xref: /linux/crypto/ecc.c (revision b77e0ce62d63a761ffb7f7245a215a49f5921c2f)
1 /*
2  * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3  * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 #include <linux/swab.h>
31 #include <linux/fips.h>
32 #include <crypto/ecdh.h>
33 #include <crypto/rng.h>
34 #include <asm/unaligned.h>
35 #include <linux/ratelimit.h>
36 
37 #include "ecc.h"
38 #include "ecc_curve_defs.h"
39 
40 typedef struct {
41 	u64 m_low;
42 	u64 m_high;
43 } uint128_t;
44 
45 static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
46 {
47 	switch (curve_id) {
48 	/* In FIPS mode only allow P256 and higher */
49 	case ECC_CURVE_NIST_P192:
50 		return fips_enabled ? NULL : &nist_p192;
51 	case ECC_CURVE_NIST_P256:
52 		return &nist_p256;
53 	default:
54 		return NULL;
55 	}
56 }
57 
58 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
59 {
60 	size_t len = ndigits * sizeof(u64);
61 
62 	if (!len)
63 		return NULL;
64 
65 	return kmalloc(len, GFP_KERNEL);
66 }
67 
68 static void ecc_free_digits_space(u64 *space)
69 {
70 	kfree_sensitive(space);
71 }
72 
73 static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
74 {
75 	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
76 
77 	if (!p)
78 		return NULL;
79 
80 	p->x = ecc_alloc_digits_space(ndigits);
81 	if (!p->x)
82 		goto err_alloc_x;
83 
84 	p->y = ecc_alloc_digits_space(ndigits);
85 	if (!p->y)
86 		goto err_alloc_y;
87 
88 	p->ndigits = ndigits;
89 
90 	return p;
91 
92 err_alloc_y:
93 	ecc_free_digits_space(p->x);
94 err_alloc_x:
95 	kfree(p);
96 	return NULL;
97 }
98 
99 static void ecc_free_point(struct ecc_point *p)
100 {
101 	if (!p)
102 		return;
103 
104 	kfree_sensitive(p->x);
105 	kfree_sensitive(p->y);
106 	kfree_sensitive(p);
107 }
108 
109 static void vli_clear(u64 *vli, unsigned int ndigits)
110 {
111 	int i;
112 
113 	for (i = 0; i < ndigits; i++)
114 		vli[i] = 0;
115 }
116 
117 /* Returns true if vli == 0, false otherwise. */
118 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
119 {
120 	int i;
121 
122 	for (i = 0; i < ndigits; i++) {
123 		if (vli[i])
124 			return false;
125 	}
126 
127 	return true;
128 }
129 EXPORT_SYMBOL(vli_is_zero);
130 
131 /* Returns nonzero if bit bit of vli is set. */
132 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
133 {
134 	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
135 }
136 
137 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
138 {
139 	return vli_test_bit(vli, ndigits * 64 - 1);
140 }
141 
142 /* Counts the number of 64-bit "digits" in vli. */
143 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
144 {
145 	int i;
146 
147 	/* Search from the end until we find a non-zero digit.
148 	 * We do it in reverse because we expect that most digits will
149 	 * be nonzero.
150 	 */
151 	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
152 
153 	return (i + 1);
154 }
155 
156 /* Counts the number of bits required for vli. */
157 static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
158 {
159 	unsigned int i, num_digits;
160 	u64 digit;
161 
162 	num_digits = vli_num_digits(vli, ndigits);
163 	if (num_digits == 0)
164 		return 0;
165 
166 	digit = vli[num_digits - 1];
167 	for (i = 0; digit; i++)
168 		digit >>= 1;
169 
170 	return ((num_digits - 1) * 64 + i);
171 }
172 
173 /* Set dest from unaligned bit string src. */
174 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
175 {
176 	int i;
177 	const u64 *from = src;
178 
179 	for (i = 0; i < ndigits; i++)
180 		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
181 }
182 EXPORT_SYMBOL(vli_from_be64);
183 
184 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
185 {
186 	int i;
187 	const u64 *from = src;
188 
189 	for (i = 0; i < ndigits; i++)
190 		dest[i] = get_unaligned_le64(&from[i]);
191 }
192 EXPORT_SYMBOL(vli_from_le64);
193 
194 /* Sets dest = src. */
195 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
196 {
197 	int i;
198 
199 	for (i = 0; i < ndigits; i++)
200 		dest[i] = src[i];
201 }
202 
203 /* Returns sign of left - right. */
204 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
205 {
206 	int i;
207 
208 	for (i = ndigits - 1; i >= 0; i--) {
209 		if (left[i] > right[i])
210 			return 1;
211 		else if (left[i] < right[i])
212 			return -1;
213 	}
214 
215 	return 0;
216 }
217 EXPORT_SYMBOL(vli_cmp);
218 
219 /* Computes result = in << c, returning carry. Can modify in place
220  * (if result == in). 0 < shift < 64.
