xref: /linux/crypto/jitterentropy.c (revision 4999999ed7e099fcc2476c8b3a245c4c2c9026c0)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
6  *
7  * Design
8  * ======
9  *
10  * See https://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 3.4.0 provided at https://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 typedef unsigned char		u8;
61 #define NULL    ((void *) 0)
62 
63 /* The entropy pool */
64 struct rand_data {
65 	/* SHA3-256 is used as conditioner */
66 #define DATA_SIZE_BITS 256
67 	/* all data values that are vital to maintain the security
68 	 * of the RNG are marked as SENSITIVE. A user must not
69 	 * access that information while the RNG executes its loops to
70 	 * calculate the next random value. */
71 	void *hash_state;		/* SENSITIVE hash state entropy pool */
72 	__u64 prev_time;		/* SENSITIVE Previous time stamp */
73 	__u64 last_delta;		/* SENSITIVE stuck test */
74 	__s64 last_delta2;		/* SENSITIVE stuck test */
75 
76 	unsigned int flags;		/* Flags used to initialize */
77 	unsigned int osr;		/* Oversample rate */
78 #define JENT_MEMORY_ACCESSLOOPS 128
79 #define JENT_MEMORY_SIZE						\
80 	(CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS *			\
81 	 CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE)
82 	unsigned char *mem;	/* Memory access location with size of
83 				 * memblocks * memblocksize */
84 	unsigned int memlocation; /* Pointer to byte in *mem */
85 	unsigned int memblocks;	/* Number of memory blocks in *mem */
86 	unsigned int memblocksize; /* Size of one memory block in bytes */
87 	unsigned int memaccessloops; /* Number of memory accesses per random
88 				      * bit generation */
89 
90 	/* Repetition Count Test */
91 	unsigned int rct_count;			/* Number of stuck values */
92 
93 	/* Adaptive Proportion Test cutoff values */
94 	unsigned int apt_cutoff; /* Intermittent health test failure */
95 	unsigned int apt_cutoff_permanent; /* Permanent health test failure */
96 #define JENT_APT_WINDOW_SIZE	512	/* Data window size */
97 	/* LSB of time stamp to process */
98 #define JENT_APT_LSB		16
99 #define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
100 	unsigned int apt_observations;	/* Number of collected observations */
101 	unsigned int apt_count;		/* APT counter */
102 	unsigned int apt_base;		/* APT base reference */
103 	unsigned int apt_base_set:1;	/* APT base reference set? */
104 };
105 
106 /* Flags that can be used to initialize the RNG */
107 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
108 					   * entropy, saves MEMORY_SIZE RAM for
109 					   * entropy collector */
110 
111 /* -- error codes for init function -- */
112 #define JENT_ENOTIME		1 /* Timer service not available */
113 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
114 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
115 #define JENT_EVARVAR		5 /* Timer does not produce variations of
116 				   * variations (2nd derivation of time is
117 				   * zero). */
118 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
119 #define JENT_EHEALTH		9 /* Health test failed during initialization */
120 #define JENT_ERCT	       10 /* RCT failed during initialization */
121 #define JENT_EHASH	       11 /* Hash self test failed */
122 #define JENT_EMEM	       12 /* Can't allocate memory for initialization */
123 
124 /*
125  * The output n bits can receive more than n bits of min entropy, of course,
126  * but the fixed output of the conditioning function can only asymptotically
127  * approach the output size bits of min entropy, not attain that bound. Random
128  * maps will tend to have output collisions, which reduces the creditable
129  * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
130  *
131  * The value "64" is justified in Appendix A.4 of the current 90C draft,
132  * and aligns with NIST's in "epsilon" definition in this document, which is
133  * that a string can be considered "full entropy" if you can bound the min
134  * entropy in each bit of output to at least 1-epsilon, where epsilon is
135  * required to be <= 2^(-32).
136  */
137 #define JENT_ENTROPY_SAFETY_FACTOR	64
138 
139 #include <linux/fips.h>
140 #include "jitterentropy.h"
141 
142 /***************************************************************************
143  * Adaptive Proportion Test
144  *
145  * This test complies with SP800-90B section 4.4.2.
146  ***************************************************************************/
147 
148 /*
149  * See the SP 800-90B comment #10b for the corrected cutoff for the SP 800-90B
150  * APT.
