xref: /linux/crypto/jitterentropy.c (revision 4eb7ae7a301d3586c3351e81d5c3cfe2304a1a6a)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2019
6  *
7  * Design
8  * ======
9  *
10  * See http://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 2.1.2 provided at http://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 #define NULL    ((void *) 0)
61 
62 /* The entropy pool */
63 struct rand_data {
64 	/* all data values that are vital to maintain the security
65 	 * of the RNG are marked as SENSITIVE. A user must not
66 	 * access that information while the RNG executes its loops to
67 	 * calculate the next random value. */
68 	__u64 data;		/* SENSITIVE Actual random number */
69 	__u64 old_data;		/* SENSITIVE Previous random number */
70 	__u64 prev_time;	/* SENSITIVE Previous time stamp */
71 #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
72 	__u64 last_delta;	/* SENSITIVE stuck test */
73 	__s64 last_delta2;	/* SENSITIVE stuck test */
74 	unsigned int osr;	/* Oversample rate */
75 #define JENT_MEMORY_BLOCKS 64
76 #define JENT_MEMORY_BLOCKSIZE 32
77 #define JENT_MEMORY_ACCESSLOOPS 128
78 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
79 	unsigned char *mem;	/* Memory access location with size of
80 				 * memblocks * memblocksize */
81 	unsigned int memlocation; /* Pointer to byte in *mem */
82 	unsigned int memblocks;	/* Number of memory blocks in *mem */
83 	unsigned int memblocksize; /* Size of one memory block in bytes */
84 	unsigned int memaccessloops; /* Number of memory accesses per random
85 				      * bit generation */
86 };
87 
88 /* Flags that can be used to initialize the RNG */
89 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
90 					   * entropy, saves MEMORY_SIZE RAM for
91 					   * entropy collector */
92 
93 /* -- error codes for init function -- */
94 #define JENT_ENOTIME		1 /* Timer service not available */
95 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
96 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
97 #define JENT_EVARVAR		5 /* Timer does not produce variations of
98 				   * variations (2nd derivation of time is
99 				   * zero). */
100 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
101 
102 /***************************************************************************
103  * Helper functions
104  ***************************************************************************/
105 
106 #include "jitterentropy.h"
107 
108 /**
109  * Update of the loop count used for the next round of
110  * an entropy collection.
111  *
112  * Input:
113  * @ec entropy collector struct -- may be NULL
114  * @bits is the number of low bits of the timer to consider
115  * @min is the number of bits we shift the timer value to the right at
116  *	the end to make sure we have a guaranteed minimum value
117  *
118  * @return Newly calculated loop counter
119  */
120 static __u64 jent_loop_shuffle(struct rand_data *ec,
121 			       unsigned int bits, unsigned int min)
122 {
123 	__u64 time = 0;
124 	__u64 shuffle = 0;
125 	unsigned int i = 0;
126 	unsigned int mask = (1<<bits) - 1;
127 
128 	jent_get_nstime(&time);
129 	/*
130 	 * Mix the current state of the random number into the shuffle
131 	 * calculation to balance that shuffle a bit more.
132 	 */
133 	if (ec)
134 		time ^= ec->data;
135 	/*
136 	 * We fold the time value as much as possible to ensure that as many
137 	 * bits of the time stamp are included as possible.
138 	 */
139 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
140 		shuffle ^= time & mask;
141 		time = time >> bits;
142 	}
143 
144 	/*
145 	 * We add a lower boundary value to ensure we have a minimum
146 	 * RNG loop count.
147 	 */
148 	return (shuffle + (1<<min));
149 }
150 
151 /***************************************************************************
152  * Noise sources
153  ***************************************************************************/
154 
155 /**
156  * CPU Jitter noise source -- this is the noise source based on the CPU
157  *			      execution time jitter
158  *
159  * This function injects the individual bits of the time value into the
160  * entropy pool using an LFSR.
161  *
162  * The code is deliberately inefficient with respect to the bit shifting
163  * and shall stay that way. This function is the root cause why the code
164  * shall be compiled without optimization. This function not only acts as
165  * folding operation, but this function's execution is used to measure
166  * the CPU execution time jitter. Any change to the loop in this function
167  * implies that careful retesting must be done.