221  */
222 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
223 		      unsigned int ndigits)
224 {
225 	u64 carry = 0;
226 	int i;
227 
228 	for (i = 0; i < ndigits; i++) {
229 		u64 temp = in[i];
230 
231 		result[i] = (temp << shift) | carry;
232 		carry = temp >> (64 - shift);
233 	}
234 
235 	return carry;
236 }
237 
238 /* Computes vli = vli >> 1. */
239 static void vli_rshift1(u64 *vli, unsigned int ndigits)
240 {
241 	u64 *end = vli;
242 	u64 carry = 0;
243 
244 	vli += ndigits;
245 
246 	while (vli-- > end) {
247 		u64 temp = *vli;
248 		*vli = (temp >> 1) | carry;
249 		carry = temp << 63;
250 	}
251 }
252 
253 /* Computes result = left + right, returning carry. Can modify in place. */
254 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
255 		   unsigned int ndigits)
256 {
257 	u64 carry = 0;
258 	int i;
259 
260 	for (i = 0; i < ndigits; i++) {
261 		u64 sum;
262 
263 		sum = left[i] + right[i] + carry;
264 		if (sum != left[i])
265 			carry = (sum < left[i]);
266 
267 		result[i] = sum;
268 	}
269 
270 	return carry;
271 }
272 
273 /* Computes result = left + right, returning carry. Can modify in place. */
274 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
275 		    unsigned int ndigits)
276 {
277 	u64 carry = right;
278 	int i;
279 
280 	for (i = 0; i < ndigits; i++) {
281 		u64 sum;
282 
283 		sum = left[i] + carry;
284 		if (sum != left[i])
285 			carry = (sum < left[i]);
286 		else
287 			carry = !!carry;
288 
289 		result[i] = sum;
290 	}
291 
292 	return carry;
293 }
294 
295 /* Computes result = left - right, returning borrow. Can modify in place. */
296 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
297 		   unsigned int ndigits)
298 {
299 	u64 borrow = 0;
300 	int i;
301 
302 	for (i = 0; i < ndigits; i++) {
303 		u64 diff;
304 
305 		diff = left[i] - right[i] - borrow;
306 		if (diff != left[i])
307 			borrow = (diff > left[i]);
308 
309 		result[i] = diff;
310 	}
311 
312 	return borrow;
313 }
314 EXPORT_SYMBOL(vli_sub);
315 
316 /* Computes result = left - right, returning borrow. Can modify in place. */
317 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
318 	     unsigned int ndigits)
319 {
320 	u64 borrow = right;
321 	int i;
322 
323 	for (i = 0; i < ndigits; i++) {
324 		u64 diff;
325 
326 		diff = left[i] - borrow;
327 		if (diff != left[i])
328 			borrow = (diff > left[i]);
329 
330 		result[i] = diff;
331 	}
332 
333 	return borrow;
334 }
335 
336 static uint128_t mul_64_64(u64 left, u64 right)
337 {
338 	uint128_t result;
339 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
340 	unsigned __int128 m = (unsigned __int128)left * right;
341 
342 	result.m_low  = m;
343 	result.m_high = m >> 64;
344 #else
345 	u64 a0 = left & 0xffffffffull;
346 	u64 a1 = left >> 32;
347 	u64 b0 = right & 0xffffffffull;
348 	u64 b1 = right >> 32;
349 	u64 m0 = a0 * b0;
350 	u64 m1 = a0 * b1;
351 	u64 m2 = a1 * b0;
352 	u64 m3 = a1 * b1;
353 
354 	m2 += (m0 >> 32);
355 	m2 += m1;
356 
357 	/* Overflow */
358 	if (m2 < m1)
359 		m3 += 0x100000000ull;
360 
361 	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
362 	result.m_high = m3 + (m2 >> 32);
363 #endif
364 	return result;
365 }
366 
367 static uint128_t add_128_128(uint128_t a, uint128_t b)
368 {
369 	uint128_t result;
370 
371 	result.m_low = a.m_low + b.m_low;
372 	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
373 
374 	return result;
375 }
376 
377 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
378 		     unsigned int ndigits)
379 {
380 	uint128_t r01 = { 0, 0 };
381 	u64 r2 = 0;
382 	unsigned int i, k;
383 
384 	/* Compute each digit of result in sequence, maintaining the
385 	 * carries.
386 	 */
387 	for (k = 0; k < ndigits * 2 - 1; k++) {
388 		unsigned int min;
389 
390 		if (k < ndigits)
391 			min = 0;
392 		else
393 			min = (k + 1) - ndigits;
394 
395 		for (i = min; i <= k && i < ndigits; i++) {
396 			uint128_t product;
397 
398 			product = mul_64_64(left[i], right[k - i]);
399 
400 			r01 = add_128_128(r01, product);
401 			r2 += (r01.m_high < product.m_high);
402 		}
403 
404 		result[k] = r01.m_low;
405 		r01.m_low = r01.m_high;
406 		r01.m_high = r2;
407 		r2 = 0;
408 	}
409 
410 	result[ndigits * 2 - 1] = r01.m_low;
411 }
412 
413 /* Compute product = left * right, for a small right value. */
414 static void vli_umult(u64 *result, const u64 *left, u32 right,
415 		      unsigned int ndigits)
416 {
417 	uint128_t r01 = { 0 };
418 	unsigned int k;
419 
420 	for (k = 0; k < ndigits; k++) {
421 		uint128_t product;
422 
423 		product = mul_64_64(left[k], right);
424 		r01 = add_128_128(r01, product);
425 		/* no carry */
426 		result[k] = r01.m_low;
427 		r01.m_low = r01.m_high;
428 		r01.m_high = 0;
429 	}
430 	result[k] = r01.m_low;
431 	for (++k; k < ndigits * 2; k++)
432 		result[k] = 0;
433 }
434 
435 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
436 {
437 	uint128_t r01 = { 0, 0 };
438 	u64 r2 = 0;
439 	int i, k;
440 
441 	for (k = 0; k < ndigits * 2 - 1; k++) {
442 		unsigned int min;
443 
444 		if (k < ndigits)
445 			min = 0;
446 		else
447 			min = (k + 1) - ndigits;
448 
449 		for (i = min; i <= k && i <= k - i; i++) {
450 			uint128_t product;
451 
452 			product = mul_64_64(left[i], left[k - i]);
453 
454 			if (i < k - i) {
455 				r2 += product.m_high >> 63;
456 				product.m_high = (product.m_high << 1) |
457 						 (product.m_low >> 63);
458 				product.m_low <<= 1;
459 			}
460 
461 			r01 = add_128_128(r01, product);
462 			r2 += (r01.m_high < product.m_high);
463 		}
464 
465 		result[k] = r01.m_low;
466 		r01.m_low = r01.m_high;
467 		r01.m_high = r2;
468 		r2 = 0;
469 	}
470 
471 	result[ndigits * 2 - 1] = r01.m_low;
472 }
473 
474 /* Computes result = (left + right) % mod.
475  * Assumes that left < mod and right < mod, result != mod.
476  */
477 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
478 			const u64 *mod, unsigned int ndigits)
479 {
480 	u64 carry;
481 
482 	carry = vli_add(result, left, right, ndigits);
483 
484 	/* result > mod (result = mod + remainder), so subtract mod to
485 	 * get remainder.