151  * http://www.untruth.org/~josh/sp80090b/UL%20SP800-90B-final%20comments%20v1.9%2020191212.pdf
152  * In in the syntax of R, this is C = 2 + qbinom(1 − 2^(−30), 511, 2^(-1/osr)).
153  * (The original formula wasn't correct because the first symbol must
154  * necessarily have been observed, so there is no chance of observing 0 of these
155  * symbols.)
156  *
157  * For the alpha < 2^-53, R cannot be used as it uses a float data type without
158  * arbitrary precision. A SageMath script is used to calculate those cutoff
159  * values.
160  *
161  * For any value above 14, this yields the maximal allowable value of 512
162  * (by FIPS 140-2 IG 7.19 Resolution # 16, we cannot choose a cutoff value that
163  * renders the test unable to fail).
164  */
165 static const unsigned int jent_apt_cutoff_lookup[15] = {
166 	325, 422, 459, 477, 488, 494, 499, 502,
167 	505, 507, 508, 509, 510, 511, 512 };
168 static const unsigned int jent_apt_cutoff_permanent_lookup[15] = {
169 	355, 447, 479, 494, 502, 507, 510, 512,
170 	512, 512, 512, 512, 512, 512, 512 };
171 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
172 
173 static void jent_apt_init(struct rand_data *ec, unsigned int osr)
174 {
175 	/*
176 	 * Establish the apt_cutoff based on the presumed entropy rate of
177 	 * 1/osr.
178 	 */
179 	if (osr >= ARRAY_SIZE(jent_apt_cutoff_lookup)) {
180 		ec->apt_cutoff = jent_apt_cutoff_lookup[
181 			ARRAY_SIZE(jent_apt_cutoff_lookup) - 1];
182 		ec->apt_cutoff_permanent = jent_apt_cutoff_permanent_lookup[
183 			ARRAY_SIZE(jent_apt_cutoff_permanent_lookup) - 1];
184 	} else {
185 		ec->apt_cutoff = jent_apt_cutoff_lookup[osr - 1];
186 		ec->apt_cutoff_permanent =
187 				jent_apt_cutoff_permanent_lookup[osr - 1];
188 	}
189 }
190 /*
191  * Reset the APT counter
192  *
193  * @ec [in] Reference to entropy collector
194  */
195 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
196 {
197 	/* Reset APT counter */
198 	ec->apt_count = 0;
199 	ec->apt_base = delta_masked;
200 	ec->apt_observations = 0;
201 }
202 
203 /*
204  * Insert a new entropy event into APT
205  *
206  * @ec [in] Reference to entropy collector
207  * @delta_masked [in] Masked time delta to process
208  */
209 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
210 {
211 	/* Initialize the base reference */
212 	if (!ec->apt_base_set) {
213 		ec->apt_base = delta_masked;
214 		ec->apt_base_set = 1;
215 		return;
216 	}
217 
218 	if (delta_masked == ec->apt_base)
219 		ec->apt_count++;
220 
221 	ec->apt_observations++;
222 
223 	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
224 		jent_apt_reset(ec, delta_masked);
225 }
226 
227 /* APT health test failure detection */
228 static int jent_apt_permanent_failure(struct rand_data *ec)
229 {
230 	return (ec->apt_count >= ec->apt_cutoff_permanent) ? 1 : 0;
231 }
232 
233 static int jent_apt_failure(struct rand_data *ec)
234 {
235 	return (ec->apt_count >= ec->apt_cutoff) ? 1 : 0;
236 }
237 
238 /***************************************************************************
239  * Stuck Test and its use as Repetition Count Test
240  *
241  * The Jitter RNG uses an enhanced version of the Repetition Count Test
242  * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
243  * back-to-back values, the input to the RCT is the counting of the stuck
244  * values during the generation of one Jitter RNG output block.
245  *
246  * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
247  *
248  * During the counting operation, the Jitter RNG always calculates the RCT
249  * cut-off value of C. If that value exceeds the allowed cut-off value,
250  * the Jitter RNG output block will be calculated completely but discarded at
251  * the end. The caller of the Jitter RNG is informed with an error code.