168  *
169  * Input:
170  * @ec entropy collector struct
171  * @time time stamp to be injected
172  * @loop_cnt if a value not equal to 0 is set, use the given value as number of
173  *	     loops to perform the folding
174  *
175  * Output:
176  * updated ec->data
177  *
178  * @return Number of loops the folding operation is performed
179  */
180 static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt)
181 {
182 	unsigned int i;
183 	__u64 j = 0;
184 	__u64 new = 0;
185 #define MAX_FOLD_LOOP_BIT 4
186 #define MIN_FOLD_LOOP_BIT 0
187 	__u64 fold_loop_cnt =
188 		jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
189 
190 	/*
191 	 * testing purposes -- allow test app to set the counter, not
192 	 * needed during runtime
193 	 */
194 	if (loop_cnt)
195 		fold_loop_cnt = loop_cnt;
196 	for (j = 0; j < fold_loop_cnt; j++) {
197 		new = ec->data;
198 		for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
199 			__u64 tmp = time << (DATA_SIZE_BITS - i);
200 
201 			tmp = tmp >> (DATA_SIZE_BITS - 1);
202 
203 			/*
204 			* Fibonacci LSFR with polynomial of
205 			*  x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
206 			*  primitive according to
207 			*   http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
208 			* (the shift values are the polynomial values minus one
209 			* due to counting bits from 0 to 63). As the current
210 			* position is always the LSB, the polynomial only needs
211 			* to shift data in from the left without wrap.
212 			*/
213 			tmp ^= ((new >> 63) & 1);
214 			tmp ^= ((new >> 60) & 1);
215 			tmp ^= ((new >> 55) & 1);
216 			tmp ^= ((new >> 30) & 1);
217 			tmp ^= ((new >> 27) & 1);
218 			tmp ^= ((new >> 22) & 1);
219 			new <<= 1;
220 			new ^= tmp;
221 		}
222 	}
223 	ec->data = new;
224 
225 	return fold_loop_cnt;
226 }
227 
228 /**
229  * Memory Access noise source -- this is a noise source based on variations in
230  *				 memory access times
231  *
232  * This function performs memory accesses which will add to the timing
233  * variations due to an unknown amount of CPU wait states that need to be
234  * added when accessing memory. The memory size should be larger than the L1
235  * caches as outlined in the documentation and the associated testing.
236  *
237  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
238  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
239  * variations as the CPU has hardly to wait. Starting with L2, significant
240  * variations are added because L2 typically does not belong to the CPU any more
241  * and therefore a wider range of CPU wait states is necessary for accesses.
242  * L3 and real memory accesses have even a wider range of wait states. However,
243  * to reliably access either L3 or memory, the ec->mem memory must be quite
244  * large which is usually not desirable.
245  *
246  * Input:
247  * @ec Reference to the entropy collector with the memory access data -- if
248  *     the reference to the memory block to be accessed is NULL, this noise
249  *     source is disabled
250  * @loop_cnt if a value not equal to 0 is set, use the given value as number of
251  *	     loops to perform the folding
252  *
253  * @return Number of memory access operations
254  */
255 static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
256 {
257 	unsigned int wrap = 0;
258 	__u64 i = 0;
259 #define MAX_ACC_LOOP_BIT 7
260 #define MIN_ACC_LOOP_BIT 0
261 	__u64 acc_loop_cnt =
262 		jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
263 
264 	if (NULL == ec || NULL == ec->mem)
265 		return 0;
266 	wrap = ec->memblocksize * ec->memblocks;
267 
268 	/*
269 	 * testing purposes -- allow test app to set the counter, not
270 	 * needed during runtime
271 	 */
272 	if (loop_cnt)
273 		acc_loop_cnt = loop_cnt;
274 
275 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
276 		unsigned char *tmpval = ec->mem + ec->memlocation;
277 		/*
278 		 * memory access: just add 1 to one byte,
279 		 * wrap at 255 -- memory access implies read
280 		 * from and write to memory location
281 		 */
282 		*tmpval = (*tmpval + 1) & 0xff;
283 		/*
284 		 * Addition of memblocksize - 1 to pointer
285 		 * with wrap around logic to ensure that every
286 		 * memory location is hit evenly
287 		 */
288 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
289 		ec->memlocation = ec->memlocation % wrap;
290 	}
291 	return i;
292 }
293 
294 /***************************************************************************
295  * Start of entropy processing logic
296  ***************************************************************************/
297 
298 /**
299  * Stuck test by checking the:
300  *	1st derivation of the jitter measurement (time delta)
301  *	2nd derivation of the jitter measurement (delta of time deltas)
302  *	3rd derivation of the jitter measurement (delta of delta of time deltas)
303  *
304  * All values must always be non-zero.
305  *
306  * Input:
307  * @ec Reference to entropy collector
308  * @current_delta Jitter time delta
309  *
310  * @return
311  *	0 jitter measurement not stuck (good bit)
312  *	1 jitter measurement stuck (reject bit)
313  */
314 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
315 {
316 	__s64 delta2 = ec->last_delta - current_delta;
317 	__s64 delta3 = delta2 - ec->last_delta2;
318 
319 	ec->last_delta = current_delta;
320 	ec->last_delta2 = delta2;
321 
322 	if (!current_delta || !delta2 || !delta3)
323 		return 1;
324 
325 	return 0;
326 }
327 
328 /**
329  * This is the heart of the entropy generation: calculate time deltas and
330  * use the CPU jitter in the time deltas. The jitter is injected into the
331  * entropy pool.