486 	 */
487 	if (carry || vli_cmp(result, mod, ndigits) >= 0)
488 		vli_sub(result, result, mod, ndigits);
489 }
490 
491 /* Computes result = (left - right) % mod.
492  * Assumes that left < mod and right < mod, result != mod.
493  */
494 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
495 			const u64 *mod, unsigned int ndigits)
496 {
497 	u64 borrow = vli_sub(result, left, right, ndigits);
498 
499 	/* In this case, p_result == -diff == (max int) - diff.
500 	 * Since -x % d == d - x, we can get the correct result from
501 	 * result + mod (with overflow).
502 	 */
503 	if (borrow)
504 		vli_add(result, result, mod, ndigits);
505 }
506 
507 /*
508  * Computes result = product % mod
509  * for special form moduli: p = 2^k-c, for small c (note the minus sign)
510  *
511  * References:
512  * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
513  * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
514  * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
515  */
516 static void vli_mmod_special(u64 *result, const u64 *product,
517 			      const u64 *mod, unsigned int ndigits)
518 {
519 	u64 c = -mod[0];
520 	u64 t[ECC_MAX_DIGITS * 2];
521 	u64 r[ECC_MAX_DIGITS * 2];
522 
523 	vli_set(r, product, ndigits * 2);
524 	while (!vli_is_zero(r + ndigits, ndigits)) {
525 		vli_umult(t, r + ndigits, c, ndigits);
526 		vli_clear(r + ndigits, ndigits);
527 		vli_add(r, r, t, ndigits * 2);
528 	}
529 	vli_set(t, mod, ndigits);
530 	vli_clear(t + ndigits, ndigits);
531 	while (vli_cmp(r, t, ndigits * 2) >= 0)
532 		vli_sub(r, r, t, ndigits * 2);
533 	vli_set(result, r, ndigits);
534 }
535 
536 /*
537  * Computes result = product % mod
538  * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
539  * where k-1 does not fit into qword boundary by -1 bit (such as 255).
540 
541  * References (loosely based on):
542  * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
543  * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
544  * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
545  *
546  * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
547  * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
548  * Algorithm 10.25 Fast reduction for special form moduli
549  */
550 static void vli_mmod_special2(u64 *result, const u64 *product,
551 			       const u64 *mod, unsigned int ndigits)
552 {
553 	u64 c2 = mod[0] * 2;
554 	u64 q[ECC_MAX_DIGITS];
555 	u64 r[ECC_MAX_DIGITS * 2];
556 	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
557 	int carry; /* last bit that doesn't fit into q */
558 	int i;
559 
560 	vli_set(m, mod, ndigits);
561 	vli_clear(m + ndigits, ndigits);
562 
563 	vli_set(r, product, ndigits);
564 	/* q and carry are top bits */
565 	vli_set(q, product + ndigits, ndigits);
566 	vli_clear(r + ndigits, ndigits);
567 	carry = vli_is_negative(r, ndigits);
568 	if (carry)
569 		r[ndigits - 1] &= (1ull << 63) - 1;
570 	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
571 		u64 qc[ECC_MAX_DIGITS * 2];
572 
573 		vli_umult(qc, q, c2, ndigits);
574 		if (carry)
575 			vli_uadd(qc, qc, mod[0], ndigits * 2);
576 		vli_set(q, qc + ndigits, ndigits);
577 		vli_clear(qc + ndigits, ndigits);
578 		carry = vli_is_negative(qc, ndigits);
579 		if (carry)
580 			qc[ndigits - 1] &= (1ull << 63) - 1;
581 		if (i & 1)
582 			vli_sub(r, r, qc, ndigits * 2);
583 		else
584 			vli_add(r, r, qc, ndigits * 2);
585 	}
586 	while (vli_is_negative(r, ndigits * 2))
587 		vli_add(r, r, m, ndigits * 2);
588 	while (vli_cmp(r, m, ndigits * 2) >= 0)
589 		vli_sub(r, r, m, ndigits * 2);
590 
591 	vli_set(result, r, ndigits);
592 }
593 
594 /*
595  * Computes result = product % mod, where product is 2N words long.
596  * Reference: Ken MacKay's micro-ecc.
597  * Currently only designed to work for curve_p or curve_n.
598  */
599 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
600 			  unsigned int ndigits)
601 {
602 	u64 mod_m[2 * ECC_MAX_DIGITS];
603 	u64 tmp[2 * ECC_MAX_DIGITS];
604 	u64 *v[2] = { tmp, product };
605 	u64 carry = 0;
606 	unsigned int i;
607 	/* Shift mod so its highest set bit is at the maximum position. */
608 	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
609 	int word_shift = shift / 64;
610 	int bit_shift = shift % 64;
611 
612 	vli_clear(mod_m, word_shift);
613 	if (bit_shift > 0) {
614 		for (i = 0; i < ndigits; ++i) {
615 			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
616 			carry = mod[i] >> (64 - bit_shift);
617 		}
618 	} else
619 		vli_set(mod_m + word_shift, mod, ndigits);
620 
621 	for (i = 1; shift >= 0; --shift) {
622 		u64 borrow = 0;
623 		unsigned int j;
624 
625 		for (j = 0; j < ndigits * 2; ++j) {
626 			u64 diff = v[i][j] - mod_m[j] - borrow;
627 
628 			if (diff != v[i][j])
629 				borrow = (diff > v[i][j]);
630 			v[1 - i][j] = diff;
631 		}
632 		i = !(i ^ borrow); /* Swap the index if there was no borrow */
633 		vli_rshift1(mod_m, ndigits);
634 		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
635 		vli_rshift1(mod_m + ndigits, ndigits);
636 	}
637 	vli_set(result, v[i], ndigits);
638 }
639 
640 /* Computes result = product % mod using Barrett's reduction with precomputed
641  * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
642  * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
643  * boundary.
644  *
645  * Reference:
646  * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
647  * 2.4.1 Barrett's algorithm. Algorithm 2.5.