252  ***************************************************************************/
253 
254 /*
255  * Repetition Count Test as defined in SP800-90B section 4.4.1
256  *
257  * @ec [in] Reference to entropy collector
258  * @stuck [in] Indicator whether the value is stuck
259  */
260 static void jent_rct_insert(struct rand_data *ec, int stuck)
261 {
262 	if (stuck) {
263 		ec->rct_count++;
264 	} else {
265 		/* Reset RCT */
266 		ec->rct_count = 0;
267 	}
268 }
269 
270 static inline __u64 jent_delta(__u64 prev, __u64 next)
271 {
272 #define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
273 	return (prev < next) ? (next - prev) :
274 			       (JENT_UINT64_MAX - prev + 1 + next);
275 }
276 
277 /*
278  * Stuck test by checking the:
279  * 	1st derivative of the jitter measurement (time delta)
280  * 	2nd derivative of the jitter measurement (delta of time deltas)
281  * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
282  *
283  * All values must always be non-zero.
284  *
285  * @ec [in] Reference to entropy collector
286  * @current_delta [in] Jitter time delta
287  *
288  * @return
289  * 	0 jitter measurement not stuck (good bit)
290  * 	1 jitter measurement stuck (reject bit)
291  */
292 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
293 {
294 	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
295 	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
296 
297 	ec->last_delta = current_delta;
298 	ec->last_delta2 = delta2;
299 
300 	/*
301 	 * Insert the result of the comparison of two back-to-back time
302 	 * deltas.
303 	 */
304 	jent_apt_insert(ec, current_delta);
305 
306 	if (!current_delta || !delta2 || !delta3) {
307 		/* RCT with a stuck bit */
308 		jent_rct_insert(ec, 1);
309 		return 1;
310 	}
311 
312 	/* RCT with a non-stuck bit */
313 	jent_rct_insert(ec, 0);
314 
315 	return 0;
316 }
317 
318 /*
319  * The cutoff value is based on the following consideration:
320  * alpha = 2^-30 or 2^-60 as recommended in SP800-90B.
321  * In addition, we require an entropy value H of 1/osr as this is the minimum
322  * entropy required to provide full entropy.
323  * Note, we collect (DATA_SIZE_BITS + ENTROPY_SAFETY_FACTOR)*osr deltas for
324  * inserting them into the entropy pool which should then have (close to)
325  * DATA_SIZE_BITS bits of entropy in the conditioned output.
326  *
327  * Note, ec->rct_count (which equals to value B in the pseudo code of SP800-90B
328  * section 4.4.1) starts with zero. Hence we need to subtract one from the
329  * cutoff value as calculated following SP800-90B. Thus
330  * C = ceil(-log_2(alpha)/H) = 30*osr or 60*osr.
331  */
332 static int jent_rct_permanent_failure(struct rand_data *ec)
333 {
334 	return (ec->rct_count >= (60 * ec->osr)) ? 1 : 0;
335 }
336 
337 static int jent_rct_failure(struct rand_data *ec)
338 {
339 	return (ec->rct_count >= (30 * ec->osr)) ? 1 : 0;
340 }
341 
342 /* Report of health test failures */
343 static int jent_health_failure(struct rand_data *ec)
344 {
345 	return jent_rct_failure(ec) | jent_apt_failure(ec);
346 }
347 
348 static int jent_permanent_health_failure(struct rand_data *ec)
349 {
350 	return jent_rct_permanent_failure(ec) | jent_apt_permanent_failure(ec);
351 }
352 
353 /***************************************************************************
354  * Noise sources
355  ***************************************************************************/
356 
357 /*
358  * Update of the loop count used for the next round of
359  * an entropy collection.
360  *
361  * Input:
362  * @bits is the number of low bits of the timer to consider
363  * @min is the number of bits we shift the timer value to the right at
364  *	the end to make sure we have a guaranteed minimum value
365  *
366  * @return Newly calculated loop counter
367  */
368 static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
369 {
370 	__u64 time = 0;
371 	__u64 shuffle = 0;
372 	unsigned int i = 0;
373 	unsigned int mask = (1<<bits) - 1;
374 
375 	jent_get_nstime(&time);
376 
377 	/*
378 	 * We fold the time value as much as possible to ensure that as many
379 	 * bits of the time stamp are included as possible.
380 	 */
381 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
382 		shuffle ^= time & mask;
383 		time = time >> bits;
384 	}
385 
386 	/*
387 	 * We add a lower boundary value to ensure we have a minimum
388 	 * RNG loop count.
