1 /* 2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. 3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <crypto/ecc_curve.h> 28 #include <linux/module.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/swab.h> 32 #include <linux/fips.h> 33 #include <crypto/ecdh.h> 34 #include <crypto/rng.h> 35 #include <asm/unaligned.h> 36 #include <linux/ratelimit.h> 37 38 #include "ecc.h" 39 #include "ecc_curve_defs.h" 40 41 typedef struct { 42 u64 m_low; 43 u64 m_high; 44 } uint128_t; 45 46 /* Returns curv25519 curve param */ 47 const struct ecc_curve *ecc_get_curve25519(void) 48 { 49 return &ecc_25519; 50 } 51 EXPORT_SYMBOL(ecc_get_curve25519); 52 53 const struct ecc_curve *ecc_get_curve(unsigned int curve_id) 54 { 55 switch (curve_id) { 56 /* In FIPS mode only allow P256 and higher */ 57 case ECC_CURVE_NIST_P192: 58 return fips_enabled ? NULL : &nist_p192; 59 case ECC_CURVE_NIST_P256: 60 return &nist_p256; 61 case ECC_CURVE_NIST_P384: 62 return &nist_p384; 63 default: 64 return NULL; 65 } 66 } 67 EXPORT_SYMBOL(ecc_get_curve); 68 69 static u64 *ecc_alloc_digits_space(unsigned int ndigits) 70 { 71 size_t len = ndigits * sizeof(u64); 72 73 if (!len) 74 return NULL; 75 76 return kmalloc(len, GFP_KERNEL); 77 } 78 79 static void ecc_free_digits_space(u64 *space) 80 { 81 kfree_sensitive(space); 82 } 83 84 static struct ecc_point *ecc_alloc_point(unsigned int ndigits) 85 { 86 struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); 87 88 if (!p) 89 return NULL; 90 91 p->x = ecc_alloc_digits_space(ndigits); 92 if (!p->x) 93 goto err_alloc_x; 94 95 p->y = ecc_alloc_digits_space(ndigits); 96 if (!p->y) 97 goto err_alloc_y; 98 99 p->ndigits = ndigits; 100 101 return p; 102 103 err_alloc_y: 104 ecc_free_digits_space(p->x); 105 err_alloc_x: 106 kfree(p); 107 return NULL; 108 } 109 110 static void ecc_free_point(struct ecc_point *p) 111 { 112 if (!p) 113 return; 114 115 kfree_sensitive(p->x); 116 kfree_sensitive(p->y); 117 kfree_sensitive(p); 118 } 119 120 static void vli_clear(u64 *vli, unsigned int ndigits) 121 { 122 int i; 123 124 for (i = 0; i < ndigits; i++) 125 vli[i] = 0; 126 } 127 128 /* Returns true if vli == 0, false otherwise. */ 129 bool vli_is_zero(const u64 *vli, unsigned int ndigits) 130 { 131 int i; 132 133 for (i = 0; i < ndigits; i++) { 134 if (vli[i]) 135 return false; 136 } 137 138 return true; 139 } 140 EXPORT_SYMBOL(vli_is_zero); 141 142 /* Returns nonzero if bit of vli is set. */ 143 static u64 vli_test_bit(const u64 *vli, unsigned int bit) 144 { 145 return (vli[bit / 64] & ((u64)1 << (bit % 64))); 146 } 147 148 static bool vli_is_negative(const u64 *vli, unsigned int ndigits) 149 { 150 return vli_test_bit(vli, ndigits * 64 - 1); 151 } 152 153 /* Counts the number of 64-bit "digits" in vli. */ 154 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) 155 { 156 int i; 157 158 /* Search from the end until we find a non-zero digit. 159 * We do it in reverse because we expect that most digits will 160 * be nonzero. 161 */ 162 for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); 163 164 return (i + 1); 165 } 166 167 /* Counts the number of bits required for vli. */ 168 static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) 169 { 170 unsigned int i, num_digits; 171 u64 digit; 172 173 num_digits = vli_num_digits(vli, ndigits); 174 if (num_digits == 0) 175 return 0; 176 177 digit = vli[num_digits - 1]; 178 for (i = 0; digit; i++) 179 digit >>= 1; 180 181 return ((num_digits - 1) * 64 + i); 182 } 183 184 /* Set dest from unaligned bit string src. */ 185 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) 186 { 187 int i; 188 const u64 *from = src; 189 190 for (i = 0; i < ndigits; i++) 191 dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]); 192 } 193 EXPORT_SYMBOL(vli_from_be64); 194 195 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) 196 { 197 int i; 198 const u64 *from = src; 199 200 for (i = 0; i < ndigits; i++) 201 dest[i] = get_unaligned_le64(&from[i]); 202 } 203 EXPORT_SYMBOL(vli_from_le64); 204 205 /* Sets dest = src. */ 206 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) 207 { 208 int i; 209 210 for (i = 0; i < ndigits; i++) 211 dest[i] = src[i]; 212 } 213 214 /* Returns sign of left - right. */ 215 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) 216 { 217 int i; 218 219 for (i = ndigits - 1; i >= 0; i--) { 220 if (left[i] > right[i]) 221 return 1; 222 else if (left[i] < right[i]) 223 return -1; 224 } 225 226 return 0; 227 } 228 EXPORT_SYMBOL(vli_cmp); 229 230 /* Computes result = in << c, returning carry. Can modify in place 231 * (if result == in). 0 < shift < 64. 