648  */
649 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
650 			     unsigned int ndigits)
651 {
652 	u64 q[ECC_MAX_DIGITS * 2];
653 	u64 r[ECC_MAX_DIGITS * 2];
654 	const u64 *mu = mod + ndigits;
655 
656 	vli_mult(q, product + ndigits, mu, ndigits);
657 	if (mu[ndigits])
658 		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
659 	vli_mult(r, mod, q + ndigits, ndigits);
660 	vli_sub(r, product, r, ndigits * 2);
661 	while (!vli_is_zero(r + ndigits, ndigits) ||
662 	       vli_cmp(r, mod, ndigits) != -1) {
663 		u64 carry;
664 
665 		carry = vli_sub(r, r, mod, ndigits);
666 		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
667 	}
668 	vli_set(result, r, ndigits);
669 }
670 
671 /* Computes p_result = p_product % curve_p.
672  * See algorithm 5 and 6 from
673  * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
674  */
675 static void vli_mmod_fast_192(u64 *result, const u64 *product,
676 			      const u64 *curve_prime, u64 *tmp)
677 {
678 	const unsigned int ndigits = 3;
679 	int carry;
680 
681 	vli_set(result, product, ndigits);
682 
683 	vli_set(tmp, &product[3], ndigits);
684 	carry = vli_add(result, result, tmp, ndigits);
685 
686 	tmp[0] = 0;
687 	tmp[1] = product[3];
688 	tmp[2] = product[4];
689 	carry += vli_add(result, result, tmp, ndigits);
690 
691 	tmp[0] = tmp[1] = product[5];
692 	tmp[2] = 0;
693 	carry += vli_add(result, result, tmp, ndigits);
694 
695 	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
696 		carry -= vli_sub(result, result, curve_prime, ndigits);
697 }
698 
699 /* Computes result = product % curve_prime
700  * from http://www.nsa.gov/ia/_files/nist-routines.pdf
701  */
702 static void vli_mmod_fast_256(u64 *result, const u64 *product,
703 			      const u64 *curve_prime, u64 *tmp)
704 {
705 	int carry;
706 	const unsigned int ndigits = 4;
707 
708 	/* t */
709 	vli_set(result, product, ndigits);
710 
711 	/* s1 */
712 	tmp[0] = 0;
713 	tmp[1] = product[5] & 0xffffffff00000000ull;
714 	tmp[2] = product[6];
715 	tmp[3] = product[7];
716 	carry = vli_lshift(tmp, tmp, 1, ndigits);
717 	carry += vli_add(result, result, tmp, ndigits);
718 
719 	/* s2 */
720 	tmp[1] = product[6] << 32;
721 	tmp[2] = (product[6] >> 32) | (product[7] << 32);
722 	tmp[3] = product[7] >> 32;
723 	carry += vli_lshift(tmp, tmp, 1, ndigits);
724 	carry += vli_add(result, result, tmp, ndigits);
725 
726 	/* s3 */
727 	tmp[0] = product[4];
728 	tmp[1] = product[5] & 0xffffffff;
729 	tmp[2] = 0;
730 	tmp[3] = product[7];
731 	carry += vli_add(result, result, tmp, ndigits);
732 
733 	/* s4 */
734 	tmp[0] = (product[4] >> 32) | (product[5] << 32);
735 	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
736 	tmp[2] = product[7];
737 	tmp[3] = (product[6] >> 32) | (product[4] << 32);
738 	carry += vli_add(result, result, tmp, ndigits);
739 
740 	/* d1 */
741 	tmp[0] = (product[5] >> 32) | (product[6] << 32);
742 	tmp[1] = (product[6] >> 32);
743 	tmp[2] = 0;
744 	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
745 	carry -= vli_sub(result, result, tmp, ndigits);
746 
747 	/* d2 */
748 	tmp[0] = product[6];
749 	tmp[1] = product[7];
750 	tmp[2] = 0;
751 	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
752 	carry -= vli_sub(result, result, tmp, ndigits);
753 
754 	/* d3 */
755 	tmp[0] = (product[6] >> 32) | (product[7] << 32);
756 	tmp[1] = (product[7] >> 32) | (product[4] << 32);
757 	tmp[2] = (product[4] >> 32) | (product[5] << 32);
758 	tmp[3] = (product[6] << 32);
759 	carry -= vli_sub(result, result, tmp, ndigits);
760 
761 	/* d4 */
762 	tmp[0] = product[7];
763 	tmp[1] = product[4] & 0xffffffff00000000ull;
764 	tmp[2] = product[5];
765 	tmp[3] = product[6] & 0xffffffff00000000ull;
766 	carry -= vli_sub(result, result, tmp, ndigits);
767 
768 	if (carry < 0) {
769 		do {
770 			carry += vli_add(result, result, curve_prime, ndigits);
771 		} while (carry < 0);
772 	} else {
773 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
774 			carry -= vli_sub(result, result, curve_prime, ndigits);
775 	}
776 }
777 
778 /* Computes result = product % curve_prime for different curve_primes.
779  *
780  * Note that curve_primes are distinguished just by heuristic check and
781  * not by complete conformance check.
782  */
783 static bool vli_mmod_fast(u64 *result, u64 *product,
784 			  const u64 *curve_prime, unsigned int ndigits)
785 {
786 	u64 tmp[2 * ECC_MAX_DIGITS];
787 
788 	/* Currently, both NIST primes have -1 in lowest qword. */
789 	if (curve_prime[0] != -1ull) {
790 		/* Try to handle Pseudo-Marsenne primes. */
791 		if (curve_prime[ndigits - 1] == -1ull) {
792 			vli_mmod_special(result, product, curve_prime,
793 					 ndigits);
794 			return true;
795 		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
796 			   curve_prime[ndigits - 2] == 0) {
797 			vli_mmod_special2(result, product, curve_prime,
798 					  ndigits);
799 			return true;
800 		}
801 		vli_mmod_barrett(result, product, curve_prime, ndigits);
802 		return true;
803 	}
804 
805 	switch (ndigits) {
806 	case 3:
807 		vli_mmod_fast_192(result, product, curve_prime, tmp);
808 		break;
809 	case 4:
810 		vli_mmod_fast_256(result, product, curve_prime, tmp);
811 		break;
812 	default:
813 		pr_err_ratelimited("ecc: unsupported digits size!\n");
814 		return false;
815 	}
816 
817 	return true;
818 }
819 
820 /* Computes result = (left * right) % mod.
