1 /* 2 * Non-physical true random number generator based on timing jitter -- 3 * Jitter RNG standalone code. 4 * 5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023 6 * 7 * Design 8 * ====== 9 * 10 * See https://www.chronox.de/jent.html 11 * 12 * License 13 * ======= 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, and the entire permission notice in its entirety, 20 * including the disclaimer of warranties. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. The name of the author may not be used to endorse or promote 25 * products derived from this software without specific prior 26 * written permission. 27 * 28 * ALTERNATIVELY, this product may be distributed under the terms of 29 * the GNU General Public License, in which case the provisions of the GPL2 are 30 * required INSTEAD OF the above restrictions. (This clause is 31 * necessary due to a potential bad interaction between the GPL and 32 * the restrictions contained in a BSD-style copyright.) 33 * 34 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 35 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 36 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 37 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 38 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 39 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 40 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 41 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 42 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 44 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 45 * DAMAGE. 46 */ 47 48 /* 49 * This Jitterentropy RNG is based on the jitterentropy library 50 * version 3.4.0 provided at https://www.chronox.de/jent.html 51 */ 52 53 #ifdef __OPTIMIZE__ 54 #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c." 55 #endif 56 57 typedef unsigned long long __u64; 58 typedef long long __s64; 59 typedef unsigned int __u32; 60 typedef unsigned char u8; 61 #define NULL ((void *) 0) 62 63 /* The entropy pool */ 64 struct rand_data { 65 /* SHA3-256 is used as conditioner */ 66 #define DATA_SIZE_BITS 256 67 /* all data values that are vital to maintain the security 68 * of the RNG are marked as SENSITIVE. A user must not 69 * access that information while the RNG executes its loops to 70 * calculate the next random value. */ 71 void *hash_state; /* SENSITIVE hash state entropy pool */ 72 __u64 prev_time; /* SENSITIVE Previous time stamp */ 73 __u64 last_delta; /* SENSITIVE stuck test */ 74 __s64 last_delta2; /* SENSITIVE stuck test */ 75 76 unsigned int flags; /* Flags used to initialize */ 77 unsigned int osr; /* Oversample rate */ 78 #define JENT_MEMORY_ACCESSLOOPS 128 79 #define JENT_MEMORY_SIZE \ 80 (CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS * \ 81 CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE) 82 unsigned char *mem; /* Memory access location with size of 83 * memblocks * memblocksize */ 84 unsigned int memlocation; /* Pointer to byte in *mem */ 85 unsigned int memblocks; /* Number of memory blocks in *mem */ 86 unsigned int memblocksize; /* Size of one memory block in bytes */ 87 unsigned int memaccessloops; /* Number of memory accesses per random 88 * bit generation */ 89 90 /* Repetition Count Test */ 91 unsigned int rct_count; /* Number of stuck values */ 92 93 /* Adaptive Proportion Test cutoff values */ 94 unsigned int apt_cutoff; /* Intermittent health test failure */ 95 unsigned int apt_cutoff_permanent; /* Permanent health test failure */ 96 #define JENT_APT_WINDOW_SIZE 512 /* Data window size */ 97 /* LSB of time stamp to process */ 98 #define JENT_APT_LSB 16 99 #define JENT_APT_WORD_MASK (JENT_APT_LSB - 1) 100 unsigned int apt_observations; /* Number of collected observations */ 101 unsigned int apt_count; /* APT counter */ 102 unsigned int apt_base; /* APT base reference */ 103 unsigned int apt_base_set:1; /* APT base reference set? */ 104 }; 105 106 /* Flags that can be used to initialize the RNG */ 107 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more 108 * entropy, saves MEMORY_SIZE RAM for 109 * entropy collector */ 110 111 /* -- error codes for init function -- */ 112 #define JENT_ENOTIME 1 /* Timer service not available */ 113 #define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */ 114 #define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */ 115 #define JENT_EVARVAR 5 /* Timer does not