232 */ 233 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, 234 unsigned int ndigits) 235 { 236 u64 carry = 0; 237 int i; 238 239 for (i = 0; i < ndigits; i++) { 240 u64 temp = in[i]; 241 242 result[i] = (temp << shift) | carry; 243 carry = temp >> (64 - shift); 244 } 245 246 return carry; 247 } 248 249 /* Computes vli = vli >> 1. */ 250 static void vli_rshift1(u64 *vli, unsigned int ndigits) 251 { 252 u64 *end = vli; 253 u64 carry = 0; 254 255 vli += ndigits; 256 257 while (vli-- > end) { 258 u64 temp = *vli; 259 *vli = (temp >> 1) | carry; 260 carry = temp << 63; 261 } 262 } 263 264 /* Computes result = left + right, returning carry. Can modify in place. */ 265 static u64 vli_add(u64 *result, const u64 *left, const u64 *right, 266 unsigned int ndigits) 267 { 268 u64 carry = 0; 269 int i; 270 271 for (i = 0; i < ndigits; i++) { 272 u64 sum; 273 274 sum = left[i] + right[i] + carry; 275 if (sum != left[i]) 276 carry = (sum < left[i]); 277 278 result[i] = sum; 279 } 280 281 return carry; 282 } 283 284 /* Computes result = left + right, returning carry. Can modify in place. */ 285 static u64 vli_uadd(u64 *result, const u64 *left, u64 right, 286 unsigned int ndigits) 287 { 288 u64 carry = right; 289 int i; 290 291 for (i = 0; i < ndigits; i++) { 292 u64 sum; 293 294 sum = left[i] + carry; 295 if (sum != left[i]) 296 carry = (sum < left[i]); 297 else 298 carry = !!carry; 299 300 result[i] = sum; 301 } 302 303 return carry; 304 } 305 306 /* Computes result = left - right, returning borrow. Can modify in place. */ 307 u64 vli_sub(u64 *result, const u64 *left, const u64 *right, 308 unsigned int ndigits) 309 { 310 u64 borrow = 0; 311 int i; 312 313 for (i = 0; i < ndigits; i++) { 314 u64 diff; 315 316 diff = left[i] - right[i] - borrow; 317 if (diff != left[i]) 318 borrow = (diff > left[i]); 319 320 result[i] = diff; 321 } 322 323 return borrow; 324 } 325 EXPORT_SYMBOL(vli_sub); 326 327 /* Computes result = left - right, returning borrow. Can modify in place. */ 328 static u64 vli_usub(u64 *result, const u64 *left, u64 right, 329 unsigned int ndigits) 330 { 331 u64 borrow = right; 332 int i; 333 334 for (i = 0; i < ndigits; i++) { 335 u64 diff; 336 337 diff = left[i] - borrow; 338 if (diff != left[i]) 339 borrow = (diff > left[i]); 340 341 result[i] = diff; 342 } 343 344 return borrow; 345 } 346 347 static uint128_t mul_64_64(u64 left, u64 right) 348 { 349 uint128_t result; 350 #if defined(CONFIG_ARCH_SUPPORTS_INT128) 351 unsigned __int128 m = (unsigned __int128)left * right; 352 353 result.m_low = m; 354 result.m_high = m >> 64; 355 #else 356 u64 a0 = left & 0xffffffffull; 357 u64 a1 = left >> 32; 358 u64 b0 = right & 0xffffffffull; 359 u64 b1 = right >> 32; 360 u64 m0 = a0 * b0; 361 u64 m1 = a0 * b1; 362 u64 m2 = a1 * b0; 363 u64 m3 = a1 * b1; 364 365 m2 += (m0 >> 32); 366 m2 += m1; 367 368 /* Overflow */ 369 if (m2 < m1) 370 m3 += 0x100000000ull; 371 372 result.m_low = (m0 & 0xffffffffull) | (m2 << 32); 373 result.m_high = m3 + (m2 >> 32); 374 #endif 375 return result; 376 } 377 378 static uint128_t add_128_128(uint128_t a, uint128_t b) 379 { 380 uint128_t result; 381 382 result.m_low = a.m_low + b.m_low; 383 result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); 384 385 return result; 386 } 387 388 static void vli_mult(u64 *result, const u64 *left, const u64 *right, 389 unsigned int ndigits) 390 { 391 uint128_t r01 = { 0, 0 }; 392 u64 r2 = 0; 393 unsigned int i, k; 394 395 /* Compute each digit of result in sequence, maintaining the 396 * carries. 397 */ 398 for (k = 0; k < ndigits * 2 - 1; k++) { 399 unsigned int min; 400 401 if (k < ndigits) 402 min = 0; 403 else 404 min = (k + 1) - ndigits; 405 406 for (i = min; i <= k && i < ndigits; i++) { 407 uint128_t product; 408 409 product = mul_64_64(left[i], right[k - i]); 410 411 r01 = add_128_128(r01, product); 412 r2 += (r01.m_high < product.m_high); 413 } 414 415 result[k] = r01.m_low; 416 r01.m_low = r01.m_high; 417 r01.m_high = r2; 418 r2 = 0; 419 } 420 421 result[ndigits * 2 - 1] = r01.m_low; 422 } 423 424 /* Compute product = left * right, for a small right value. */ 425 static void vli_umult(u64 *result, const u64 *left, u32 right, 426 unsigned int ndigits) 427 { 428 uint128_t r01 = { 0 }; 429 unsigned int k; 430 431 for (k = 0; k < ndigits; k++) { 432 uint128_t product; 433 434 product = mul_64_64(left[k], right); 435 r01 = add_128_128(r01, product); 436 /* no carry */ 437 result[k] = r01.m_low; 438 r01.m_low = r01.m_high; 439 r01.m_high = 0; 440 } 441 result[k] = r01.m_low; 442 for (++k; k < ndigits * 2; k++) 443 result[k] = 0; 444 } 445 446 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) 447 { 448 uint128_t r01 = { 0, 0 }; 449 u64 r2 = 0; 450 int i, k; 451 452 for (k = 0; k < ndigits * 2 - 1; k++) { 453 unsigned int min; 454 