xref: /linux/crypto/jitterentropy.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015
6  *
7  * Design
8  * ======
9  *
10  * See http://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 1.1.0 provided at http://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 #define NULL    ((void *) 0)
61 
62 /* The entropy pool */
63 struct rand_data {
64 	/* all data values that are vital to maintain the security
65 	 * of the RNG are marked as SENSITIVE. A user must not
66 	 * access that information while the RNG executes its loops to
67 	 * calculate the next random value. */
68 	__u64 data;		/* SENSITIVE Actual random number */
69 	__u64 old_data;		/* SENSITIVE Previous random number */
70 	__u64 prev_time;	/* SENSITIVE Previous time stamp */
71 #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
72 	__u64 last_delta;	/* SENSITIVE stuck test */
73 	__s64 last_delta2;	/* SENSITIVE stuck test */
74 	unsigned int stuck:1;	/* Time measurement stuck */
75 	unsigned int osr;	/* Oversample rate */
76 	unsigned int stir:1;		/* Post-processing stirring */
77 	unsigned int disable_unbias:1;	/* Deactivate Von-Neuman unbias */
78 #define JENT_MEMORY_BLOCKS 64
79 #define JENT_MEMORY_BLOCKSIZE 32
80 #define JENT_MEMORY_ACCESSLOOPS 128
81 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
82 	unsigned char *mem;	/* Memory access location with size of
83 				 * memblocks * memblocksize */
84 	unsigned int memlocation; /* Pointer to byte in *mem */
85 	unsigned int memblocks;	/* Number of memory blocks in *mem */
86 	unsigned int memblocksize; /* Size of one memory block in bytes */
87 	unsigned int memaccessloops; /* Number of memory accesses per random
88 				      * bit generation */
89 };
90 
91 /* Flags that can be used to initialize the RNG */
92 #define JENT_DISABLE_STIR (1<<0) /* Disable stirring the entropy pool */
93 #define JENT_DISABLE_UNBIAS (1<<1) /* Disable the Von-Neuman Unbiaser */
94 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
95 					   * entropy, saves MEMORY_SIZE RAM for
96 					   * entropy collector */
97 
98 /* -- error codes for init function -- */
99 #define JENT_ENOTIME		1 /* Timer service not available */
100 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
101 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
102 #define JENT_EMINVARIATION	4 /* Timer variations too small for RNG */
103 #define JENT_EVARVAR		5 /* Timer does not produce variations of
104 				   * variations (2nd derivation of time is
105 				   * zero). */
106 #define JENT_EMINVARVAR		6 /* Timer variations of variations is tooi
107 				   * small. */
108 
109 /***************************************************************************
110  * Helper functions
111  ***************************************************************************/
112 
113 void jent_get_nstime(__u64 *out);
114 __u64 jent_rol64(__u64 word, unsigned int shift);
115 void *jent_zalloc(unsigned int len);
116 void jent_zfree(void *ptr);
117 int jent_fips_enabled(void);
118 void jent_panic(char *s);
119 void jent_memcpy(void *dest, const void *src, unsigned int n);
120 
121 /**
122  * Update of the loop count used for the next round of
123  * an entropy collection.
124  *
125  * Input:
126  * @ec entropy collector struct -- may be NULL
127  * @bits is the number of low bits of the timer to consider
128  * @min is the number of bits we shift the timer value to the right at
129  *	the end to make sure we have a guaranteed minimum value
130  *
131  * @return Newly calculated loop counter
132  */
133 static __u64 jent_loop_shuffle(struct rand_data *ec,
134 			       unsigned int bits, unsigned int min)
135 {
136 	__u64 time = 0;
137 	__u64 shuffle = 0;
138 	unsigned int i = 0;
139 	unsigned int mask = (1<<bits) - 1;
140 
141 	jent_get_nstime(&time);
142 	/*
143 	 * mix the current state of the random number into the shuffle
144 	 * calculation to balance that shuffle a bit more
145 	 */
146 	if (ec)
147 		time ^= ec->data;
148 	/*
149 	 * we fold the time value as much as possible to ensure that as many
150 	 * bits of the time stamp are included as possible
151 	 */
152 	for (i = 0; (DATA_SIZE_BITS / bits) > i; i++) {
153 		shuffle ^= time & mask;
154 		time = time >> bits;
155 	}
156 
157 	/*
158 	 * We add a lower boundary value to ensure we have a minimum
159 	 * RNG loop count.