produce variations of 116 * variations (2nd derivation of time is 117 * zero). */ 118 #define JENT_ESTUCK 8 /* Too many stuck results during init. */ 119 #define JENT_EHEALTH 9 /* Health test failed during initialization */ 120 #define JENT_ERCT 10 /* RCT failed during initialization */ 121 #define JENT_EHASH 11 /* Hash self test failed */ 122 #define JENT_EMEM 12 /* Can't allocate memory for initialization */ 123 124 /* 125 * The output n bits can receive more than n bits of min entropy, of course, 126 * but the fixed output of the conditioning function can only asymptotically 127 * approach the output size bits of min entropy, not attain that bound. Random 128 * maps will tend to have output collisions, which reduces the creditable 129 * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound). 130 * 131 * The value "64" is justified in Appendix A.4 of the current 90C draft, 132 * and aligns with NIST's in "epsilon" definition in this document, which is 133 * that a string can be considered "full entropy" if you can bound the min 134 * entropy in each bit of output to at least 1-epsilon, where epsilon is 135 * required to be <= 2^(-32). 136 */ 137 #define JENT_ENTROPY_SAFETY_FACTOR 64 138 139 #include <linux/fips.h> 140 #include "jitterentropy.h" 141 142 /*************************************************************************** 143 * Adaptive Proportion Test 144 * 145 * This test complies with SP800-90B section 4.4.2. 146 ***************************************************************************/ 147 148 /* 149 * See the SP 800-90B comment #10b for the corrected cutoff for the SP 800-90B 150 * APT. 151 * http://www.untruth.org/~josh/sp80090b/UL%20SP800-90B-final%20comments%20v1.9%2020191212.pdf 152 * In in the syntax of R, this is C = 2 + qbinom(1 − 2^(−30), 511, 2^(-1/osr)). 153 * (The original formula wasn't correct because the first symbol must 154 * necessarily have been observed, so there is no chance of observing 0 of these 155 * symbols.) 156 * 157 * For the alpha < 2^-53, R cannot be used as it uses a float data type without 158 * arbitrary precision. A SageMath script is used to calculate those cutoff 159 * values. 160 * 161 * For any value above 14, this yields the maximal allowable value of 512 162 * (by FIPS 140-2 IG 7.19 Resolution # 16, we cannot choose a cutoff value that 163 * renders the test unable to fail). 164 */ 165 static const unsigned int jent_apt_cutoff_lookup[15] = { 166 325, 422, 459, 477, 488, 494, 499, 502, 167 505, 507, 508, 509, 510, 511, 512 }; 168 static const unsigned int jent_apt_cutoff_permanent_lookup[15] = { 169 355, 447, 479, 494, 502, 507, 510, 512, 170 512, 512, 512, 512, 512, 512, 512 }; 171 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 172 173 static void jent_apt_init(struct rand_data *ec, unsigned int osr) 174 { 175 /* 176 * Establish the apt_cutoff based on the presumed entropy rate of 177 * 1/osr. 178 */ 179 if (osr >= ARRAY_SIZE(jent_apt_cutoff_lookup)) { 180 ec->apt_cutoff = jent_apt_cutoff_lookup[ 181 ARRAY_SIZE(jent_apt_cutoff_lookup) - 1]; 182 ec->apt_cutoff_permanent = jent_apt_cutoff_permanent_lookup[ 183 ARRAY_SIZE(jent_apt_cutoff_permanent_lookup) - 1]; 184 } else { 185 ec->apt_cutoff = jent_apt_cutoff_lookup[osr - 1]; 186 ec->apt_cutoff_permanent = 187 jent_apt_cutoff_permanent_lookup[osr - 1]; 188 } 189 } 190 /* 191 * Reset the APT counter 192 * 193 * @ec [in] Reference to entropy collector 194 */ 195 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked) 196 { 197 /* Reset APT counter */ 198 ec->apt_count = 0; 199 ec->apt_base = delta_masked; 200 ec->apt_observations = 0; 201 } 202 203 /* 204 * Insert a new entropy event into APT 205 * 206 * @ec [in] Reference to entropy collector 207 * @delta_masked [in] Masked time delta to process 208 */ 209 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked) 210 { 211 /* Initialize the base reference */ 212 if (!ec->apt_base_set) { 213 ec->apt_base = delta_masked; 214 ec->apt_base_set = 1; 215 return; 216 } 217 218 if (delta_masked == ec->apt_base) 219 ec->apt_count++; 220 221 ec->apt_observations++; 222 223 if (ec->apt_observations >= JENT_APT_WINDOW_SIZE) 224 jent_apt_reset(ec, delta_masked); 225 } 226 227 /* APT health test failure detection */ 228 static int jent_apt_permanent_failure(struct rand_data *ec) 229 { 230 return (ec->apt_count >= ec->apt_cutoff_permanent) ? 