455 if (k < ndigits) 456 min = 0; 457 else 458 min = (k + 1) - ndigits; 459 460 for (i = min; i <= k && i <= k - i; i++) { 461 uint128_t product; 462 463 product = mul_64_64(left[i], left[k - i]); 464 465 if (i < k - i) { 466 r2 += product.m_high >> 63; 467 product.m_high = (product.m_high << 1) | 468 (product.m_low >> 63); 469 product.m_low <<= 1; 470 } 471 472 r01 = add_128_128(r01, product); 473 r2 += (r01.m_high < product.m_high); 474 } 475 476 result[k] = r01.m_low; 477 r01.m_low = r01.m_high; 478 r01.m_high = r2; 479 r2 = 0; 480 } 481 482 result[ndigits * 2 - 1] = r01.m_low; 483 } 484 485 /* Computes result = (left + right) % mod. 486 * Assumes that left < mod and right < mod, result != mod. 487 */ 488 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, 489 const u64 *mod, unsigned int ndigits) 490 { 491 u64 carry; 492 493 carry = vli_add(result, left, right, ndigits); 494 495 /* result > mod (result = mod + remainder), so subtract mod to 496 * get remainder. 497 */ 498 if (carry || vli_cmp(result, mod, ndigits) >= 0) 499 vli_sub(result, result, mod, ndigits); 500 } 501 502 /* Computes result = (left - right) % mod. 503 * Assumes that left < mod and right < mod, result != mod. 504 */ 505 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, 506 const u64 *mod, unsigned int ndigits) 507 { 508 u64 borrow = vli_sub(result, left, right, ndigits); 509 510 /* In this case, p_result == -diff == (max int) - diff. 511 * Since -x % d == d - x, we can get the correct result from 512 * result + mod (with overflow). 513 */ 514 if (borrow) 515 vli_add(result, result, mod, ndigits); 516 } 517 518 /* 519 * Computes result = product % mod 520 * for special form moduli: p = 2^k-c, for small c (note the minus sign) 521 * 522 * References: 523 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. 524 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form 525 * Algorithm 9.2.13 (Fast mod operation for special-form moduli). 526 */ 527 static void vli_mmod_special(u64 *result, const u64 *product, 528 const u64 *mod, unsigned int ndigits) 529 { 530 u64 c = -mod[0]; 531 u64 t[ECC_MAX_DIGITS * 2]; 532 u64 r[ECC_MAX_DIGITS * 2]; 533 534 vli_set(r, product, ndigits * 2); 535 while (!vli_is_zero(r + ndigits, ndigits)) { 536 vli_umult(t, r + ndigits, c, ndigits); 537 vli_clear(r + ndigits, ndigits); 538 vli_add(r, r, t, ndigits * 2); 539 } 540 vli_set(t, mod, ndigits); 541 vli_clear(t + ndigits, ndigits); 542 while (vli_cmp(r, t, ndigits * 2) >= 0) 543 vli_sub(r, r, t, ndigits * 2); 544 vli_set(result, r, ndigits); 545 } 546 547 /* 548 * Computes result = product % mod 549 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) 550 * where k-1 does not fit into qword boundary by -1 bit (such as 255). 551 552 * References (loosely based on): 553 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. 554 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. 555 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf 556 * 557 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. 558 * Handbook of Elliptic and Hyperelliptic Curve Cryptography. 559 * Algorithm 10.25 Fast reduction for special form moduli 560 */ 561 static void vli_mmod_special2(u64 *result, const u64 *product, 562 const u64 *mod, unsigned int ndigits) 563 { 564 u64 c2 = mod[0] * 2; 565 u64 q[ECC_MAX_DIGITS]; 566 u64 r[ECC_MAX_DIGITS * 2]; 567 u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ 568 int carry; /* last bit that doesn't fit into q */ 569 int i; 570 571 vli_set(m, mod, ndigits); 572 vli_clear(m + ndigits, ndigits); 573 574 vli_set(r, product, ndigits); 575 /* q and carry are top bits */ 576 vli_set(q, product + ndigits, ndigits); 577 vli_clear(r + ndigits, ndigits); 578 carry = vli_is_negative(r, ndigits); 579 if (carry) 580 r[ndigits - 1] &= (1ull << 63) - 1; 581 for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { 582 u64 qc[ECC_MAX_DIGITS * 2]; 583 584 vli_umult(qc, q, c2, ndigits); 585 if (carry) 586 vli_uadd(qc, qc, mod[0], ndigits * 2); 587 vli_set(q, qc + ndigits, ndigits); 588 vli_clear(qc + ndigits, ndigits); 589 carry = vli_is_negative(qc, ndigits); 590 if (carry) 591 qc[ndigits - 1] &= (1ull << 63) - 1; 592 if (i & 1) 593 vli_sub(r, r, qc, ndigits * 2); 594 else 595 vli_add(r, r, qc, ndigits * 2); 596 } 597 while (vli_is_negative(r, ndigits * 2)) 598 vli_add(r, r, m, ndigits * 2); 599 while (vli_cmp(r, m, ndigits * 2) >= 0) 600 vli_sub(r, r, m, ndigits * 2); 601 602 vli_set(result, r, ndigits); 603 } 604 605 /* 606 * Computes result = product % mod, where product is 2N words long. 607 * Reference: Ken MacKay's micro-ecc. 608 * Currently only designed to work for curve_p or curve_n. 609 */ 610 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, 