160 	 */
161 	return (shuffle + (1<<min));
162 }
163 
164 /***************************************************************************
165  * Noise sources
166  ***************************************************************************/
167 
168 /**
169  * CPU Jitter noise source -- this is the noise source based on the CPU
170  *			      execution time jitter
171  *
172  * This function folds the time into one bit units by iterating
173  * through the DATA_SIZE_BITS bit time value as follows: assume our time value
174  * is 0xabcd
175  * 1st loop, 1st shift generates 0xd000
176  * 1st loop, 2nd shift generates 0x000d
177  * 2nd loop, 1st shift generates 0xcd00
178  * 2nd loop, 2nd shift generates 0x000c
179  * 3rd loop, 1st shift generates 0xbcd0
180  * 3rd loop, 2nd shift generates 0x000b
181  * 4th loop, 1st shift generates 0xabcd
182  * 4th loop, 2nd shift generates 0x000a
183  * Now, the values at the end of the 2nd shifts are XORed together.
184  *
185  * The code is deliberately inefficient and shall stay that way. This function
186  * is the root cause why the code shall be compiled without optimization. This
187  * function not only acts as folding operation, but this function's execution
188  * is used to measure the CPU execution time jitter. Any change to the loop in
189  * this function implies that careful retesting must be done.
190  *
191  * Input:
192  * @ec entropy collector struct -- may be NULL
193  * @time time stamp to be folded
194  * @loop_cnt if a value not equal to 0 is set, use the given value as number of
195  *	     loops to perform the folding
196  *
197  * Output:
198  * @folded result of folding operation
199  *
200  * @return Number of loops the folding operation is performed
201  */
202 static __u64 jent_fold_time(struct rand_data *ec, __u64 time,
203 			    __u64 *folded, __u64 loop_cnt)
204 {
205 	unsigned int i;
206 	__u64 j = 0;
207 	__u64 new = 0;
208 #define MAX_FOLD_LOOP_BIT 4
209 #define MIN_FOLD_LOOP_BIT 0
210 	__u64 fold_loop_cnt =
211 		jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
212 
213 	/*
214 	 * testing purposes -- allow test app to set the counter, not
215 	 * needed during runtime
216 	 */
217 	if (loop_cnt)
218 		fold_loop_cnt = loop_cnt;
219 	for (j = 0; j < fold_loop_cnt; j++) {
220 		new = 0;
221 		for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
222 			__u64 tmp = time << (DATA_SIZE_BITS - i);
223 
224 			tmp = tmp >> (DATA_SIZE_BITS - 1);
225 			new ^= tmp;
226 		}
227 	}
228 	*folded = new;
229 	return fold_loop_cnt;
230 }
231 
232 /**
233  * Memory Access noise source -- this is a noise source based on variations in
234  *				 memory access times
235  *
236  * This function performs memory accesses which will add to the timing
237  * variations due to an unknown amount of CPU wait states that need to be
238  * added when accessing memory. The memory size should be larger than the L1
239  * caches as outlined in the documentation and the associated testing.
240  *
241  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
242  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
243  * variations as the CPU has hardly to wait. Starting with L2, significant
244  * variations are added because L2 typically does not belong to the CPU any more
245  * and therefore a wider range of CPU wait states is necessary for accesses.
246  * L3 and real memory accesses have even a wider range of wait states. However,
247  * to reliably access either L3 or memory, the ec->mem memory must be quite
248  * large which is usually not desirable.