1 : 0; 231 } 232 233 static int jent_apt_failure(struct rand_data *ec) 234 { 235 return (ec->apt_count >= ec->apt_cutoff) ? 1 : 0; 236 } 237 238 /*************************************************************************** 239 * Stuck Test and its use as Repetition Count Test 240 * 241 * The Jitter RNG uses an enhanced version of the Repetition Count Test 242 * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical 243 * back-to-back values, the input to the RCT is the counting of the stuck 244 * values during the generation of one Jitter RNG output block. 245 * 246 * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8. 247 * 248 * During the counting operation, the Jitter RNG always calculates the RCT 249 * cut-off value of C. If that value exceeds the allowed cut-off value, 250 * the Jitter RNG output block will be calculated completely but discarded at 251 * the end. The caller of the Jitter RNG is informed with an error code. 252 ***************************************************************************/ 253 254 /* 255 * Repetition Count Test as defined in SP800-90B section 4.4.1 256 * 257 * @ec [in] Reference to entropy collector 258 * @stuck [in] Indicator whether the value is stuck 259 */ 260 static void jent_rct_insert(struct rand_data *ec, int stuck) 261 { 262 if (stuck) { 263 ec->rct_count++; 264 } else { 265 /* Reset RCT */ 266 ec->rct_count = 0; 267 } 268 } 269 270 static inline __u64 jent_delta(__u64 prev, __u64 next) 271 { 272 #define JENT_UINT64_MAX (__u64)(~((__u64) 0)) 273 return (prev < next) ? (next - prev) : 274 (JENT_UINT64_MAX - prev + 1 + next); 275 } 276 277 /* 278 * Stuck test by checking the: 279 * 1st derivative of the jitter measurement (time delta) 280 * 2nd derivative of the jitter measurement (delta of time deltas) 281 * 3rd derivative of the jitter measurement (delta of delta of time deltas) 282 * 283 * All values must always be non-zero. 284 * 285 * @ec [in] Reference to entropy collector 286 * @current_delta [in] Jitter time delta 287 * 288 * @return 289 * 0 jitter measurement not stuck (good bit) 290 * 1 jitter measurement stuck (reject bit) 291 */ 292 static int jent_stuck(struct rand_data *ec, __u64 current_delta) 293 { 294 __u64 delta2 = jent_delta(ec->last_delta, current_delta); 295 __u64 delta3 = jent_delta(ec->last_delta2, delta2); 296 297 ec->last_delta = current_delta; 298 ec->last_delta2 = delta2; 299 300 /* 301 * Insert the result of the comparison of two back-to-back time 302 * deltas. 303 */ 304 jent_apt_insert(ec, current_delta); 305 306 if (!current_delta || !delta2 || !delta3) { 307 /* RCT with a stuck bit */ 308 jent_rct_insert(ec, 1); 309 return 1; 310 } 311 312 /* RCT with a non-stuck bit */ 313 jent_rct_insert(ec, 0); 314 315 return 0; 316 } 317 318 /* 319 * The cutoff value is based on the following consideration: 320 * alpha = 2^-30 or 2^-60 as recommended in SP800-90B. 321 * In addition, we require an entropy value H of 1/osr as this is the minimum 322 * entropy required to provide full entropy. 323 * Note, we collect (DATA_SIZE_BITS + ENTROPY_SAFETY_FACTOR)*osr deltas for 324 * inserting them into the entropy pool which should then have (close to) 325 * DATA_SIZE_BITS bits of entropy in the conditioned output. 326 * 327 * Note, ec->rct_count (which equals to value B in the pseudo code of SP800-90B 328 * section 4.4.1) starts with zero. Hence we need to subtract one from the 329 * cutoff value as calculated following SP800-90B. Thus 330 * C = ceil(-log_2(alpha)/H) = 30*osr or 60*osr. 331 */ 332 static int jent_rct_permanent_failure(struct rand_data *ec) 333 { 334 return (ec->rct_count >= (60 * ec->osr)) ? 1 : 0; 335 } 336 337 static int jent_rct_failure(struct rand_data *ec) 338 { 339 return (ec->rct_count >= (30 * ec->osr)) ? 1 : 0; 340 } 341 342 /* Report of health test failures */ 343 static int jent_health_failure(struct rand_data *ec) 344 { 345 return jent_rct_failure(ec) | jent_apt_failure(ec); 346 } 347 348 static int jent_permanent_health_failure(struct rand_data *ec) 349 { 350 return jent_rct_permanent_failure(ec) | jent_apt_permanent_failure(ec); 351 } 352 353 /*************************************************************************** 354 * Noise sources 355 ***************************************************************************/ 356 357 /* 358 * Update of the loop count used for the next round of 359 * an entropy collection. 