
330 	/*
331 	 * Insert the result of the comparison of two back-to-back time
332 	 * deltas.
333 	 */
334 	jent_apt_insert(ec, current_delta);
335 
336 	if (!current_delta || !delta2 || !delta3) {
337 		/* RCT with a stuck bit */
338 		jent_rct_insert(ec, 1);
339 		return 1;
340 	}
341 
342 	/* RCT with a non-stuck bit */
343 	jent_rct_insert(ec, 0);
344 
345 	return 0;
346 }
347 
348 /*
349  * Report any health test failures
350  *
351  * @ec [in] Reference to entropy collector
352  *
353  * @return a bitmask indicating which tests failed
354  *	0 No health test failure
355  *	1 RCT failure
356  *	2 APT failure
357  *	1<<JENT_PERMANENT_FAILURE_SHIFT RCT permanent failure
358  *	2<<JENT_PERMANENT_FAILURE_SHIFT APT permanent failure
359  */
360 static unsigned int jent_health_failure(struct rand_data *ec)
361 {
362 	/* Test is only enabled in FIPS mode */
363 	if (!fips_enabled)
364 		return 0;
365 
366 	return ec->health_failure;
367 }
368 
369 /***************************************************************************
370  * Noise sources
371  ***************************************************************************/
372 
373 /*
374  * Update of the loop count used for the next round of
375  * an entropy collection.
376  *
377  * Input:
378  * @bits is the number of low bits of the timer to consider
379  * @min is the number of bits we shift the timer value to the right at
380  *	the end to make sure we have a guaranteed minimum value
381  *
382  * @return Newly calculated loop counter
383  */
384 static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
385 {
386 	__u64 time = 0;
387 	__u64 shuffle = 0;
388 	unsigned int i = 0;
389 	unsigned int mask = (1<<bits) - 1;
390 
391 	jent_get_nstime(&time);
392 
393 	/*
394 	 * We fold the time value as much as possible to ensure that as many
395 	 * bits of the time stamp are included as possible.
396 	 */
397 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
398 		shuffle ^= time & mask;
399 		time = time >> bits;
400 	}
401 
402 	/*
403 	 * We add a lower boundary value to ensure we have a minimum
404 	 * RNG loop count.
405 	 */
406 	return (shuffle + (1<<min));
407 }
408 
409 /*
410  * CPU Jitter noise source -- this is the noise source based on the CPU
411  *			      execution time jitter
412  *
413  * This function injects the individual bits of the time value into the
414  * entropy pool using a hash.
415  *
416  * ec [in] entropy collector
417  * time [in] time stamp to be injected
418  * stuck [in] Is the time stamp identified as stuck?
419  *
420  * Output:
421  * updated hash context in the entropy collector or error code
422  */
423 static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
424 {
425 #define SHA3_HASH_LOOP (1<<3)
426 	struct {
427 		int rct_count;
428 		unsigned int apt_observations;
429 		unsigned int apt_count;
430 		unsigned int apt_base;
431 	} addtl = {
432 		ec->rct_count,
433 		ec->apt_observations,
434 		ec->apt_count,
435 		ec->apt_base
436 	};
437 
438 	return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
439 			      SHA3_HASH_LOOP, stuck);
440 }
441 
442 /*
443  * Memory Access noise source -- this is a noise source based on variations in
444  *				 memory access times
445  *
446  * This function performs memory accesses which will add to the timing
447  * variations due to an unknown amount of CPU wait states that need to be
448  * added when accessing memory. The memory size should be larger than the L1
449  * caches as outlined in the documentation and the associated testing.
450  *
451  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
452  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
453  * variations as the CPU has hardly to wait. Starting with L2, significant
454  * variations are added because L2 typically does not belong to the CPU any more
455  * and therefore a wider range of CPU wait states is necessary for accesses.
456  * L3 and real memory accesses have even a wider range of wait states. However,
457  * to reliably access either L3 or memory, the ec->mem memory must be quite
458  * large which is usually not desirable.