611 unsigned int ndigits) 612 { 613 u64 mod_m[2 * ECC_MAX_DIGITS]; 614 u64 tmp[2 * ECC_MAX_DIGITS]; 615 u64 *v[2] = { tmp, product }; 616 u64 carry = 0; 617 unsigned int i; 618 /* Shift mod so its highest set bit is at the maximum position. */ 619 int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); 620 int word_shift = shift / 64; 621 int bit_shift = shift % 64; 622 623 vli_clear(mod_m, word_shift); 624 if (bit_shift > 0) { 625 for (i = 0; i < ndigits; ++i) { 626 mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; 627 carry = mod[i] >> (64 - bit_shift); 628 } 629 } else 630 vli_set(mod_m + word_shift, mod, ndigits); 631 632 for (i = 1; shift >= 0; --shift) { 633 u64 borrow = 0; 634 unsigned int j; 635 636 for (j = 0; j < ndigits * 2; ++j) { 637 u64 diff = v[i][j] - mod_m[j] - borrow; 638 639 if (diff != v[i][j]) 640 borrow = (diff > v[i][j]); 641 v[1 - i][j] = diff; 642 } 643 i = !(i ^ borrow); /* Swap the index if there was no borrow */ 644 vli_rshift1(mod_m, ndigits); 645 mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); 646 vli_rshift1(mod_m + ndigits, ndigits); 647 } 648 vli_set(result, v[i], ndigits); 649 } 650 651 /* Computes result = product % mod using Barrett's reduction with precomputed 652 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have 653 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits 654 * boundary. 655 * 656 * Reference: 657 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. 658 * 2.4.1 Barrett's algorithm. Algorithm 2.5. 659 */ 660 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, 661 unsigned int ndigits) 662 { 663 u64 q[ECC_MAX_DIGITS * 2]; 664 u64 r[ECC_MAX_DIGITS * 2]; 665 const u64 *mu = mod + ndigits; 666 667 vli_mult(q, product + ndigits, mu, ndigits); 668 if (mu[ndigits]) 669 vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits); 670 vli_mult(r, mod, q + ndigits, ndigits); 671 vli_sub(r, product, r, ndigits * 2); 672 while (!vli_is_zero(r + ndigits, ndigits) || 673 vli_cmp(r, mod, ndigits) != -1) { 674 u64 carry; 675 676 carry = vli_sub(r, r, mod, ndigits); 677 vli_usub(r + ndigits, r + ndigits, carry, ndigits); 678 } 679 vli_set(result, r, ndigits); 680 } 681 682 /* Computes p_result = p_product % curve_p. 683 * See algorithm 5 and 6 from 684 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf 685 */ 686 static void vli_mmod_fast_192(u64 *result, const u64 *product, 687 const u64 *curve_prime, u64 *tmp) 688 { 689 const unsigned int ndigits = 3; 690 int carry; 691 692 vli_set(result, product, ndigits); 693 694 vli_set(tmp, &product[3], ndigits); 695 carry = vli_add(result, result, tmp, ndigits); 696 697 tmp[0] = 0; 698 tmp[1] = product[3]; 699 tmp[2] = product[4]; 700 carry += vli_add(result, result, tmp, ndigits); 701 702 tmp[0] = tmp[1] = product[5]; 703 tmp[2] = 0; 704 carry += vli_add(result, result, tmp, ndigits); 705 706 while (carry || vli_cmp(curve_prime, result, ndigits) != 1) 707 carry -= vli_sub(result, result, curve_prime, ndigits); 708 } 709 710 /* Computes result = product % curve_prime 711 * from http://www.nsa.gov/ia/_files/nist-routines.pdf 712 */ 713 static void vli_mmod_fast_256(u64 *result, const u64 *product, 714 const u64 *curve_prime, u64 *tmp) 715 { 716 int carry; 717 const unsigned int ndigits = 4; 718 719 /* t */ 720 vli_set(result, product, ndigits); 721 722 /* s1 */ 723 tmp[0] = 0; 724 tmp[1] = product[5] & 0xffffffff00000000ull; 725 tmp[2] = product[6]; 726 tmp[3] = product[7]; 727 carry = vli_lshift(tmp, tmp, 1, ndigits); 728 carry += vli_add(result, result, tmp, ndigits); 729 730 /* s2 */ 731 tmp[1] = product[6] << 32; 732 tmp[2] = (product[6] >> 32) | (product[7] << 32); 733 tmp[3] = product[7] >> 32; 734 carry += vli_lshift(tmp, tmp, 1, ndigits); 735 carry += vli_add(result, result, tmp, ndigits); 736 737 /* s3 */ 738 tmp[0] = product[4]; 739 tmp[1] = product[5] & 0xffffffff; 740 tmp[2] = 0; 741 tmp[3] = product[7]; 742 carry += vli_add(result, result, tmp, ndigits); 743 744 /* s4 */ 745 tmp[0] = (product[4] >> 32) | (product[5] << 32); 746 tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); 747 tmp[2] = product[7]; 748 tmp[3] = (product[6] >> 32) | (product[4] << 32); 749 carry += vli_add(result, result, tmp, ndigits); 750 751 /* d1 */ 752 tmp[0] = (product[5] >> 32) | (product[6] << 32); 753 tmp[1] = (product[6] >> 32); 754 tmp[2] = 0; 755 tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); 756 carry -= vli_sub(result, result, tmp, ndigits); 757 758 /* d2 */ 759 tmp[0] = product[6]; 760 tmp[1] = product[7]; 761 tmp[2] = 0; 762 tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); 763 carry -= vli_sub(result, result, tmp, ndigits); 764 765 /* d3 */ 766 tmp[0] = (product[6] >> 