360 * 361 * Input: 362 * @bits is the number of low bits of the timer to consider 363 * @min is the number of bits we shift the timer value to the right at 364 * the end to make sure we have a guaranteed minimum value 365 * 366 * @return Newly calculated loop counter 367 */ 368 static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min) 369 { 370 __u64 time = 0; 371 __u64 shuffle = 0; 372 unsigned int i = 0; 373 unsigned int mask = (1<<bits) - 1; 374 375 jent_get_nstime(&time); 376 377 /* 378 * We fold the time value as much as possible to ensure that as many 379 * bits of the time stamp are included as possible. 380 */ 381 for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) { 382 shuffle ^= time & mask; 383 time = time >> bits; 384 } 385 386 /* 387 * We add a lower boundary value to ensure we have a minimum 388 * RNG loop count. 389 */ 390 return (shuffle + (1<<min)); 391 } 392 393 /* 394 * CPU Jitter noise source -- this is the noise source based on the CPU 395 * execution time jitter 396 * 397 * This function injects the individual bits of the time value into the 398 * entropy pool using a hash. 399 * 400 * ec [in] entropy collector 401 * time [in] time stamp to be injected 402 * stuck [in] Is the time stamp identified as stuck? 403 * 404 * Output: 405 * updated hash context in the entropy collector or error code 406 */ 407 static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck) 408 { 409 #define SHA3_HASH_LOOP (1<<3) 410 struct { 411 int rct_count; 412 unsigned int apt_observations; 413 unsigned int apt_count; 414 unsigned int apt_base; 415 } addtl = { 416 ec->rct_count, 417 ec->apt_observations, 418 ec->apt_count, 419 ec->apt_base 420 }; 421 422 return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl), 423 SHA3_HASH_LOOP, stuck); 424 } 425 426 /* 427 * Memory Access noise source -- this is a noise source based on variations in 428 * memory access times 429 * 430 * This function performs memory accesses which will add to the timing 431 * variations due to an unknown amount of CPU wait states that need to be 432 * added when accessing memory. The memory size should be larger than the L1 433 * caches as outlined in the documentation and the associated testing. 434 * 435 * The L1 cache has a very high bandwidth, albeit its access rate is usually 436 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal 437 * variations as the CPU has hardly to wait. Starting with L2, significant 438 * variations are added because L2 typically does not belong to the CPU any more 439 * and therefore a wider range of CPU wait states is necessary for accesses. 440 * L3 and real memory accesses have even a wider range of wait states. However, 441 * to reliably access either L3 or memory, the ec->mem memory must be quite 442 * large which is usually not desirable. 443 * 444 * @ec [in] Reference to the entropy collector with the memory access data -- if 445 * the reference to the memory block to be accessed is NULL, this noise 446 * source is disabled 447 * @loop_cnt [in] if a value not equal to 0 is set, use the given value 448 * number of loops to perform the LFSR 449 */ 450 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt) 451 { 452 unsigned int wrap = 0; 453 __u64 i = 0; 454 #define MAX_ACC_LOOP_BIT 7 455 #define MIN_ACC_LOOP_BIT 0 456 __u64 acc_loop_cnt = 457 jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT); 458 459 if (NULL == ec || NULL == ec->mem) 460 return; 461 wrap = ec->memblocksize * ec->memblocks; 462 463 /* 464 * testing purposes -- allow test app to set the counter, not 465 * needed during runtime 466 */ 467 if (loop_cnt) 468 acc_loop_cnt = loop_cnt; 469 470 for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) { 471 unsigned char *tmpval = ec->mem + ec->memlocation; 472 /* 473 * memory access: just add 1 to one byte, 474 * wrap at 255 -- memory access implies read 475 * from and write to memory location 476 */ 477 *tmpval = (*tmpval + 1) & 0xff; 478 /* 479 * Addition of memblocksize - 1 to pointer 480 * with wrap around logic to ensure that every 481 * memory location is hit evenly 482 */ 483 ec->memlocation = ec->memlocation + ec->memblocksize - 1; 484 ec->memlocation = ec->memlocation % wrap; 485 } 486 } 487 488 /*************************************************************************** 489 * Start of entropy processing logic 490 ***************************************************************************/ 491 /* 492 * This is the heart of the entropy generation: calculate time deltas and 493 * use the CPU jitter in the time deltas. The jitter is injected into the 494 * entropy pool. 495 * 496 * WARNING: ensure that ->prev_time is primed before using the output 497 * of this function! This can be done by calling this function 498 * and not using its result. 