821  * Assumes that mod is big enough curve order.
822  */
823 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
824 		       const u64 *mod, unsigned int ndigits)
825 {
826 	u64 product[ECC_MAX_DIGITS * 2];
827 
828 	vli_mult(product, left, right, ndigits);
829 	vli_mmod_slow(result, product, mod, ndigits);
830 }
831 EXPORT_SYMBOL(vli_mod_mult_slow);
832 
833 /* Computes result = (left * right) % curve_prime. */
834 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
835 			      const u64 *curve_prime, unsigned int ndigits)
836 {
837 	u64 product[2 * ECC_MAX_DIGITS];
838 
839 	vli_mult(product, left, right, ndigits);
840 	vli_mmod_fast(result, product, curve_prime, ndigits);
841 }
842 
843 /* Computes result = left^2 % curve_prime. */
844 static void vli_mod_square_fast(u64 *result, const u64 *left,
845 				const u64 *curve_prime, unsigned int ndigits)
846 {
847 	u64 product[2 * ECC_MAX_DIGITS];
848 
849 	vli_square(product, left, ndigits);
850 	vli_mmod_fast(result, product, curve_prime, ndigits);
851 }
852 
853 #define EVEN(vli) (!(vli[0] & 1))
854 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
855  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
856  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
857  */
858 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
859 			unsigned int ndigits)
860 {
861 	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
862 	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
863 	u64 carry;
864 	int cmp_result;
865 
866 	if (vli_is_zero(input, ndigits)) {
867 		vli_clear(result, ndigits);
868 		return;
869 	}
870 
871 	vli_set(a, input, ndigits);
872 	vli_set(b, mod, ndigits);
873 	vli_clear(u, ndigits);
874 	u[0] = 1;
875 	vli_clear(v, ndigits);
876 
877 	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
878 		carry = 0;
879 
880 		if (EVEN(a)) {
881 			vli_rshift1(a, ndigits);
882 
883 			if (!EVEN(u))
884 				carry = vli_add(u, u, mod, ndigits);
885 
886 			vli_rshift1(u, ndigits);
887 			if (carry)
888 				u[ndigits - 1] |= 0x8000000000000000ull;
889 		} else if (EVEN(b)) {
890 			vli_rshift1(b, ndigits);
891 
892 			if (!EVEN(v))
893 				carry = vli_add(v, v, mod, ndigits);
894 
895 			vli_rshift1(v, ndigits);
896 			if (carry)
897 				v[ndigits - 1] |= 0x8000000000000000ull;
898 		} else if (cmp_result > 0) {
899 			vli_sub(a, a, b, ndigits);
900 			vli_rshift1(a, ndigits);
901 
902 			if (vli_cmp(u, v, ndigits) < 0)
903 				vli_add(u, u, mod, ndigits);
904 
905 			vli_sub(u, u, v, ndigits);
906 			if (!EVEN(u))
907 				carry = vli_add(u, u, mod, ndigits);
908 
909 			vli_rshift1(u, ndigits);
910 			if (carry)
911 				u[ndigits - 1] |= 0x8000000000000000ull;
912 		} else {
913 			vli_sub(b, b, a, ndigits);
914 			vli_rshift1(b, ndigits);
915 
916 			if (vli_cmp(v, u, ndigits) < 0)
917 				vli_add(v, v, mod, ndigits);
918 
919 			vli_sub(v, v, u, ndigits);
920 			if (!EVEN(v))
921 				carry = vli_add(v, v, mod, ndigits);
922 
923 			vli_rshift1(v, ndigits);
924 			if (carry)
925 				v[ndigits - 1] |= 0x8000000000000000ull;
926 		}
927 	}
928 
929 	vli_set(result, u, ndigits);
930 }
931 EXPORT_SYMBOL(vli_mod_inv);
932 
933 /* ------ Point operations ------ */
934 
935 /* Returns true if p_point is the point at infinity, false otherwise. */
936 static bool ecc_point_is_zero(const struct ecc_point *point)
937 {
938 	return (vli_is_zero(point->x, point->ndigits) &&
939 		vli_is_zero(point->y, point->ndigits));
940 }
941 
942 /* Point multiplication algorithm using Montgomery's ladder with co-Z
943  * coordinates. From https://eprint.iacr.org/2011/338.pdf
944  */
945 
946 /* Double in place */
947 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
948 				      u64 *curve_prime, unsigned int ndigits)
949 {
950 	/* t1 = x, t2 = y, t3 = z */
951 	u64 t4[ECC_MAX_DIGITS];
952 	u64 t5[ECC_MAX_DIGITS];
953 
954 	if (vli_is_zero(z1, ndigits))
955 		return;
956 
957 	/* t4 = y1^2 */
958 	vli_mod_square_fast(t4, y1, curve_prime, ndigits);
959 	/* t5 = x1*y1^2 = A */
960 	vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
961 	/* t4 = y1^4 */
962 	vli_mod_square_fast(t4, t4, curve_prime, ndigits);
963 	/* t2 = y1*z1 = z3 */
964 	vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
965 	/* t3 = z1^2 */
966 	vli_mod_square_fast(z1, z1, curve_prime, ndigits);
967 
968 	/* t1 = x1 + z1^2 */
969 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
970 	/* t3 = 2*z1^2 */
971 	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
972 	/* t3 = x1 - z1^2 */
973 	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
974 	/* t1 = x1^2 - z1^4 */
975 	vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
976 
977 	/* t3 = 2*(x1^2 - z1^4) */
978 	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
979 	/* t1 = 3*(x1^2 - z1^4) */
980 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
981 	if (vli_test_bit(x1, 0)) {
982 		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
983 
984 		vli_rshift1(x1, ndigits);
985 		x1[ndigits - 1] |= carry << 63;
986 	} else {
987 		vli_rshift1(x1, ndigits);
988 	}
989 	/* t1 = 3/2*(x1^2 - z1^4) = B */
990 
991 	/* t3 = B^2 */
992 	vli_mod_square_fast(z1, x1, curve_prime, ndigits);
993 	/* t3 = B^2 - A */
994 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
995 	/* t3 = B^2 - 2A = x3 */
996 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
997 	/* t5 = A - x3 */
998 	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
999 	/* t1 = B * (A - x3) */
1000 	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
1001 	/* t4 = B * (A - x3) - y1^4 = y3 */
1002 	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1003 
1004 	vli_set(x1, z1, ndigits);
1005 	vli_set(z1, y1, ndigits);
1006 	vli_set(y1, t4, ndigits);
1007 }
1008 
1009 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
1010 static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime,
1011 		    unsigned int ndigits)
1012 {
1013 	u64 t1[ECC_MAX_DIGITS];
1014 
1015 	vli_mod_square_fast(t1, z, curve_prime, ndigits);    /* z^2 */
1016 	vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
1017 	vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits);  /* z^3 */
1018 	vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
1019 }
1020 
1021 /* P = (x1, y1) => 2P, (x2, y2) => P' */
1022 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1023 				u64 *p_initial_z, u64 *curve_prime,
1024 				unsigned int ndigits)
1025 {
1026 	u64 z[ECC_MAX_DIGITS];
1027 
1028 	vli_set(x2, x1, ndigits);
1029 	vli_set(y2, y1, ndigits);
1030 
1031 	vli_clear(z, ndigits);
1032 	z[0] = 1;
1033 
1034 	if (p_initial_z)
1035 		vli_set(z, p_initial_z, ndigits);
1036 
1037 	apply_z(x1, y1, z, curve_prime, ndigits);
1038 