32) | (product[7] << 32); 767 tmp[1] = (product[7] >> 32) | (product[4] << 32); 768 tmp[2] = (product[4] >> 32) | (product[5] << 32); 769 tmp[3] = (product[6] << 32); 770 carry -= vli_sub(result, result, tmp, ndigits); 771 772 /* d4 */ 773 tmp[0] = product[7]; 774 tmp[1] = product[4] & 0xffffffff00000000ull; 775 tmp[2] = product[5]; 776 tmp[3] = product[6] & 0xffffffff00000000ull; 777 carry -= vli_sub(result, result, tmp, ndigits); 778 779 if (carry < 0) { 780 do { 781 carry += vli_add(result, result, curve_prime, ndigits); 782 } while (carry < 0); 783 } else { 784 while (carry || vli_cmp(curve_prime, result, ndigits) != 1) 785 carry -= vli_sub(result, result, curve_prime, ndigits); 786 } 787 } 788 789 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32) 790 #define AND64H(x64) (x64 & 0xffFFffFF00000000ull) 791 #define AND64L(x64) (x64 & 0x00000000ffFFffFFull) 792 793 /* Computes result = product % curve_prime 794 * from "Mathematical routines for the NIST prime elliptic curves" 795 */ 796 static void vli_mmod_fast_384(u64 *result, const u64 *product, 797 const u64 *curve_prime, u64 *tmp) 798 { 799 int carry; 800 const unsigned int ndigits = 6; 801 802 /* t */ 803 vli_set(result, product, ndigits); 804 805 /* s1 */ 806 tmp[0] = 0; // 0 || 0 807 tmp[1] = 0; // 0 || 0 808 tmp[2] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 809 tmp[3] = product[11]>>32; // 0 ||a23 810 tmp[4] = 0; // 0 || 0 811 tmp[5] = 0; // 0 || 0 812 carry = vli_lshift(tmp, tmp, 1, ndigits); 813 carry += vli_add(result, result, tmp, ndigits); 814 815 /* s2 */ 816 tmp[0] = product[6]; //a13||a12 817 tmp[1] = product[7]; //a15||a14 818 tmp[2] = product[8]; //a17||a16 819 tmp[3] = product[9]; //a19||a18 820 tmp[4] = product[10]; //a21||a20 821 tmp[5] = product[11]; //a23||a22 822 carry += vli_add(result, result, tmp, ndigits); 823 824 /* s3 */ 825 tmp[0] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 826 tmp[1] = SL32OR32(product[6], (product[11]>>32)); //a12||a23 827 tmp[2] = SL32OR32(product[7], (product[6])>>32); //a14||a13 828 tmp[3] = SL32OR32(product[8], (product[7]>>32)); //a16||a15 829 tmp[4] = SL32OR32(product[9], (product[8]>>32)); //a18||a17 830 tmp[5] = SL32OR32(product[10], (product[9]>>32)); //a20||a19 831 carry += vli_add(result, result, tmp, ndigits); 832 833 /* s4 */ 834 tmp[0] = AND64H(product[11]); //a23|| 0 835 tmp[1] = (product[10]<<32); //a20|| 0 836 tmp[2] = product[6]; //a13||a12 837 tmp[3] = product[7]; //a15||a14 838 tmp[4] = product[8]; //a17||a16 839 tmp[5] = product[9]; //a19||a18 840 carry += vli_add(result, result, tmp, ndigits); 841 842 /* s5 */ 843 tmp[0] = 0; // 0|| 0 844 tmp[1] = 0; // 0|| 0 845 tmp[2] = product[10]; //a21||a20 846 tmp[3] = product[11]; //a23||a22 847 tmp[4] = 0; // 0|| 0 848 tmp[5] = 0; // 0|| 0 849 carry += vli_add(result, result, tmp, ndigits); 850 851 /* s6 */ 852 tmp[0] = AND64L(product[10]); // 0 ||a20 853 tmp[1] = AND64H(product[10]); //a21|| 0 854 tmp[2] = product[11]; //a23||a22 855 tmp[3] = 0; // 0 || 0 856 tmp[4] = 0; // 0 || 0 857 tmp[5] = 0; // 0 || 0 858 carry += vli_add(result, result, tmp, ndigits); 859 860 /* d1 */ 861 tmp[0] = SL32OR32(product[6], (product[11]>>32)); //a12||a23 862 tmp[1] = SL32OR32(product[7], (product[6]>>32)); //a14||a13 863 tmp[2] = SL32OR32(product[8], (product[7]>>32)); //a16||a15 864 tmp[3] = SL32OR32(product[9], (product[8]>>32)); //a18||a17 865 tmp[4] = SL32OR32(product[10], (product[9]>>32)); //a20||a19 866 tmp[5] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 867 carry -= vli_sub(result, result, tmp, ndigits); 868 869 /* d2 */ 870 tmp[0] = (product[10]<<32); //a20|| 0 871 tmp[1] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 872 tmp[2] = (product[11]>>32); // 0 ||a23 873 tmp[3] = 0; // 0 || 0 874 tmp[4] = 0; // 0 || 0 875 tmp[5] = 0; // 0 || 0 876 carry -= vli_sub(result, result, tmp, ndigits); 877 878 /* d3 */ 879 tmp[0] = 0; // 0 || 0 880 tmp[1] = AND64H(product[11]); //a23|| 0 881 tmp[2] = product[11]>>32; // 0 ||a23 882 tmp[3] = 0; // 0 || 0 883 tmp[4] = 0; // 0 || 0 884 tmp[5] = 0; // 0 || 0 885 carry -= vli_sub(result, result, tmp, ndigits); 886 887 if (carry < 0) { 888 do { 889 carry += vli_add(result, result, curve_prime, ndigits); 890 } while (carry < 0); 891 } else { 892 while (carry || vli_cmp(curve_prime, result, ndigits) != 1) 893 carry -= vli_sub(result, result, curve_prime, ndigits); 894 } 895 896 } 897 898 #undef SL32OR32 899 #undef AND64H 900 #undef AND64L 901 902 /* Computes result = product % curve_prime for different curve_primes. 903 * 904 * Note that curve_primes are distinguished just by heuristic check and 905 * not by complete conformance check. 