499 * 500 * @ec [in] Reference to entropy collector 501 * 502 * @return result of stuck test 503 */ 504 static int jent_measure_jitter(struct rand_data *ec, __u64 *ret_current_delta) 505 { 506 __u64 time = 0; 507 __u64 current_delta = 0; 508 int stuck; 509 510 /* Invoke one noise source before time measurement to add variations */ 511 jent_memaccess(ec, 0); 512 513 /* 514 * Get time stamp and calculate time delta to previous 515 * invocation to measure the timing variations 516 */ 517 jent_get_nstime(&time); 518 current_delta = jent_delta(ec->prev_time, time); 519 ec->prev_time = time; 520 521 /* Check whether we have a stuck measurement. */ 522 stuck = jent_stuck(ec, current_delta); 523 524 /* Now call the next noise sources which also injects the data */ 525 if (jent_condition_data(ec, current_delta, stuck)) 526 stuck = 1; 527 528 /* return the raw entropy value */ 529 if (ret_current_delta) 530 *ret_current_delta = current_delta; 531 532 return stuck; 533 } 534 535 /* 536 * Generator of one 64 bit random number 537 * Function fills rand_data->hash_state 538 * 539 * @ec [in] Reference to entropy collector 540 */ 541 static void jent_gen_entropy(struct rand_data *ec) 542 { 543 unsigned int k = 0, safety_factor = 0; 544 545 if (fips_enabled) 546 safety_factor = JENT_ENTROPY_SAFETY_FACTOR; 547 548 /* priming of the ->prev_time value */ 549 jent_measure_jitter(ec, NULL); 550 551 while (!jent_health_failure(ec)) { 552 /* If a stuck measurement is received, repeat measurement */ 553 if (jent_measure_jitter(ec, NULL)) 554 continue; 555 556 /* 557 * We multiply the loop value with ->osr to obtain the 558 * oversampling rate requested by the caller 559 */ 560 if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr)) 561 break; 562 } 563 } 564 565 /* 566 * Entry function: Obtain entropy for the caller. 567 * 568 * This function invokes the entropy gathering logic as often to generate 569 * as many bytes as requested by the caller. The entropy gathering logic 570 * creates 64 bit per invocation. 571 * 572 * This function truncates the last 64 bit entropy value output to the exact 573 * size specified by the caller. 574 * 575 * @ec [in] Reference to entropy collector 576 * @data [in] pointer to buffer for storing random data -- buffer must already 577 * exist 578 * @len [in] size of the buffer, specifying also the requested number of random 579 * in bytes 580 * 581 * @return 0 when request is fulfilled or an error 582 * 583 * The following error codes can occur: 584 * -1 entropy_collector is NULL or the generation failed 585 * -2 Intermittent health failure 586 * -3 Permanent health failure 587 */ 588 int jent_read_entropy(struct rand_data *ec, unsigned char *data, 589 unsigned int len) 590 { 591 unsigned char *p = data; 592 593 if (!ec) 594 return -1; 595 596 while (len > 0) { 597 unsigned int tocopy; 598 599 jent_gen_entropy(ec); 600 601 if (jent_permanent_health_failure(ec)) { 602 /* 603 * At this point, the Jitter RNG instance is considered 604 * as a failed instance. There is no rerun of the 605 * startup test any more, because the caller 606 * is assumed to not further use this instance. 607 */ 608 return -3; 609 } else if (jent_health_failure(ec)) { 610 /* 611 * Perform startup health tests and return permanent 612 * error if it fails. 613 */ 614 if (jent_entropy_init(ec->osr, ec->flags, 615 ec->hash_state)) 616 return -3; 617 618 return -2; 619 } 620 621 if ((DATA_SIZE_BITS / 8) < len) 622 tocopy = (DATA_SIZE_BITS / 8); 623 else 624 tocopy = len; 625 if (jent_read_random_block(ec->hash_state, p, tocopy)) 626 return -1; 627 628 len -= tocopy; 629 p += tocopy; 630 } 631 632 return 0; 633 } 634 635 /*************************************************************************** 636 * Initialization logic 637 ***************************************************************************/ 638 639 struct rand_data *jent_entropy_collector_alloc(unsigned int osr, 640 unsigned int flags, 641 void *hash_state) 642 { 643 struct rand_data *entropy_collector; 644 645 