332  *
333  * WARNING: ensure that ->prev_time is primed before using the output
334  *	    of this function! This can be done by calling this function
335  *	    and not using its result.
336  *
337  * Input:
338  * @entropy_collector Reference to entropy collector
339  *
340  * @return result of stuck test
341  */
342 static int jent_measure_jitter(struct rand_data *ec)
343 {
344 	__u64 time = 0;
345 	__u64 current_delta = 0;
346 
347 	/* Invoke one noise source before time measurement to add variations */
348 	jent_memaccess(ec, 0);
349 
350 	/*
351 	 * Get time stamp and calculate time delta to previous
352 	 * invocation to measure the timing variations
353 	 */
354 	jent_get_nstime(&time);
355 	current_delta = time - ec->prev_time;
356 	ec->prev_time = time;
357 
358 	/* Now call the next noise sources which also injects the data */
359 	jent_lfsr_time(ec, current_delta, 0);
360 
361 	/* Check whether we have a stuck measurement. */
362 	return jent_stuck(ec, current_delta);
363 }
364 
365 /**
366  * Generator of one 64 bit random number
367  * Function fills rand_data->data
368  *
369  * Input:
370  * @ec Reference to entropy collector
371  */
372 static void jent_gen_entropy(struct rand_data *ec)
373 {
374 	unsigned int k = 0;
375 
376 	/* priming of the ->prev_time value */
377 	jent_measure_jitter(ec);
378 
379 	while (1) {
380 		/* If a stuck measurement is received, repeat measurement */
381 		if (jent_measure_jitter(ec))
382 			continue;
383 
384 		/*
385 		 * We multiply the loop value with ->osr to obtain the
386 		 * oversampling rate requested by the caller
387 		 */
388 		if (++k >= (DATA_SIZE_BITS * ec->osr))
389 			break;
390 	}
391 }
392 
393 /**
394  * The continuous test required by FIPS 140-2 -- the function automatically
395  * primes the test if needed.
396  *
397  * Return:
398  * returns normally if FIPS test passed
399  * panics the kernel if FIPS test failed
400  */
401 static void jent_fips_test(struct rand_data *ec)
402 {
403 	if (!jent_fips_enabled())
404 		return;
405 
406 	/* prime the FIPS test */
407 	if (!ec->old_data) {
408 		ec->old_data = ec->data;
409 		jent_gen_entropy(ec);
410 	}
411 
412 	if (ec->data == ec->old_data)
413 		jent_panic("jitterentropy: Duplicate output detected\n");
414 
415 	ec->old_data = ec->data;
416 }
417 
418 /**
419  * Entry function: Obtain entropy for the caller.
420  *
421  * This function invokes the entropy gathering logic as often to generate
422  * as many bytes as requested by the caller. The entropy gathering logic
423  * creates 64 bit per invocation.
424  *
425  * This function truncates the last 64 bit entropy value output to the exact
426  * size specified by the caller.
427  *
428  * Input:
429  * @ec Reference to entropy collector
430  * @data pointer to buffer for storing random data -- buffer must already
431  *	 exist
432  * @len size of the buffer, specifying also the requested number of random
433  *	in bytes
434  *
435  * @return 0 when request is fulfilled or an error
436  *
437  * The following error codes can occur:
438  *	-1	entropy_collector is NULL
439  */
440 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
441 		      unsigned int len)
442 {
443 	unsigned char *p = data;
444 
445 	if (!ec)
446 		return -1;
447 
448 	while (0 < len) {
449 		unsigned int tocopy;
450 
451 		jent_gen_entropy(ec);
452 		jent_fips_test(ec);
453 		if ((DATA_SIZE_BITS / 8) < len)
454 			tocopy = (DATA_SIZE_BITS / 8);
455 		else
456 			tocopy = len;
457 		jent_memcpy(p, &ec->data, tocopy);
458 
459 		len -= tocopy;
460 		p += tocopy;
461 	}
462 
463 	return 0;
464 }
465 
466 /***************************************************************************
467  * Initialization logic
468  ***************************************************************************/
469 
470 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
471 					       unsigned int flags)
472 {
473 	struct rand_data *entropy_collector;
474 
475 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
476 	if (!entropy_collector)
477 		return NULL;
478 
479 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
480 		/* Allocate memory for adding variations based on memory
481 		 * access
482 		 */
483 		entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
484 		if (!entropy_collector->mem) {
485 			jent_zfree(entropy_collector);
486 			return NULL;
487 		}
488 		entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
489 		entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
490 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
491 	}
492 
493 	/* verify and set the oversampling rate */
494 	if (0 == osr)
495 		osr = 1; /* minimum sampling rate is 1 */
496 	entropy_collector->osr = osr;
497 
498 	/* fill the data pad with non-zero values */
499 	jent_gen_entropy(entropy_collector);
500 
501 	return entropy_collector;
502 }
503 
504 void jent_entropy_collector_free(struct rand_data *entropy_collector)
505 {
506 	jent_zfree(entropy_collector->mem);
507 	entropy_collector->mem = NULL;
508 	jent_zfree(entropy_collector);
509 }
510 
511 int jent_entropy_init(void)
512 {
513 	int i;
514 	__u64 delta_sum = 0;
515 	__u64 old_delta = 0;
516 	int time_backwards = 0;
517 	int count_mod = 0;
518 	int count_stuck = 0;
519 	struct rand_data ec = { 0 };
520 
521 	/* We could perform statistical tests here, but the problem is
522 	 * that we only have a few loop counts to do testing. These
523 	 * loop counts may show some slight skew and we produce
524 	 * false positives.