906 */ 907 static bool vli_mmod_fast(u64 *result, u64 *product, 908 const struct ecc_curve *curve) 909 { 910 u64 tmp[2 * ECC_MAX_DIGITS]; 911 const u64 *curve_prime = curve->p; 912 const unsigned int ndigits = curve->g.ndigits; 913 914 /* All NIST curves have name prefix 'nist_' */ 915 if (strncmp(curve->name, "nist_", 5) != 0) { 916 /* Try to handle Pseudo-Marsenne primes. */ 917 if (curve_prime[ndigits - 1] == -1ull) { 918 vli_mmod_special(result, product, curve_prime, 919 ndigits); 920 return true; 921 } else if (curve_prime[ndigits - 1] == 1ull << 63 && 922 curve_prime[ndigits - 2] == 0) { 923 vli_mmod_special2(result, product, curve_prime, 924 ndigits); 925 return true; 926 } 927 vli_mmod_barrett(result, product, curve_prime, ndigits); 928 return true; 929 } 930 931 switch (ndigits) { 932 case 3: 933 vli_mmod_fast_192(result, product, curve_prime, tmp); 934 break; 935 case 4: 936 vli_mmod_fast_256(result, product, curve_prime, tmp); 937 break; 938 case 6: 939 vli_mmod_fast_384(result, product, curve_prime, tmp); 940 break; 941 default: 942 pr_err_ratelimited("ecc: unsupported digits size!\n"); 943 return false; 944 } 945 946 return true; 947 } 948 949 /* Computes result = (left * right) % mod. 950 * Assumes that mod is big enough curve order. 951 */ 952 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, 953 const u64 *mod, unsigned int ndigits) 954 { 955 u64 product[ECC_MAX_DIGITS * 2]; 956 957 vli_mult(product, left, right, ndigits); 958 vli_mmod_slow(result, product, mod, ndigits); 959 } 960 EXPORT_SYMBOL(vli_mod_mult_slow); 961 962 /* Computes result = (left * right) % curve_prime. */ 963 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, 964 const struct ecc_curve *curve) 965 { 966 u64 product[2 * ECC_MAX_DIGITS]; 967 968 vli_mult(product, left, right, curve->g.ndigits); 969 vli_mmod_fast(result, product, curve); 970 } 971 972 /* Computes result = left^2 % curve_prime. */ 973 static void vli_mod_square_fast(u64 *result, const u64 *left, 974 const struct ecc_curve *curve) 975 { 976 u64 product[2 * ECC_MAX_DIGITS]; 977 978 vli_square(product, left, curve->g.ndigits); 979 vli_mmod_fast(result, product, curve); 980 } 981 982 #define EVEN(vli) (!(vli[0] & 1)) 983 /* Computes result = (1 / p_input) % mod. All VLIs are the same size. 984 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" 985 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf 986 */ 987 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, 988 unsigned int ndigits) 989 { 990 u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; 991 u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; 992 u64 carry; 993 int cmp_result; 994 995 if (vli_is_zero(input, ndigits)) { 996 vli_clear(result, ndigits); 997 return; 998 } 999 1000 vli_set(a, input, ndigits); 1001 vli_set(b, mod, ndigits); 1002 vli_clear(u, ndigits); 1003 u[0] = 1; 1004 vli_clear(v, ndigits); 1005 1006 while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { 1007 carry = 0; 1008 1009 if (EVEN(a)) { 1010 vli_rshift1(a, ndigits); 1011 1012 if (!EVEN(u)) 1013 carry = vli_add(u, u, mod, ndigits); 1014 1015 vli_rshift1(u, ndigits); 1016 if (carry) 1017 u[ndigits - 1] |= 0x8000000000000000ull; 1018 } else if (EVEN(b)) { 1019 vli_rshift1(b, ndigits); 1020 1021 if (!EVEN(v)) 1022 carry = vli_add(v, v, mod, ndigits); 1023 1024 vli_rshift1(v, ndigits); 1025 if (carry) 1026 v[ndigits - 1] |= 0x8000000000000000ull; 1027 } else if (cmp_result > 0) { 1028 vli_sub(a, a, b, ndigits); 1029 vli_rshift1(a, ndigits); 1030 1031 if (vli_cmp(u, v, ndigits) < 0) 1032 vli_add(u, u, mod, ndigits); 1033 1034 vli_sub(u, u, v, ndigits); 1035 if (!EVEN(u)) 1036 carry = vli_add(u, u, mod, ndigits); 1037 1038 vli_rshift1(u, ndigits); 1039 if (carry) 1040 u[ndigits - 1] |= 0x8000000000000000ull; 1041 } else { 1042 vli_sub(b, b, a, ndigits); 1043 vli_rshift1(b, ndigits); 1044 1045 if (vli_cmp(v, u, ndigits) < 0) 1046 vli_add(v, v, mod, ndigits); 1047 1048 vli_sub(v, v, u, ndigits); 1049 if (!EVEN(v)) 1050 carry = vli_add(v, v, mod, ndigits); 1051 1052 vli_rshift1(v, ndigits); 1053 if (carry) 1054 v[ndigits - 1] |= 0x8000000000000000ull; 1055 } 1056 } 1057 1058 vli_set(result, u, ndigits); 1059 } 1060 EXPORT_SYMBOL(vli_mod_inv); 1061 1062 /* ------ Point operations ------ */ 1063 1064 /* Returns true if p_point is the point at infinity, false otherwise. */ 1065 static bool ecc_point_is_zero(const struct ecc_point *point) 1066 { 1067 return (vli_is_zero(point->x, point->ndigits) && 1068 vli_is_zero(point->y, point->ndigits)); 1069 } 1070 1071 /* Point multiplication algorithm using Montgomery's ladder with co-Z 1072 * coordinates. From https://eprint.iacr.org/2011/338.pdf 1073 */ 1074 1075 /* Double in place */ 1076 