389 	 */
390 	return (shuffle + (1<<min));
391 }
392 
393 /*
394  * CPU Jitter noise source -- this is the noise source based on the CPU
395  *			      execution time jitter
396  *
397  * This function injects the individual bits of the time value into the
398  * entropy pool using a hash.
399  *
400  * ec [in] entropy collector
401  * time [in] time stamp to be injected
402  * stuck [in] Is the time stamp identified as stuck?
403  *
404  * Output:
405  * updated hash context in the entropy collector or error code
406  */
407 static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
408 {
409 #define SHA3_HASH_LOOP (1<<3)
410 	struct {
411 		int rct_count;
412 		unsigned int apt_observations;
413 		unsigned int apt_count;
414 		unsigned int apt_base;
415 	} addtl = {
416 		ec->rct_count,
417 		ec->apt_observations,
418 		ec->apt_count,
419 		ec->apt_base
420 	};
421 
422 	return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
423 			      SHA3_HASH_LOOP, stuck);
424 }
425 
426 /*
427  * Memory Access noise source -- this is a noise source based on variations in
428  *				 memory access times
429  *
430  * This function performs memory accesses which will add to the timing
431  * variations due to an unknown amount of CPU wait states that need to be
432  * added when accessing memory. The memory size should be larger than the L1
433  * caches as outlined in the documentation and the associated testing.
434  *
435  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
436  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
437  * variations as the CPU has hardly to wait. Starting with L2, significant
438  * variations are added because L2 typically does not belong to the CPU any more
439  * and therefore a wider range of CPU wait states is necessary for accesses.
440  * L3 and real memory accesses have even a wider range of wait states. However,
441  * to reliably access either L3 or memory, the ec->mem memory must be quite
442  * large which is usually not desirable.
443  *
444  * @ec [in] Reference to the entropy collector with the memory access data -- if
445  *	    the reference to the memory block to be accessed is NULL, this noise
446  *	    source is disabled
447  * @loop_cnt [in] if a value not equal to 0 is set, use the given value
448  *		  number of loops to perform the LFSR
449  */
450 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
451 {
452 	unsigned int wrap = 0;
453 	__u64 i = 0;
454 #define MAX_ACC_LOOP_BIT 7
455 #define MIN_ACC_LOOP_BIT 0
456 	__u64 acc_loop_cnt =
457 		jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
458 
459 	if (NULL == ec || NULL == ec->mem)
460 		return;
461 	wrap = ec->memblocksize * ec->memblocks;
462 
463 	/*
464 	 * testing purposes -- allow test app to set the counter, not
465 	 * needed during runtime
466 	 */
467 	if (loop_cnt)
468 		acc_loop_cnt = loop_cnt;
469 
470 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
471 		unsigned char *tmpval = ec->mem + ec->memlocation;
472 		/*
473 		 * memory access: just add 1 to one byte,
474 		 * wrap at 255 -- memory access implies read
475 		 * from and write to memory location
476 		 */
477 		*tmpval = (*tmpval + 1) & 0xff;
478 		/*
479 		 * Addition of memblocksize - 1 to pointer
480 		 * with wrap around logic to ensure that every
481 		 * memory location is hit evenly
482 		 */
483 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
484 		ec->memlocation = ec->memlocation % wrap;
485 	}
486 }
487 
488 /***************************************************************************
489  * Start of entropy processing logic
490  ***************************************************************************/
491 /*
492  * This is the heart of the entropy generation: calculate time deltas and
493  * use the CPU jitter in the time deltas. The jitter is injected into the
494  * entropy pool.
495  *
496  * WARNING: ensure that ->prev_time is primed before using the output
497  *	    of this function! This can be done by calling this function
498  *	    and not using its result.