1039 	ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
1040 
1041 	apply_z(x2, y2, z, curve_prime, ndigits);
1042 }
1043 
1044 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1045  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1046  * or P => P', Q => P + Q
1047  */
1048 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
1049 		     unsigned int ndigits)
1050 {
1051 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1052 	u64 t5[ECC_MAX_DIGITS];
1053 
1054 	/* t5 = x2 - x1 */
1055 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1056 	/* t5 = (x2 - x1)^2 = A */
1057 	vli_mod_square_fast(t5, t5, curve_prime, ndigits);
1058 	/* t1 = x1*A = B */
1059 	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
1060 	/* t3 = x2*A = C */
1061 	vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
1062 	/* t4 = y2 - y1 */
1063 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1064 	/* t5 = (y2 - y1)^2 = D */
1065 	vli_mod_square_fast(t5, y2, curve_prime, ndigits);
1066 
1067 	/* t5 = D - B */
1068 	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1069 	/* t5 = D - B - C = x3 */
1070 	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1071 	/* t3 = C - B */
1072 	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1073 	/* t2 = y1*(C - B) */
1074 	vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
1075 	/* t3 = B - x3 */
1076 	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1077 	/* t4 = (y2 - y1)*(B - x3) */
1078 	vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
1079 	/* t4 = y3 */
1080 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1081 
1082 	vli_set(x2, t5, ndigits);
1083 }
1084 
1085 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1086  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1087  * or P => P - Q, Q => P + Q
1088  */
1089 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
1090 		       unsigned int ndigits)
1091 {
1092 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1093 	u64 t5[ECC_MAX_DIGITS];
1094 	u64 t6[ECC_MAX_DIGITS];
1095 	u64 t7[ECC_MAX_DIGITS];
1096 
1097 	/* t5 = x2 - x1 */
1098 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1099 	/* t5 = (x2 - x1)^2 = A */
1100 	vli_mod_square_fast(t5, t5, curve_prime, ndigits);
1101 	/* t1 = x1*A = B */
1102 	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
1103 	/* t3 = x2*A = C */
1104 	vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
1105 	/* t4 = y2 + y1 */
1106 	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1107 	/* t4 = y2 - y1 */
1108 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1109 
1110 	/* t6 = C - B */
1111 	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1112 	/* t2 = y1 * (C - B) */
1113 	vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
1114 	/* t6 = B + C */
1115 	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1116 	/* t3 = (y2 - y1)^2 */
1117 	vli_mod_square_fast(x2, y2, curve_prime, ndigits);
1118 	/* t3 = x3 */
1119 	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1120 
1121 	/* t7 = B - x3 */
1122 	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1123 	/* t4 = (y2 - y1)*(B - x3) */
1124 	vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
1125 	/* t4 = y3 */
1126 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1127 
1128 	/* t7 = (y2 + y1)^2 = F */
1129 	vli_mod_square_fast(t7, t5, curve_prime, ndigits);
1130 	/* t7 = x3' */
1131 	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1132 	/* t6 = x3' - B */
1133 	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1134 	/* t6 = (y2 + y1)*(x3' - B) */
1135 	vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
1136 	/* t2 = y3' */
1137 	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1138 
1139 	vli_set(x1, t7, ndigits);
1140 }
1141 
1142 static void ecc_point_mult(struct ecc_point *result,
1143 			   const struct ecc_point *point, const u64 *scalar,
1144 			   u64 *initial_z, const struct ecc_curve *curve,
1145 			   unsigned int ndigits)
1146 {
1147 	/* R0 and R1 */
1148 	u64 rx[2][ECC_MAX_DIGITS];
1149 	u64 ry[2][ECC_MAX_DIGITS];
1150 	u64 z[ECC_MAX_DIGITS];
1151 	u64 sk[2][ECC_MAX_DIGITS];
1152 	u64 *curve_prime = curve->p;
1153 	int i, nb;
1154 	int num_bits;
1155 	int carry;
1156 
1157 	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1158 	vli_add(sk[1], sk[0], curve->n, ndigits);
1159 	scalar = sk[!carry];
1160 	num_bits = sizeof(u64) * ndigits * 8 + 1;
1161 
1162 	vli_set(rx[1], point->x, ndigits);
1163 	vli_set(ry[1], point->y, ndigits);
1164 
1165 	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
1166 			    ndigits);
1167 
1168 	for (i = num_bits - 2; i > 0; i--) {
1169 		nb = !vli_test_bit(scalar, i);
1170 		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
1171 			   ndigits);
1172 		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
1173 			 ndigits);
1174 	}
1175 
1176 	nb = !vli_test_bit(scalar, 0);
1177 	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
1178 		   ndigits);
1179 
1180 	/* Find final 1/Z value. */
1181 	/* X1 - X0 */
1182 	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1183 	/* Yb * (X1 - X0) */
1184 	vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
1185 	/* xP * Yb * (X1 - X0) */
1186 	vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
1187 
1188 	/* 1 / (xP * Yb * (X1 - X0)) */
1189 	vli_mod_inv(z, z, curve_prime, point->ndigits);
1190 
1191 	/* yP / (xP * Yb * (X1 - X0)) */
1192 	vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
1193 	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1194 	vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
1195 	/* End 1/Z calculation */
1196 
1197 	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
1198 
1199 	apply_z(rx[0], ry[0], z, curve_prime, ndigits);
1200 
1201 	vli_set(result->x, rx[0], ndigits);
1202 	vli_set(result->y, ry[0], ndigits);
1203 }
1204 
1205 /* Computes R = P + Q mod p */
1206 static void ecc_point_add(const struct ecc_point *result,
1207 		   const struct ecc_point *p, const struct ecc_point *q,
1208 		   const struct ecc_curve *curve)
1209 {
1210 	u64 z[ECC_MAX_DIGITS];
1211 	u64 px[ECC_MAX_DIGITS];
1212 	u64 py[ECC_MAX_DIGITS];
1213 	unsigned int ndigits = curve->g.ndigits;
1214 
1215 	vli_set(result->x, q->x, ndigits);
1216 	vli_set(result->y, q->y, ndigits);
1217 	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1218 	vli_set(px, p->x, ndigits);
1219 	vli_set(py, p->y, ndigits);
1220 	xycz_add(px, py, result->x, result->y, curve->p, ndigits);
1221 	vli_mod_inv(z, z, curve->p, ndigits);
1222 	apply_z(result->x, result->y, z, curve->p, ndigits);
1223 }
1224 
1225 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1226  * Based on: Kenneth MacKay's micro-ecc (2014).