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, 1077 const struct ecc_curve *curve) 1078 { 1079 /* t1 = x, t2 = y, t3 = z */ 1080 u64 t4[ECC_MAX_DIGITS]; 1081 u64 t5[ECC_MAX_DIGITS]; 1082 const u64 *curve_prime = curve->p; 1083 const unsigned int ndigits = curve->g.ndigits; 1084 1085 if (vli_is_zero(z1, ndigits)) 1086 return; 1087 1088 /* t4 = y1^2 */ 1089 vli_mod_square_fast(t4, y1, curve); 1090 /* t5 = x1*y1^2 = A */ 1091 vli_mod_mult_fast(t5, x1, t4, curve); 1092 /* t4 = y1^4 */ 1093 vli_mod_square_fast(t4, t4, curve); 1094 /* t2 = y1*z1 = z3 */ 1095 vli_mod_mult_fast(y1, y1, z1, curve); 1096 /* t3 = z1^2 */ 1097 vli_mod_square_fast(z1, z1, curve); 1098 1099 /* t1 = x1 + z1^2 */ 1100 vli_mod_add(x1, x1, z1, curve_prime, ndigits); 1101 /* t3 = 2*z1^2 */ 1102 vli_mod_add(z1, z1, z1, curve_prime, ndigits); 1103 /* t3 = x1 - z1^2 */ 1104 vli_mod_sub(z1, x1, z1, curve_prime, ndigits); 1105 /* t1 = x1^2 - z1^4 */ 1106 vli_mod_mult_fast(x1, x1, z1, curve); 1107 1108 /* t3 = 2*(x1^2 - z1^4) */ 1109 vli_mod_add(z1, x1, x1, curve_prime, ndigits); 1110 /* t1 = 3*(x1^2 - z1^4) */ 1111 vli_mod_add(x1, x1, z1, curve_prime, ndigits); 1112 if (vli_test_bit(x1, 0)) { 1113 u64 carry = vli_add(x1, x1, curve_prime, ndigits); 1114 1115 vli_rshift1(x1, ndigits); 1116 x1[ndigits - 1] |= carry << 63; 1117 } else { 1118 vli_rshift1(x1, ndigits); 1119 } 1120 /* t1 = 3/2*(x1^2 - z1^4) = B */ 1121 1122 /* t3 = B^2 */ 1123 vli_mod_square_fast(z1, x1, curve); 1124 /* t3 = B^2 - A */ 1125 vli_mod_sub(z1, z1, t5, curve_prime, ndigits); 1126 /* t3 = B^2 - 2A = x3 */ 1127 vli_mod_sub(z1, z1, t5, curve_prime, ndigits); 1128 /* t5 = A - x3 */ 1129 vli_mod_sub(t5, t5, z1, curve_prime, ndigits); 1130 /* t1 = B * (A - x3) */ 1131 vli_mod_mult_fast(x1, x1, t5, curve); 1132 /* t4 = B * (A - x3) - y1^4 = y3 */ 1133 vli_mod_sub(t4, x1, t4, curve_prime, ndigits); 1134 1135 vli_set(x1, z1, ndigits); 1136 vli_set(z1, y1, ndigits); 1137 vli_set(y1, t4, ndigits); 1138 } 1139 1140 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ 1141 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve) 1142 { 1143 u64 t1[ECC_MAX_DIGITS]; 1144 1145 vli_mod_square_fast(t1, z, curve); /* z^2 */ 1146 vli_mod_mult_fast(x1, x1, t1, curve); /* x1 * z^2 */ 1147 vli_mod_mult_fast(t1, t1, z, curve); /* z^3 */ 1148 vli_mod_mult_fast(y1, y1, t1, curve); /* y1 * z^3 */ 1149 } 1150 1151 /* P = (x1, y1) => 2P, (x2, y2) => P' */ 1152 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, 1153 u64 *p_initial_z, const struct ecc_curve *curve) 1154 { 1155 u64 z[ECC_MAX_DIGITS]; 1156 const unsigned int ndigits = curve->g.ndigits; 1157 1158 vli_set(x2, x1, ndigits); 1159 vli_set(y2, y1, ndigits); 1160 1161 vli_clear(z, ndigits); 1162 z[0] = 1; 1163 1164 if (p_initial_z) 1165 vli_set(z, p_initial_z, ndigits); 1166 1167 apply_z(x1, y1, z, curve); 1168 1169 ecc_point_double_jacobian(x1, y1, z, curve); 1170 1171 apply_z(x2, y2, z, curve); 1172 } 1173 1174 /* Input P = (x1, y1, Z), Q = (x2, y2, Z) 1175 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) 1176 * or P => P', Q => P + Q 1177 */ 1178 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, 1179 const struct ecc_curve *curve) 1180 { 1181 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ 1182 u64 t5[ECC_MAX_DIGITS]; 1183 const u64 *curve_prime = curve->p; 1184 const unsigned int ndigits = curve->g.ndigits; 1185 1186 /* t5 = x2 - x1 */ 1187 vli_mod_sub(t5, x2, x1, curve_prime, ndigits); 1188 /* t5 = (x2 - x1)^2 = A */ 1189 vli_mod_square_fast(t5, t5, curve); 1190 /* t1 = x1*A = B */ 1191 vli_mod_mult_fast(x1, x1, t5, curve); 1192 /* t3 = x2*A = C */ 1193 vli_mod_mult_fast(x2, x2, t5, curve); 1194 /* t4 = y2 - y1 */ 1195 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1196 /* t5 = (y2 - y1)^2 = D */ 1197 vli_mod_square_fast(t5, y2, curve); 1198 1199 /* t5 = D - B */ 1200 vli_mod_sub(t5, t5, x1, curve_prime, ndigits); 1201 /* t5 = D - B - C = x3 */ 1202 vli_mod_sub(t5, t5, x2, curve_prime, ndigits); 1203 /* t3 = C - B */ 1204 vli_mod_sub(x2, x2, x1, curve_prime, ndigits); 1205 /* t2 = y1*(C - B) */ 1206 vli_mod_mult_fast(y1, y1, x2, curve); 1207 /* t3 = B - x3 */ 1208 vli_mod_sub(x2, x1, t5, curve_prime, ndigits); 1209 /* t4 = (y2 - y1)*(B - x3) */ 1210 vli_mod_mult_fast(y2, y2, x2, curve); 1211 /* t4 = y3 */ 1212 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1213 1214 vli_set(x2, t5, ndigits); 1215 } 1216 1217 /* Input P = (x1, y1, Z), Q = (x2, y2, Z) 1218 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) 1219 * or P => P - Q, Q => P + Q 1220 */ 1221 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, 1222 const struct ecc_curve *curve) 1223 { 1224 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ 1225 u64 