459  *
460  * @ec [in] Reference to the entropy collector with the memory access data -- if
461  *	    the reference to the memory block to be accessed is NULL, this noise
462  *	    source is disabled
463  * @loop_cnt [in] if a value not equal to 0 is set, use the given value
464  *		  number of loops to perform the LFSR
465  */
466 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
467 {
468 	unsigned int wrap = 0;
469 	__u64 i = 0;
470 #define MAX_ACC_LOOP_BIT 7
471 #define MIN_ACC_LOOP_BIT 0
472 	__u64 acc_loop_cnt =
473 		jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
474 
475 	if (NULL == ec || NULL == ec->mem)
476 		return;
477 	wrap = ec->memblocksize * ec->memblocks;
478 
479 	/*
480 	 * testing purposes -- allow test app to set the counter, not
481 	 * needed during runtime
482 	 */
483 	if (loop_cnt)
484 		acc_loop_cnt = loop_cnt;
485 
486 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
487 		unsigned char *tmpval = ec->mem + ec->memlocation;
488 		/*
489 		 * memory access: just add 1 to one byte,
490 		 * wrap at 255 -- memory access implies read
491 		 * from and write to memory location
492 		 */
493 		*tmpval = (*tmpval + 1) & 0xff;
494 		/*
495 		 * Addition of memblocksize - 1 to pointer
496 		 * with wrap around logic to ensure that every
497 		 * memory location is hit evenly
498 		 */
499 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
500 		ec->memlocation = ec->memlocation % wrap;
501 	}
502 }
503 
504 /***************************************************************************
505  * Start of entropy processing logic
506  ***************************************************************************/
507 /*
508  * This is the heart of the entropy generation: calculate time deltas and
509  * use the CPU jitter in the time deltas. The jitter is injected into the
510  * entropy pool.
511  *
512  * WARNING: ensure that ->prev_time is primed before using the output
513  *	    of this function! This can be done by calling this function
514  *	    and not using its result.
515  *
516  * @ec [in] Reference to entropy collector
517  *
518  * @return result of stuck test
519  */
520 static int jent_measure_jitter(struct rand_data *ec, __u64 *ret_current_delta)
521 {
522 	__u64 time = 0;
523 	__u64 current_delta = 0;
524 	int stuck;
525 
526 	/* Invoke one noise source before time measurement to add variations */
527 	jent_memaccess(ec, 0);
528 
529 	/*
530 	 * Get time stamp and calculate time delta to previous
531 	 * invocation to measure the timing variations
532 	 */
533 	jent_get_nstime(&time);
534 	current_delta = jent_delta(ec->prev_time, time);
535 	ec->prev_time = time;
536 
537 	/* Check whether we have a stuck measurement. */
538 	stuck = jent_stuck(ec, current_delta);
539 
540 	/* Now call the next noise sources which also injects the data */
541 	if (jent_condition_data(ec, current_delta, stuck))
542 		stuck = 1;
543 
544 	/* return the raw entropy value */
545 	if (ret_current_delta)
546 		*ret_current_delta = current_delta;
547 
548 	return stuck;
549 }
550 
551 /*
552  * Generator of one 64 bit random number
553  * Function fills rand_data->hash_state
554  *
555  * @ec [in] Reference to entropy collector
556  */
557 static void jent_gen_entropy(struct rand_data *ec)
558 {
559 	unsigned int k = 0, safety_factor = 0;
560 
561 	if (fips_enabled)
562 		safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
563 
564 	/* priming of the ->prev_time value */
565 	jent_measure_jitter(ec, NULL);
566 
567 	while (!jent_health_failure(ec)) {
568 		/* If a stuck measurement is received, repeat measurement */
569 		if (jent_measure_jitter(ec, NULL))
570 			continue;
571 
572 		/*
573 		 * We multiply the loop value with ->osr to obtain the
574 		 * oversampling rate requested by the caller
575 		 */
576 		if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
577 			break;
578 	}
579 }
580 
581 /*
582  * Entry function: Obtain entropy for the caller.