entropy_collector = jent_zalloc(sizeof(struct rand_data)); 646 if (!entropy_collector) 647 return NULL; 648 649 if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) { 650 /* Allocate memory for adding variations based on memory 651 * access 652 */ 653 entropy_collector->mem = jent_kvzalloc(JENT_MEMORY_SIZE); 654 if (!entropy_collector->mem) { 655 jent_zfree(entropy_collector); 656 return NULL; 657 } 658 entropy_collector->memblocksize = 659 CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE; 660 entropy_collector->memblocks = 661 CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS; 662 entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS; 663 } 664 665 /* verify and set the oversampling rate */ 666 if (osr == 0) 667 osr = 1; /* H_submitter = 1 / osr */ 668 entropy_collector->osr = osr; 669 entropy_collector->flags = flags; 670 671 entropy_collector->hash_state = hash_state; 672 673 /* Initialize the APT */ 674 jent_apt_init(entropy_collector, osr); 675 676 /* fill the data pad with non-zero values */ 677 jent_gen_entropy(entropy_collector); 678 679 return entropy_collector; 680 } 681 682 void jent_entropy_collector_free(struct rand_data *entropy_collector) 683 { 684 jent_kvzfree(entropy_collector->mem, JENT_MEMORY_SIZE); 685 entropy_collector->mem = NULL; 686 jent_zfree(entropy_collector); 687 } 688 689 int jent_entropy_init(unsigned int osr, unsigned int flags, void *hash_state) 690 { 691 struct rand_data *ec; 692 int i, time_backwards = 0, ret = 0; 693 694 ec = jent_entropy_collector_alloc(osr, flags, hash_state); 695 if (!ec) 696 return JENT_EMEM; 697 698 /* We could perform statistical tests here, but the problem is 699 * that we only have a few loop counts to do testing. These 700 * loop counts may show some slight skew and we produce 701 * false positives. 702 * 703 * Moreover, only old systems show potentially problematic 704 * jitter entropy that could potentially be caught here. But 705 * the RNG is intended for hardware that is available or widely 706 * used, but not old systems that are long out of favor. Thus, 707 * no statistical tests. 708 */ 709 710 /* 711 * We could add a check for system capabilities such as clock_getres or 712 * check for CONFIG_X86_TSC, but it does not make much sense as the 713 * following sanity checks verify that we have a high-resolution 714 * timer. 715 */ 716 /* 717 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is 718 * definitely too little. 719 * 720 * SP800-90B requires at least 1024 initial test cycles. 721 */ 722 #define TESTLOOPCOUNT 1024 723 #define CLEARCACHE 100 724 for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) { 725 __u64 start_time = 0, end_time = 0, delta = 0; 726 727 /* Invoke core entropy collection logic */ 728 jent_measure_jitter(ec, &delta); 729 end_time = ec->prev_time; 730 start_time = ec->prev_time - delta; 731 732 /* test whether timer works */ 733 if (!start_time || !end_time) { 734 ret = JENT_ENOTIME; 735 goto out; 736 } 737 738 /* 739 * test whether timer is fine grained enough to provide 740 * delta even when called shortly after each other -- this 741 * implies that we also have a high resolution timer 742 */ 743 if (!delta || (end_time == start_time)) { 744 ret = JENT_ECOARSETIME; 745 goto out; 746 } 747 748 /* 749 * up to here we did not modify any variable that will be 750 * evaluated later, but we already performed some work. Thus we 751 * already have had an impact on the caches, branch prediction, 752 * etc. with the goal to clear it to get the worst case 753 * measurements. 754 */ 755 if (i < CLEARCACHE) 756 continue; 757 758 /* test whether we have an increasing timer */ 759 if (!(end_time > start_time)) 760 time_backwards++; 761 } 762 763 /* 764 * we allow up to three times the time running backwards. 765 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus, 766 * if such an operation just happens to interfere with our test, it 767 * should not fail. The value of 3 should cover the NTP case being 768 * performed during our test run. 769 */ 770 if (time_backwards > 3) { 771 ret = JENT_ENOMONOTONIC; 772 goto out; 773 } 774 775 /* Did we encounter a health test failure? */ 776 if (jent_rct_failure(ec)) { 777 ret = JENT_ERCT; 778 goto out; 779 } 780 if (jent_apt_failure(ec)) { 781 ret = JENT_EHEALTH; 782 goto out; 783 } 784 785 out: 786 jent_entropy_collector_free(ec); 787 788 return ret; 789 } 790