1227  */
1228 void ecc_point_mult_shamir(const struct ecc_point *result,
1229 			   const u64 *u1, const struct ecc_point *p,
1230 			   const u64 *u2, const struct ecc_point *q,
1231 			   const struct ecc_curve *curve)
1232 {
1233 	u64 z[ECC_MAX_DIGITS];
1234 	u64 sump[2][ECC_MAX_DIGITS];
1235 	u64 *rx = result->x;
1236 	u64 *ry = result->y;
1237 	unsigned int ndigits = curve->g.ndigits;
1238 	unsigned int num_bits;
1239 	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1240 	const struct ecc_point *points[4];
1241 	const struct ecc_point *point;
1242 	unsigned int idx;
1243 	int i;
1244 
1245 	ecc_point_add(&sum, p, q, curve);
1246 	points[0] = NULL;
1247 	points[1] = p;
1248 	points[2] = q;
1249 	points[3] = &sum;
1250 
1251 	num_bits = max(vli_num_bits(u1, ndigits),
1252 		       vli_num_bits(u2, ndigits));
1253 	i = num_bits - 1;
1254 	idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1255 	point = points[idx];
1256 
1257 	vli_set(rx, point->x, ndigits);
1258 	vli_set(ry, point->y, ndigits);
1259 	vli_clear(z + 1, ndigits - 1);
1260 	z[0] = 1;
1261 
1262 	for (--i; i >= 0; i--) {
1263 		ecc_point_double_jacobian(rx, ry, z, curve->p, ndigits);
1264 		idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
1265 		point = points[idx];
1266 		if (point) {
1267 			u64 tx[ECC_MAX_DIGITS];
1268 			u64 ty[ECC_MAX_DIGITS];
1269 			u64 tz[ECC_MAX_DIGITS];
1270 
1271 			vli_set(tx, point->x, ndigits);
1272 			vli_set(ty, point->y, ndigits);
1273 			apply_z(tx, ty, z, curve->p, ndigits);
1274 			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1275 			xycz_add(tx, ty, rx, ry, curve->p, ndigits);
1276 			vli_mod_mult_fast(z, z, tz, curve->p, ndigits);
1277 		}
1278 	}
1279 	vli_mod_inv(z, z, curve->p, ndigits);
1280 	apply_z(rx, ry, z, curve->p, ndigits);
1281 }
1282 EXPORT_SYMBOL(ecc_point_mult_shamir);
1283 
1284 static inline void ecc_swap_digits(const u64 *in, u64 *out,
1285 				   unsigned int ndigits)
1286 {
1287 	const __be64 *src = (__force __be64 *)in;
1288 	int i;
1289 
1290 	for (i = 0; i < ndigits; i++)
1291 		out[i] = be64_to_cpu(src[ndigits - 1 - i]);
1292 }
1293 
1294 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1295 			      const u64 *private_key, unsigned int ndigits)
1296 {
1297 	u64 one[ECC_MAX_DIGITS] = { 1, };
1298 	u64 res[ECC_MAX_DIGITS];
1299 
1300 	if (!private_key)
1301 		return -EINVAL;
1302 
1303 	if (curve->g.ndigits != ndigits)
1304 		return -EINVAL;
1305 
1306 	/* Make sure the private key is in the range [2, n-3]. */
1307 	if (vli_cmp(one, private_key, ndigits) != -1)
1308 		return -EINVAL;
1309 	vli_sub(res, curve->n, one, ndigits);
1310 	vli_sub(res, res, one, ndigits);
1311 	if (vli_cmp(res, private_key, ndigits) != 1)
1312 		return -EINVAL;
1313 
1314 	return 0;
1315 }
1316 
1317 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1318 		     const u64 *private_key, unsigned int private_key_len)
1319 {
1320 	int nbytes;
1321 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1322 
1323 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1324 
1325 	if (private_key_len != nbytes)
1326 		return -EINVAL;
1327 
1328 	return __ecc_is_key_valid(curve, private_key, ndigits);
1329 }
1330 EXPORT_SYMBOL(ecc_is_key_valid);
1331 
1332 /*
1333  * ECC private keys are generated using the method of extra random bits,
1334  * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1335  *
1336  * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
1337  *                         than requested
1338  * 0 <= c mod(n-1) <= n-2  and implies that
1339  * 1 <= d <= n-1
1340  *
1341  * This method generates a private key uniformly distributed in the range
1342  * [1, n-1].