249  *
250  * Input:
251  * @ec Reference to the entropy collector with the memory access data -- if
252  *     the reference to the memory block to be accessed is NULL, this noise
253  *     source is disabled
254  * @loop_cnt if a value not equal to 0 is set, use the given value as number of
255  *	     loops to perform the folding
256  *
257  * @return Number of memory access operations
258  */
259 static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
260 {
261 	unsigned char *tmpval = NULL;
262 	unsigned int wrap = 0;
263 	__u64 i = 0;
264 #define MAX_ACC_LOOP_BIT 7
265 #define MIN_ACC_LOOP_BIT 0
266 	__u64 acc_loop_cnt =
267 		jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
268 
269 	if (NULL == ec || NULL == ec->mem)
270 		return 0;
271 	wrap = ec->memblocksize * ec->memblocks;
272 
273 	/*
274 	 * testing purposes -- allow test app to set the counter, not
275 	 * needed during runtime
276 	 */
277 	if (loop_cnt)
278 		acc_loop_cnt = loop_cnt;
279 
280 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
281 		tmpval = ec->mem + ec->memlocation;
282 		/*
283 		 * memory access: just add 1 to one byte,
284 		 * wrap at 255 -- memory access implies read
285 		 * from and write to memory location
286 		 */
287 		*tmpval = (*tmpval + 1) & 0xff;
288 		/*
289 		 * Addition of memblocksize - 1 to pointer
290 		 * with wrap around logic to ensure that every
291 		 * memory location is hit evenly
292 		 */
293 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
294 		ec->memlocation = ec->memlocation % wrap;
295 	}
296 	return i;
297 }
298 
299 /***************************************************************************
300  * Start of entropy processing logic
301  ***************************************************************************/
302 
303 /**
304  * Stuck test by checking the:
305  *	1st derivation of the jitter measurement (time delta)
306  *	2nd derivation of the jitter measurement (delta of time deltas)
307  *	3rd derivation of the jitter measurement (delta of delta of time deltas)
308  *
309  * All values must always be non-zero.
310  *
311  * Input:
312  * @ec Reference to entropy collector
313  * @current_delta Jitter time delta
314  *
315  * @return
316  *	0 jitter measurement not stuck (good bit)
317  *	1 jitter measurement stuck (reject bit)
318  */
319 static void jent_stuck(struct rand_data *ec, __u64 current_delta)
320 {
321 	__s64 delta2 = ec->last_delta - current_delta;
322 	__s64 delta3 = delta2 - ec->last_delta2;
323 
324 	ec->last_delta = current_delta;
325 	ec->last_delta2 = delta2;
326 
327 	if (!current_delta || !delta2 || !delta3)
328 		ec->stuck = 1;
329 }
330 
331 /**
332  * This is the heart of the entropy generation: calculate time deltas and
333  * use the CPU jitter in the time deltas. The jitter is folded into one
334  * bit. You can call this function the "random bit generator" as it
335  * produces one random bit per invocation.
336  *
337  * WARNING: ensure that ->prev_time is primed before using the output
338  *	    of this function! This can be done by calling this function
339  *	    and not using its result.
340  *
341  * Input:
342  * @entropy_collector Reference to entropy collector
343  *
344  * @return One random bit
345  */
346 static __u64 jent_measure_jitter(struct rand_data *ec)
347 {
348 	__u64 time = 0;
349 	__u64 data = 0;
350 	__u64 current_delta = 0;
351 
352 	/* Invoke one noise source before time measurement to add variations */
353 	jent_memaccess(ec, 0);
354 
355 	/*
356 	 * Get time stamp and calculate time delta to previous
357 	 * invocation to measure the timing variations
358 	 */
359 	jent_get_nstime(&time);
360 	current_delta = time - ec->prev_time;
361 	ec->prev_time = time;
362 
363 	/* Now call the next noise sources which also folds the data */
364 	jent_fold_time(ec, current_delta, &data, 0);
365 
366 	/*
367 	 * Check whether we have a stuck measurement. The enforcement
368 	 * is performed after the stuck value has been mixed into the
369 	 * entropy pool.
370 	 */
371 	jent_stuck(ec, current_delta);
372 
373 	return data;
374 }
375 
376 /**
377  * Von Neuman unbias as explained in RFC 4086 section 4.2. As shown in the
378  * documentation of that RNG, the bits from jent_measure_jitter are considered
379  * independent which implies that the Von Neuman unbias operation is applicable.
380  * A proof of the Von-Neumann unbias operation to remove skews is given in the
381  * document "A proposal for: Functionality classes for random number
382  * generators", version 2.0 by Werner Schindler, section 5.4.1.
383  *
384  * Input:
385  * @entropy_collector Reference to entropy collector
386  *
387  * @return One random bit
388  */
389 static __u64 jent_unbiased_bit(struct rand_data *entropy_collector)
390 {
391 	do {
392 		__u64 a = jent_measure_jitter(entropy_collector);
393 		__u64 b = jent_measure_jitter(entropy_collector);
394 
395 		if (a == b)
396 			continue;
397 		if (1 == a)
398 			return 1;
399 		else
400 			return 0;
401 	} while (1);
402 }
403 
404 /**
405  * Shuffle the pool a bit by mixing some value with a bijective function (XOR)
406  * into the pool.