583  *
584  * This function invokes the entropy gathering logic as often to generate
585  * as many bytes as requested by the caller. The entropy gathering logic
586  * creates 64 bit per invocation.
587  *
588  * This function truncates the last 64 bit entropy value output to the exact
589  * size specified by the caller.
590  *
591  * @ec [in] Reference to entropy collector
592  * @data [in] pointer to buffer for storing random data -- buffer must already
593  *	      exist
594  * @len [in] size of the buffer, specifying also the requested number of random
595  *	     in bytes
596  *
597  * @return 0 when request is fulfilled or an error
598  *
599  * The following error codes can occur:
600  *	-1	entropy_collector is NULL or the generation failed
601  *	-2	Intermittent health failure
602  *	-3	Permanent health failure
603  */
604 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
605 		      unsigned int len)
606 {
607 	unsigned char *p = data;
608 
609 	if (!ec)
610 		return -1;
611 
612 	while (len > 0) {
613 		unsigned int tocopy, health_test_result;
614 
615 		jent_gen_entropy(ec);
616 
617 		health_test_result = jent_health_failure(ec);
618 		if (health_test_result > JENT_PERMANENT_FAILURE_SHIFT) {
619 			/*
620 			 * At this point, the Jitter RNG instance is considered
621 			 * as a failed instance. There is no rerun of the
622 			 * startup test any more, because the caller
623 			 * is assumed to not further use this instance.
624 			 */
625 			return -3;
626 		} else if (health_test_result) {
627 			/*
628 			 * Perform startup health tests and return permanent
629 			 * error if it fails.
630 			 */
631 			if (jent_entropy_init(0, 0, NULL, ec)) {
632 				/* Mark the permanent error */
633 				ec->health_failure &=
634 					JENT_RCT_FAILURE_PERMANENT |
635 					JENT_APT_FAILURE_PERMANENT;
636 				return -3;
637 			}
638 
639 			return -2;
640 		}
641 
642 		tocopy = min(DATA_SIZE_BITS / 8, len);
643 		if (jent_read_random_block(ec->hash_state, p, tocopy))
644 			return -1;
645 
646 		len -= tocopy;
647 		p += tocopy;
648 	}
649 
650 	return 0;
651 }
652 
653 /***************************************************************************
654  * Initialization logic
655  ***************************************************************************/
656 
657 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
658 					       unsigned int flags,
659 					       void *hash_state)
660 {
661 	struct rand_data *entropy_collector;
662 
663 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
664 	if (!entropy_collector)
665 		return NULL;
666 
667 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
668 		/* Allocate memory for adding variations based on memory
669 		 * access
670 		 */
671 		entropy_collector->mem = jent_kvzalloc(JENT_MEMORY_SIZE);
672 		if (!entropy_collector->mem) {
673 			jent_zfree(entropy_collector);
674 			return NULL;
675 		}
676 		entropy_collector->memblocksize =
677 			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE;
678 		entropy_collector->memblocks =
679 			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS;
680 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
681 	}
682 
683 	/* verify and set the oversampling rate */
684 	if (osr == 0)
685 		osr = 1; /* H_submitter = 1 / osr */
686 	entropy_collector->osr = osr;
687 	entropy_collector->flags = flags;
688 
689 	entropy_collector->hash_state = hash_state;
690 
691 	/* Initialize the APT */
692 	jent_apt_init(entropy_collector, osr);
693 
694 	/* fill the data pad with non-zero values */
695 	jent_gen_entropy(entropy_collector);
696 
697 	return entropy_collector;
698 }
699 
700 void jent_entropy_collector_free(struct rand_data *entropy_collector)
701 {
702 	jent_kvzfree(entropy_collector->mem, JENT_MEMORY_SIZE);
703 	entropy_collector->mem = NULL;
704 	jent_zfree(entropy_collector);
705 }
706 
707 int jent_entropy_init(unsigned int osr, unsigned int flags, void *hash_state,
708 		      struct rand_data *p_ec)
709 {
710 	/*
711 	 * If caller provides an allocated ec, reuse it which implies that the
712 	 * health test entropy data is used to further still the available
713 	 * entropy pool.