499  *
500  * @ec [in] Reference to entropy collector
501  *
502  * @return result of stuck test
503  */
504 static int jent_measure_jitter(struct rand_data *ec, __u64 *ret_current_delta)
505 {
506 	__u64 time = 0;
507 	__u64 current_delta = 0;
508 	int stuck;
509 
510 	/* Invoke one noise source before time measurement to add variations */
511 	jent_memaccess(ec, 0);
512 
513 	/*
514 	 * Get time stamp and calculate time delta to previous
515 	 * invocation to measure the timing variations
516 	 */
517 	jent_get_nstime(&time);
518 	current_delta = jent_delta(ec->prev_time, time);
519 	ec->prev_time = time;
520 
521 	/* Check whether we have a stuck measurement. */
522 	stuck = jent_stuck(ec, current_delta);
523 
524 	/* Now call the next noise sources which also injects the data */
525 	if (jent_condition_data(ec, current_delta, stuck))
526 		stuck = 1;
527 
528 	/* return the raw entropy value */
529 	if (ret_current_delta)
530 		*ret_current_delta = current_delta;
531 
532 	return stuck;
533 }
534 
535 /*
536  * Generator of one 64 bit random number
537  * Function fills rand_data->hash_state
538  *
539  * @ec [in] Reference to entropy collector
540  */
541 static void jent_gen_entropy(struct rand_data *ec)
542 {
543 	unsigned int k = 0, safety_factor = 0;
544 
545 	if (fips_enabled)
546 		safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
547 
548 	/* priming of the ->prev_time value */
549 	jent_measure_jitter(ec, NULL);
550 
551 	while (!jent_health_failure(ec)) {
552 		/* If a stuck measurement is received, repeat measurement */
553 		if (jent_measure_jitter(ec, NULL))
554 			continue;
555 
556 		/*
557 		 * We multiply the loop value with ->osr to obtain the
558 		 * oversampling rate requested by the caller
559 		 */
560 		if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
561 			break;
562 	}
563 }
564 
565 /*
566  * Entry function: Obtain entropy for the caller.
567  *
568  * This function invokes the entropy gathering logic as often to generate
569  * as many bytes as requested by the caller. The entropy gathering logic
570  * creates 64 bit per invocation.
571  *
572  * This function truncates the last 64 bit entropy value output to the exact
573  * size specified by the caller.
574  *
575  * @ec [in] Reference to entropy collector
576  * @data [in] pointer to buffer for storing random data -- buffer must already
577  *	      exist
578  * @len [in] size of the buffer, specifying also the requested number of random
579  *	     in bytes
580  *
581  * @return 0 when request is fulfilled or an error
582  *
583  * The following error codes can occur:
584  *	-1	entropy_collector is NULL or the generation failed
585  *	-2	Intermittent health failure
586  *	-3	Permanent health failure
587  */
588 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
589 		      unsigned int len)
590 {
591 	unsigned char *p = data;
592 
593 	if (!ec)
594 		return -1;
595 
596 	while (len > 0) {
597 		unsigned int tocopy;
598 
599 		jent_gen_entropy(ec);
600 
601 		if (jent_permanent_health_failure(ec)) {
602 			/*
603 			 * At this point, the Jitter RNG instance is considered
604 			 * as a failed instance. There is no rerun of the
605 			 * startup test any more, because the caller
606 			 * is assumed to not further use this instance.
607 			 */
608 			return -3;
609 		} else if (jent_health_failure(ec)) {
610 			/*
611 			 * Perform startup health tests and return permanent
612 			 * error if it fails.