407  *
408  * The function generates a mixer value that depends on the bits set and the
409  * location of the set bits in the random number generated by the entropy
410  * source. Therefore, based on the generated random number, this mixer value
411  * can have 2**64 different values. That mixer value is initialized with the
412  * first two SHA-1 constants. After obtaining the mixer value, it is XORed into
413  * the random number.
414  *
415  * The mixer value is not assumed to contain any entropy. But due to the XOR
416  * operation, it can also not destroy any entropy present in the entropy pool.
417  *
418  * Input:
419  * @entropy_collector Reference to entropy collector
420  */
421 static void jent_stir_pool(struct rand_data *entropy_collector)
422 {
423 	/*
424 	 * to shut up GCC on 32 bit, we have to initialize the 64 variable
425 	 * with two 32 bit variables
426 	 */
427 	union c {
428 		__u64 u64;
429 		__u32 u32[2];
430 	};
431 	/*
432 	 * This constant is derived from the first two 32 bit initialization
433 	 * vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
434 	 */
435 	union c constant;
436 	/*
437 	 * The start value of the mixer variable is derived from the third
438 	 * and fourth 32 bit initialization vector of SHA-1 as defined in
439 	 * FIPS 180-4 section 5.3.1
440 	 */
441 	union c mixer;
442 	unsigned int i = 0;
443 
444 	/*
445 	 * Store the SHA-1 constants in reverse order to make up the 64 bit
446 	 * value -- this applies to a little endian system, on a big endian
447 	 * system, it reverses as expected. But this really does not matter
448 	 * as we do not rely on the specific numbers. We just pick the SHA-1
449 	 * constants as they have a good mix of bit set and unset.
450 	 */
451 	constant.u32[1] = 0x67452301;
452 	constant.u32[0] = 0xefcdab89;
453 	mixer.u32[1] = 0x98badcfe;
454 	mixer.u32[0] = 0x10325476;
455 
456 	for (i = 0; i < DATA_SIZE_BITS; i++) {
457 		/*
458 		 * get the i-th bit of the input random number and only XOR
459 		 * the constant into the mixer value when that bit is set
460 		 */
461 		if ((entropy_collector->data >> i) & 1)
462 			mixer.u64 ^= constant.u64;
463 		mixer.u64 = jent_rol64(mixer.u64, 1);
464 	}
465 	entropy_collector->data ^= mixer.u64;
466 }
467 
468 /**
469  * Generator of one 64 bit random number
470  * Function fills rand_data->data
471  *
472  * Input:
473  * @ec Reference to entropy collector
474  */
475 static void jent_gen_entropy(struct rand_data *ec)
476 {
477 	unsigned int k = 0;
478 
479 	/* priming of the ->prev_time value */
480 	jent_measure_jitter(ec);
481 
482 	while (1) {
483 		__u64 data = 0;
484 
485 		if (ec->disable_unbias == 1)
486 			data = jent_measure_jitter(ec);
487 		else
488 			data = jent_unbiased_bit(ec);
489 
490 		/* enforcement of the jent_stuck test */
491 		if (ec->stuck) {
492 			/*
493 			 * We only mix in the bit considered not appropriate
494 			 * without the LSFR. The reason is that if we apply
495 			 * the LSFR and we do not rotate, the 2nd bit with LSFR
496 			 * will cancel out the first LSFR application on the
497 			 * bad bit.
498 			 *
499 			 * And we do not rotate as we apply the next bit to the
500 			 * current bit location again.
501 			 */
502 			ec->data ^= data;
503 			ec->stuck = 0;
504 			continue;
505 		}
506 
507 		/*
508 		 * Fibonacci LSFR with polynom of
509 		 *  x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
510 		 *  primitive according to
511 		 *   http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
512 		 * (the shift values are the polynom values minus one
513 		 * due to counting bits from 0 to 63). As the current
514 		 * position is always the LSB, the polynom only needs
515 		 * to shift data in from the left without wrap.