714 	 */
715 	struct rand_data *ec = p_ec;
716 	int i, time_backwards = 0, ret = 0, ec_free = 0;
717 	unsigned int health_test_result;
718 
719 	if (!ec) {
720 		ec = jent_entropy_collector_alloc(osr, flags, hash_state);
721 		if (!ec)
722 			return JENT_EMEM;
723 		ec_free = 1;
724 	} else {
725 		/* Reset the APT */
726 		jent_apt_reset(ec, 0);
727 		/* Ensure that a new APT base is obtained */
728 		ec->apt_base_set = 0;
729 		/* Reset the RCT */
730 		ec->rct_count = 0;
731 		/* Reset intermittent, leave permanent health test result */
732 		ec->health_failure &= (~JENT_RCT_FAILURE);
733 		ec->health_failure &= (~JENT_APT_FAILURE);
734 	}
735 
736 	/* We could perform statistical tests here, but the problem is
737 	 * that we only have a few loop counts to do testing. These
738 	 * loop counts may show some slight skew and we produce
739 	 * false positives.
740 	 *
741 	 * Moreover, only old systems show potentially problematic
742 	 * jitter entropy that could potentially be caught here. But
743 	 * the RNG is intended for hardware that is available or widely
744 	 * used, but not old systems that are long out of favor. Thus,
745 	 * no statistical tests.
746 	 */
747 
748 	/*
749 	 * We could add a check for system capabilities such as clock_getres or
750 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
751 	 * following sanity checks verify that we have a high-resolution
752 	 * timer.
753 	 */
754 	/*
755 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
756 	 * definitely too little.
757 	 *
758 	 * SP800-90B requires at least 1024 initial test cycles.
759 	 */
760 #define TESTLOOPCOUNT 1024
761 #define CLEARCACHE 100
762 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
763 		__u64 start_time = 0, end_time = 0, delta = 0;
764 
765 		/* Invoke core entropy collection logic */
766 		jent_measure_jitter(ec, &delta);
767 		end_time = ec->prev_time;
768 		start_time = ec->prev_time - delta;
769 
770 		/* test whether timer works */
771 		if (!start_time || !end_time) {
772 			ret = JENT_ENOTIME;
773 			goto out;
774 		}
775 
776 		/*
777 		 * test whether timer is fine grained enough to provide
778 		 * delta even when called shortly after each other -- this
779 		 * implies that we also have a high resolution timer
780 		 */
781 		if (!delta || (end_time == start_time)) {
782 			ret = JENT_ECOARSETIME;
783 			goto out;
784 		}
785 
786 		/*
787 		 * up to here we did not modify any variable that will be
788 		 * evaluated later, but we already performed some work. Thus we
789 		 * already have had an impact on the caches, branch prediction,
790 		 * etc. with the goal to clear it to get the worst case
791 		 * measurements.
792 		 */
793 		if (i < CLEARCACHE)
794 			continue;
795 
796 		/* test whether we have an increasing timer */
797 		if (!(end_time > start_time))
798 			time_backwards++;
799 	}
800 
801 	/*
802 	 * we allow up to three times the time running backwards.
803 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
804 	 * if such an operation just happens to interfere with our test, it
805 	 * should not fail. The value of 3 should cover the NTP case being
806 	 * performed during our test run.
807 	 */
808 	if (time_backwards > 3) {
809 		ret = JENT_ENOMONOTONIC;
810 		goto out;
811 	}
812 
813 	/* Did we encounter a health test failure? */
814 	health_test_result = jent_health_failure(ec);
815 	if (health_test_result) {
816 		ret = (health_test_result & JENT_RCT_FAILURE) ? JENT_ERCT :
817 								JENT_EHEALTH;
818 		goto out;
819 	}
820 
821 out:
822 	if (ec_free)
823 		jent_entropy_collector_free(ec);
824 
825 	return ret;
826 }
827