525 	 *
526 	 * Moreover, only old systems show potentially problematic
527 	 * jitter entropy that could potentially be caught here. But
528 	 * the RNG is intended for hardware that is available or widely
529 	 * used, but not old systems that are long out of favor. Thus,
530 	 * no statistical tests.
531 	 */
532 
533 	/*
534 	 * We could add a check for system capabilities such as clock_getres or
535 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
536 	 * following sanity checks verify that we have a high-resolution
537 	 * timer.
538 	 */
539 	/*
540 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
541 	 * definitely too little.
542 	 */
543 #define TESTLOOPCOUNT 300
544 #define CLEARCACHE 100
545 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
546 		__u64 time = 0;
547 		__u64 time2 = 0;
548 		__u64 delta = 0;
549 		unsigned int lowdelta = 0;
550 		int stuck;
551 
552 		/* Invoke core entropy collection logic */
553 		jent_get_nstime(&time);
554 		ec.prev_time = time;
555 		jent_lfsr_time(&ec, time, 0);
556 		jent_get_nstime(&time2);
557 
558 		/* test whether timer works */
559 		if (!time || !time2)
560 			return JENT_ENOTIME;
561 		delta = time2 - time;
562 		/*
563 		 * test whether timer is fine grained enough to provide
564 		 * delta even when called shortly after each other -- this
565 		 * implies that we also have a high resolution timer
566 		 */
567 		if (!delta)
568 			return JENT_ECOARSETIME;
569 
570 		stuck = jent_stuck(&ec, delta);
571 
572 		/*
573 		 * up to here we did not modify any variable that will be
574 		 * evaluated later, but we already performed some work. Thus we
575 		 * already have had an impact on the caches, branch prediction,
576 		 * etc. with the goal to clear it to get the worst case
577 		 * measurements.
578 		 */
579 		if (CLEARCACHE > i)
580 			continue;
581 
582 		if (stuck)
583 			count_stuck++;
584 
585 		/* test whether we have an increasing timer */
586 		if (!(time2 > time))
587 			time_backwards++;
588 
589 		/* use 32 bit value to ensure compilation on 32 bit arches */
590 		lowdelta = time2 - time;
591 		if (!(lowdelta % 100))
592 			count_mod++;
593 
594 		/*
595 		 * ensure that we have a varying delta timer which is necessary
596 		 * for the calculation of entropy -- perform this check
597 		 * only after the first loop is executed as we need to prime
598 		 * the old_data value
599 		 */
600 		if (delta > old_delta)
601 			delta_sum += (delta - old_delta);
602 		else
603 			delta_sum += (old_delta - delta);
604 		old_delta = delta;
605 	}
606 
607 	/*
608 	 * we allow up to three times the time running backwards.
609 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
610 	 * if such an operation just happens to interfere with our test, it
611 	 * should not fail. The value of 3 should cover the NTP case being
612 	 * performed during our test run.
613 	 */
614 	if (3 < time_backwards)
615 		return JENT_ENOMONOTONIC;
616 
617 	/*
618 	 * Variations of deltas of time must on average be larger
619 	 * than 1 to ensure the entropy estimation
620 	 * implied with 1 is preserved
621 	 */
622 	if ((delta_sum) <= 1)
623 		return JENT_EVARVAR;
624 
625 	/*
626 	 * Ensure that we have variations in the time stamp below 10 for at
627 	 * least 10% of all checks -- on some platforms, the counter increments
628 	 * in multiples of 100, but not always
629 	 */
630 	if ((TESTLOOPCOUNT/10 * 9) < count_mod)
631 		return JENT_ECOARSETIME;
632 
633 	/*
634 	 * If we have more than 90% stuck results, then this Jitter RNG is
635 	 * likely to not work well.
636 	 */
637 	if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
638 		return JENT_ESTUCK;
639 
640 	return 0;
641 }
642