516 		 */
517 		ec->data ^= data;
518 		ec->data ^= ((ec->data >> 63) & 1);
519 		ec->data ^= ((ec->data >> 60) & 1);
520 		ec->data ^= ((ec->data >> 55) & 1);
521 		ec->data ^= ((ec->data >> 30) & 1);
522 		ec->data ^= ((ec->data >> 27) & 1);
523 		ec->data ^= ((ec->data >> 22) & 1);
524 		ec->data = jent_rol64(ec->data, 1);
525 
526 		/*
527 		 * We multiply the loop value with ->osr to obtain the
528 		 * oversampling rate requested by the caller
529 		 */
530 		if (++k >= (DATA_SIZE_BITS * ec->osr))
531 			break;
532 	}
533 	if (ec->stir)
534 		jent_stir_pool(ec);
535 }
536 
537 /**
538  * The continuous test required by FIPS 140-2 -- the function automatically
539  * primes the test if needed.
540  *
541  * Return:
542  * 0 if FIPS test passed
543  * < 0 if FIPS test failed
544  */
545 static void jent_fips_test(struct rand_data *ec)
546 {
547 	if (!jent_fips_enabled())
548 		return;
549 
550 	/* prime the FIPS test */
551 	if (!ec->old_data) {
552 		ec->old_data = ec->data;
553 		jent_gen_entropy(ec);
554 	}
555 
556 	if (ec->data == ec->old_data)
557 		jent_panic("jitterentropy: Duplicate output detected\n");
558 
559 	ec->old_data = ec->data;
560 }
561 
562 /**
563  * Entry function: Obtain entropy for the caller.
564  *
565  * This function invokes the entropy gathering logic as often to generate
566  * as many bytes as requested by the caller. The entropy gathering logic
567  * creates 64 bit per invocation.
568  *
569  * This function truncates the last 64 bit entropy value output to the exact
570  * size specified by the caller.
571  *
572  * Input:
573  * @ec Reference to entropy collector
574  * @data pointer to buffer for storing random data -- buffer must already
575  *	 exist
576  * @len size of the buffer, specifying also the requested number of random
577  *	in bytes
578  *
579  * @return 0 when request is fulfilled or an error
580  *
581  * The following error codes can occur:
582  *	-1	entropy_collector is NULL
583  */
584 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
585 		      unsigned int len)
586 {
587 	unsigned char *p = data;
588 
589 	if (!ec)
590 		return -1;
591 
592 	while (0 < len) {
593 		unsigned int tocopy;
594 
595 		jent_gen_entropy(ec);
596 		jent_fips_test(ec);
597 		if ((DATA_SIZE_BITS / 8) < len)
598 			tocopy = (DATA_SIZE_BITS / 8);
599 		else
600 			tocopy = len;
601 		jent_memcpy(p, &ec->data, tocopy);
602 
603 		len -= tocopy;
604 		p += tocopy;
605 	}
606 
607 	return 0;
608 }
609 
610 /***************************************************************************
611  * Initialization logic
612  ***************************************************************************/
613 
614 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
615 					       unsigned int flags)
616 {
617 	struct rand_data *entropy_collector;
618 
619 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
620 	if (!entropy_collector)
621 		return NULL;
622 
623 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
624 		/* Allocate memory for adding variations based on memory
625 		 * access
626 		 */
627 		entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
628 		if (!entropy_collector->mem) {
629 			jent_zfree(entropy_collector);
630 			return NULL;
631 		}
632 		entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
633 		entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
634 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
635 	}
636 
637 	/* verify and set the oversampling rate */
638 	if (0 == osr)
639 		osr = 1; /* minimum sampling rate is 1 */
640 	entropy_collector->osr = osr;
641 
642 	entropy_collector->stir = 1;
643 	if (flags & JENT_DISABLE_STIR)
644 		entropy_collector->stir = 0;
645 	if (flags & JENT_DISABLE_UNBIAS)
646 		entropy_collector->disable_unbias = 1;
647 
648 	/* fill the data pad with non-zero values */
649 	jent_gen_entropy(entropy_collector);
650 
651 	return entropy_collector;
652 }
653 
654 void jent_entropy_collector_free(struct rand_data *entropy_collector)
655 {
656 	jent_zfree(entropy_collector->mem);
657 	entropy_collector->mem = NULL;
658 	jent_zfree(entropy_collector);
659 	entropy_collector = NULL;
660 }
661 
662 int jent_entropy_init(void)
663 {
664 	int i;
665 	__u64 delta_sum = 0;
666 	__u64 old_delta = 0;
667 	int time_backwards = 0;
668 	int count_var = 0;
669 	int count_mod = 0;
670 
671 	/* We could perform statistical tests here, but the problem is
672 	 * that we only have a few loop counts to do testing. These
673 	 * loop counts may show some slight skew and we produce
674 	 * false positives.