613 			 */
614 			if (jent_entropy_init(ec->osr, ec->flags,
615 					      ec->hash_state))
616 				return -3;
617 
618 			return -2;
619 		}
620 
621 		if ((DATA_SIZE_BITS / 8) < len)
622 			tocopy = (DATA_SIZE_BITS / 8);
623 		else
624 			tocopy = len;
625 		if (jent_read_random_block(ec->hash_state, p, tocopy))
626 			return -1;
627 
628 		len -= tocopy;
629 		p += tocopy;
630 	}
631 
632 	return 0;
633 }
634 
635 /***************************************************************************
636  * Initialization logic
637  ***************************************************************************/
638 
639 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
640 					       unsigned int flags,
641 					       void *hash_state)
642 {
643 	struct rand_data *entropy_collector;
644 
645 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
646 	if (!entropy_collector)
647 		return NULL;
648 
649 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
650 		/* Allocate memory for adding variations based on memory
651 		 * access
652 		 */
653 		entropy_collector->mem = jent_kvzalloc(JENT_MEMORY_SIZE);
654 		if (!entropy_collector->mem) {
655 			jent_zfree(entropy_collector);
656 			return NULL;
657 		}
658 		entropy_collector->memblocksize =
659 			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE;
660 		entropy_collector->memblocks =
661 			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS;
662 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
663 	}
664 
665 	/* verify and set the oversampling rate */
666 	if (osr == 0)
667 		osr = 1; /* H_submitter = 1 / osr */
668 	entropy_collector->osr = osr;
669 	entropy_collector->flags = flags;
670 
671 	entropy_collector->hash_state = hash_state;
672 
673 	/* Initialize the APT */
674 	jent_apt_init(entropy_collector, osr);
675 
676 	/* fill the data pad with non-zero values */
677 	jent_gen_entropy(entropy_collector);
678 
679 	return entropy_collector;
680 }
681 
682 void jent_entropy_collector_free(struct rand_data *entropy_collector)
683 {
684 	jent_kvzfree(entropy_collector->mem, JENT_MEMORY_SIZE);
685 	entropy_collector->mem = NULL;
686 	jent_zfree(entropy_collector);
687 }
688 
689 int jent_entropy_init(unsigned int osr, unsigned int flags, void *hash_state)
690 {
691 	struct rand_data *ec;
692 	int i, time_backwards = 0, ret = 0;
693 
694 	ec = jent_entropy_collector_alloc(osr, flags, hash_state);
695 	if (!ec)
696 		return JENT_EMEM;
697 
698 	/* We could perform statistical tests here, but the problem is
699 	 * that we only have a few loop counts to do testing. These
700 	 * loop counts may show some slight skew and we produce
701 	 * false positives.
702 	 *
703 	 * Moreover, only old systems show potentially problematic
704 	 * jitter entropy that could potentially be caught here. But
705 	 * the RNG is intended for hardware that is available or widely
706 	 * used, but not old systems that are long out of favor. Thus,
707 	 * no statistical tests.
708 	 */
709 
710 	/*
711 	 * We could add a check for system capabilities such as clock_getres or
712 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
713 	 * following sanity checks verify that we have a high-resolution
714 	 * timer.
715 	 */
716 	/*
717 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
718 	 * definitely too little.
719 	 *
720 	 * SP800-90B requires at least 1024 initial test cycles.
721 	 */
722 #define TESTLOOPCOUNT 1024
723 #define CLEARCACHE 100
724 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
725 		__u64 start_time = 0, end_time = 0, delta = 0;
726 
727 		/* Invoke core entropy collection logic */
728 		jent_measure_jitter(ec, &delta);
729 		end_time = ec->prev_time;
730 		start_time = ec->prev_time - delta;
731 
732 		/* test whether timer works */
733 		if (!start_time || !end_time) {
734 			ret = JENT_ENOTIME;
735 			goto out;
736 		}
737 
738 		/*
739 		 * test whether timer is fine grained enough to provide
740 		 * delta even when called shortly after each other -- this
741 		 * implies that we also have a high resolution timer
742 		 */
743 		if (!delta || (end_time == start_time)) {
744 			ret = JENT_ECOARSETIME;
745 			goto out;
746 		}
747 
748 		/*
749 		 * up to here we did not modify any variable that will be
750 		 * evaluated later, but we already performed some work. Thus we
751 		 * already have had an impact on the caches, branch prediction,
752 		 * etc. with the goal to clear it to get the worst case
753 		 * measurements.
754 		 */
755 		if (i < CLEARCACHE)
756 			continue;
757 
758 		/* test whether we have an increasing timer */
759 		if (!(end_time > start_time))
760 			time_backwards++;
761 	}
762 
763 	/*
764 	 * we allow up to three times the time running backwards.
765 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
766 	 * if such an operation just happens to interfere with our test, it
767 	 * should not fail. The value of 3 should cover the NTP case being
768 	 * performed during our test run.
769 	 */
770 	if (time_backwards > 3) {
771 		ret = JENT_ENOMONOTONIC;
772 		goto out;
773 	}
774 
775 	/* Did we encounter a health test failure? */
776 	if (jent_rct_failure(ec)) {
777 		ret = JENT_ERCT;
778 		goto out;
779 	}
780 	if (jent_apt_failure(ec)) {
781 		ret = JENT_EHEALTH;
782 		goto out;
783 	}
784 
785 out:
786 	jent_entropy_collector_free(ec);
787 
788 	return ret;
789 }
790