1343  */
1344 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1345 {
1346 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1347 	u64 priv[ECC_MAX_DIGITS];
1348 	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1349 	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1350 	int err;
1351 
1352 	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1353 	if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1354 		return -EINVAL;
1355 
1356 	/*
1357 	 * FIPS 186-4 recommends that the private key should be obtained from a
1358 	 * RBG with a security strength equal to or greater than the security
1359 	 * strength associated with N.
1360 	 *
1361 	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1362 	 * ECC is 256 (N >= 512).
1363 	 *
1364 	 * This condition is met by the default RNG because it selects a favored
1365 	 * DRBG with a security strength of 256.
1366 	 */
1367 	if (crypto_get_default_rng())
1368 		return -EFAULT;
1369 
1370 	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1371 	crypto_put_default_rng();
1372 	if (err)
1373 		return err;
1374 
1375 	/* Make sure the private key is in the valid range. */
1376 	if (__ecc_is_key_valid(curve, priv, ndigits))
1377 		return -EINVAL;
1378 
1379 	ecc_swap_digits(priv, privkey, ndigits);
1380 
1381 	return 0;
1382 }
1383 EXPORT_SYMBOL(ecc_gen_privkey);
1384 
1385 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1386 		     const u64 *private_key, u64 *public_key)
1387 {
1388 	int ret = 0;
1389 	struct ecc_point *pk;
1390 	u64 priv[ECC_MAX_DIGITS];
1391 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1392 
1393 	if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1394 		ret = -EINVAL;
1395 		goto out;
1396 	}
1397 
1398 	ecc_swap_digits(private_key, priv, ndigits);
1399 
1400 	pk = ecc_alloc_point(ndigits);
1401 	if (!pk) {
1402 		ret = -ENOMEM;
1403 		goto out;
1404 	}
1405 
1406 	ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1407 
1408 	/* SP800-56A rev 3 5.6.2.1.3 key check */
1409 	if (ecc_is_pubkey_valid_full(curve, pk)) {
1410 		ret = -EAGAIN;
1411 		goto err_free_point;
1412 	}
1413 
1414 	ecc_swap_digits(pk->x, public_key, ndigits);
1415 	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1416 
1417 err_free_point:
1418 	ecc_free_point(pk);
1419 out:
1420 	return ret;
1421 }
1422 EXPORT_SYMBOL(ecc_make_pub_key);
1423 
1424 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
1425 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1426 				struct ecc_point *pk)
1427 {
1428 	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1429 
1430 	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1431 		return -EINVAL;
1432 
1433 	/* Check 1: Verify key is not the zero point. */
1434 	if (ecc_point_is_zero(pk))
1435 		return -EINVAL;
1436 
1437 	/* Check 2: Verify key is in the range [1, p-1]. */
1438 	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1439 		return -EINVAL;
1440 	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1441 		return -EINVAL;
1442 
1443 	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1444 	vli_mod_square_fast(yy, pk->y, curve->p, pk->ndigits); /* y^2 */
1445 	vli_mod_square_fast(xxx, pk->x, curve->p, pk->ndigits); /* x^2 */
1446 	vli_mod_mult_fast(xxx, xxx, pk->x, curve->p, pk->ndigits); /* x^3 */
1447 	vli_mod_mult_fast(w, curve->a, pk->x, curve->p, pk->ndigits); /* a·x */
1448 	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1449 	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1450 	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1451 		return -EINVAL;
1452 
1453 	return 0;
1454 }
1455 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1456 
1457 /* SP800-56A section 5.6.2.3.3 full verification */
1458 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1459 			     struct ecc_point *pk)
1460 {
1461 	struct ecc_point *nQ;
1462 
1463 	/* Checks 1 through 3 */
1464 	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1465 
1466 	if (ret)
1467 		return ret;
1468 
1469 	/* Check 4: Verify that nQ is the zero point. */
1470 	nQ = ecc_alloc_point(pk->ndigits);
1471 	if (!nQ)
1472 		return -ENOMEM;
1473 
1474 	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1475 	if (!ecc_point_is_zero(nQ))
1476 		ret = -EINVAL;
1477 
1478 	ecc_free_point(nQ);
1479 
1480 	return ret;
1481 }
1482 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1483 
1484 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1485 			      const u64 *private_key, const u64 *public_key,
1486 			      u64 *secret)
1487 {
1488 	int ret = 0;
1489 	struct ecc_point *product, *pk;
1490 	u64 priv[ECC_MAX_DIGITS];
1491 	u64 rand_z[ECC_MAX_DIGITS];
1492 	unsigned int nbytes;
1493 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1494 
1495 	if (!private_key || !public_key || !curve ||
1496 	    ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1497 		ret = -EINVAL;
1498 		goto out;
1499 	}
1500 
1501 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1502 
1503 	get_random_bytes(rand_z, nbytes);
1504 
1505 	pk = ecc_alloc_point(ndigits);
1506 	if (!pk) {
1507 		ret = -ENOMEM;
1508 		goto out;
1509 	}
1510 
1511 	ecc_swap_digits(public_key, pk->x, ndigits);
1512 	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1513 	ret = ecc_is_pubkey_valid_partial(curve, pk);
1514 	if (ret)
1515 		goto err_alloc_product;
1516 
1517 	ecc_swap_digits(private_key, priv, ndigits);
1518 
1519 	product = ecc_alloc_point(ndigits);
1520 	if (!product) {
1521 		ret = -ENOMEM;
1522 		goto err_alloc_product;
1523 	}
1524 
1525 	ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1526 
1527 	if (ecc_point_is_zero(product)) {
1528 		ret = -EFAULT;
1529 		goto err_validity;
1530 	}
1531 
1532 	ecc_swap_digits(product->x, secret, ndigits);
1533 
1534 err_validity:
1535 	memzero_explicit(priv, sizeof(priv));
1536 	memzero_explicit(rand_z, sizeof(rand_z));
1537 	ecc_free_point(product);
1538 err_alloc_product:
1539 	ecc_free_point(pk);
1540 out:
1541 	return ret;
1542 }
1543 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1544 
1545 MODULE_LICENSE("Dual BSD/GPL");
1546