675 	 *
676 	 * Moreover, only old systems show potentially problematic
677 	 * jitter entropy that could potentially be caught here. But
678 	 * the RNG is intended for hardware that is available or widely
679 	 * used, but not old systems that are long out of favor. Thus,
680 	 * no statistical tests.
681 	 */
682 
683 	/*
684 	 * We could add a check for system capabilities such as clock_getres or
685 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
686 	 * following sanity checks verify that we have a high-resolution
687 	 * timer.
688 	 */
689 	/*
690 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
691 	 * definitely too little.
692 	 */
693 #define TESTLOOPCOUNT 300
694 #define CLEARCACHE 100
695 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
696 		__u64 time = 0;
697 		__u64 time2 = 0;
698 		__u64 folded = 0;
699 		__u64 delta = 0;
700 		unsigned int lowdelta = 0;
701 
702 		jent_get_nstime(&time);
703 		jent_fold_time(NULL, time, &folded, 1<<MIN_FOLD_LOOP_BIT);
704 		jent_get_nstime(&time2);
705 
706 		/* test whether timer works */
707 		if (!time || !time2)
708 			return JENT_ENOTIME;
709 		delta = time2 - time;
710 		/*
711 		 * test whether timer is fine grained enough to provide
712 		 * delta even when called shortly after each other -- this
713 		 * implies that we also have a high resolution timer
714 		 */
715 		if (!delta)
716 			return JENT_ECOARSETIME;
717 
718 		/*
719 		 * up to here we did not modify any variable that will be
720 		 * evaluated later, but we already performed some work. Thus we
721 		 * already have had an impact on the caches, branch prediction,
722 		 * etc. with the goal to clear it to get the worst case
723 		 * measurements.
724 		 */
725 		if (CLEARCACHE > i)
726 			continue;
727 
728 		/* test whether we have an increasing timer */
729 		if (!(time2 > time))
730 			time_backwards++;
731 
732 		/*
733 		 * Avoid modulo of 64 bit integer to allow code to compile
734 		 * on 32 bit architectures.
735 		 */
736 		lowdelta = time2 - time;
737 		if (!(lowdelta % 100))
738 			count_mod++;
739 
740 		/*
741 		 * ensure that we have a varying delta timer which is necessary
742 		 * for the calculation of entropy -- perform this check
743 		 * only after the first loop is executed as we need to prime
744 		 * the old_data value
745 		 */
746 		if (i) {
747 			if (delta != old_delta)
748 				count_var++;
749 			if (delta > old_delta)
750 				delta_sum += (delta - old_delta);
751 			else
752 				delta_sum += (old_delta - delta);
753 		}
754 		old_delta = delta;
755 	}
756 
757 	/*
758 	 * we allow up to three times the time running backwards.
759 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
760 	 * if such an operation just happens to interfere with our test, it
761 	 * should not fail. The value of 3 should cover the NTP case being
762 	 * performed during our test run.
763 	 */
764 	if (3 < time_backwards)
765 		return JENT_ENOMONOTONIC;
766 	/* Error if the time variances are always identical */
767 	if (!delta_sum)
768 		return JENT_EVARVAR;
769 
770 	/*
771 	 * Variations of deltas of time must on average be larger
772 	 * than 1 to ensure the entropy estimation
773 	 * implied with 1 is preserved
774 	 */
775 	if (delta_sum <= 1)
776 		return JENT_EMINVARVAR;
777 
778 	/*
779 	 * Ensure that we have variations in the time stamp below 10 for at
780 	 * least 10% of all checks -- on some platforms, the counter
781 	 * increments in multiples of 100, but not always
782 	 */
783 	if ((TESTLOOPCOUNT/10 * 9) < count_mod)
784 		return JENT_ECOARSETIME;
785 
786 	return 0;
787 }
788