t5[ECC_MAX_DIGITS]; 1226 u64 t6[ECC_MAX_DIGITS]; 1227 u64 t7[ECC_MAX_DIGITS]; 1228 const u64 *curve_prime = curve->p; 1229 const unsigned int ndigits = curve->g.ndigits; 1230 1231 /* t5 = x2 - x1 */ 1232 vli_mod_sub(t5, x2, x1, curve_prime, ndigits); 1233 /* t5 = (x2 - x1)^2 = A */ 1234 vli_mod_square_fast(t5, t5, curve); 1235 /* t1 = x1*A = B */ 1236 vli_mod_mult_fast(x1, x1, t5, curve); 1237 /* t3 = x2*A = C */ 1238 vli_mod_mult_fast(x2, x2, t5, curve); 1239 /* t4 = y2 + y1 */ 1240 vli_mod_add(t5, y2, y1, curve_prime, ndigits); 1241 /* t4 = y2 - y1 */ 1242 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1243 1244 /* t6 = C - B */ 1245 vli_mod_sub(t6, x2, x1, curve_prime, ndigits); 1246 /* t2 = y1 * (C - B) */ 1247 vli_mod_mult_fast(y1, y1, t6, curve); 1248 /* t6 = B + C */ 1249 vli_mod_add(t6, x1, x2, curve_prime, ndigits); 1250 /* t3 = (y2 - y1)^2 */ 1251 vli_mod_square_fast(x2, y2, curve); 1252 /* t3 = x3 */ 1253 vli_mod_sub(x2, x2, t6, curve_prime, ndigits); 1254 1255 /* t7 = B - x3 */ 1256 vli_mod_sub(t7, x1, x2, curve_prime, ndigits); 1257 /* t4 = (y2 - y1)*(B - x3) */ 1258 vli_mod_mult_fast(y2, y2, t7, curve); 1259 /* t4 = y3 */ 1260 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1261 1262 /* t7 = (y2 + y1)^2 = F */ 1263 vli_mod_square_fast(t7, t5, curve); 1264 /* t7 = x3' */ 1265 vli_mod_sub(t7, t7, t6, curve_prime, ndigits); 1266 /* t6 = x3' - B */ 1267 vli_mod_sub(t6, t7, x1, curve_prime, ndigits); 1268 /* t6 = (y2 + y1)*(x3' - B) */ 1269 vli_mod_mult_fast(t6, t6, t5, curve); 1270 /* t2 = y3' */ 1271 vli_mod_sub(y1, t6, y1, curve_prime, ndigits); 1272 1273 vli_set(x1, t7, ndigits); 1274 } 1275 1276 static void ecc_point_mult(struct ecc_point *result, 1277 const struct ecc_point *point, const u64 *scalar, 1278 u64 *initial_z, const struct ecc_curve *curve, 1279 unsigned int ndigits) 1280 { 1281 /* R0 and R1 */ 1282 u64 rx[2][ECC_MAX_DIGITS]; 1283 u64 ry[2][ECC_MAX_DIGITS]; 1284 u64 z[ECC_MAX_DIGITS]; 1285 u64 sk[2][ECC_MAX_DIGITS]; 1286 u64 *curve_prime = curve->p; 1287 int i, nb; 1288 int num_bits; 1289 int carry; 1290 1291 carry = vli_add(sk[0], scalar, curve->n, ndigits); 1292 vli_add(sk[1], sk[0], curve->n, ndigits); 1293 scalar = sk[!carry]; 1294 num_bits = sizeof(u64) * ndigits * 8 + 1; 1295 1296 vli_set(rx[1], point->x, ndigits); 1297 vli_set(ry[1], point->y, ndigits); 1298 1299 xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve); 1300 1301 for (i = num_bits - 2; i > 0; i--) { 1302 nb = !vli_test_bit(scalar, i); 1303 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve); 1304 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve); 1305 } 1306 1307 nb = !vli_test_bit(scalar, 0); 1308 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve); 1309 1310 /* Find final 1/Z value. */ 1311 /* X1 - X0 */ 1312 vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); 1313 /* Yb * (X1 - X0) */ 1314 vli_mod_mult_fast(z, z, ry[1 - nb], curve); 1315 /* xP * Yb * (X1 - X0) */ 1316 vli_mod_mult_fast(z, z, point->x, curve); 1317 1318 /* 1 / (xP * Yb * (X1 - X0)) */ 1319 vli_mod_inv(z, z, curve_prime, point->ndigits); 1320 1321 /* yP / (xP * Yb * (X1 - X0)) */ 1322 vli_mod_mult_fast(z, z, point->y, curve); 1323 /* Xb * yP / (xP * Yb * (X1 - X0)) */ 1324 vli_mod_mult_fast(z, z, rx[1 - nb], curve); 1325 /* End 1/Z calculation */ 1326 1327 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve); 1328 1329 apply_z(rx[0], ry[0], z, curve); 1330 1331 vli_set(result->x, rx[0], ndigits); 1332 vli_set(result->y, ry[0], ndigits); 1333 } 1334 1335 /* Computes R = P + Q mod p */ 1336 static void ecc_point_add(const struct ecc_point *result, 1337 const struct ecc_point *p, const struct ecc_point *q, 1338 const struct ecc_curve *curve) 1339 { 1340 u64 z[ECC_MAX_DIGITS]; 1341 u64 px[ECC_MAX_DIGITS]; 1342 u64 py[ECC_MAX_DIGITS]; 1343 unsigned int ndigits = curve->g.ndigits; 1344 1345 vli_set(result->x, q->x, ndigits); 1346 vli_set(result->y, q->y, ndigits); 1347 vli_mod_sub(z, result->x, p->x, curve->p, ndigits); 1348 vli_set(px, p->x, ndigits); 1349 vli_set(py, p->y, ndigits); 1350 xycz_add(px, py, result->x, result->y, curve); 1351 vli_mod_inv(z, z, curve->p, ndigits); 1352 apply_z(result->x, result->y, z, curve); 1353 } 1354 1355 /* Computes R = u1P + u2Q mod p using Shamir's trick. 1356 * Based on: Kenneth MacKay's micro-ecc (2014). 1357 */ 1358 void ecc_point_mult_shamir(const struct ecc_point *result, 1359 const u64 *u1, const struct ecc_point *p, 1360 const u64 *u2, const struct ecc_point *q, 1361 const struct ecc_curve *curve) 1362 { 1363 u64 z[ECC_MAX_DIGITS]; 1364 u64 sump[2][ECC_MAX_DIGITS]; 1365 u64 *rx = result->x; 1366 u64 *ry = result->y; 1367 unsigned int ndigits = curve->g.ndigits; 1368 unsigned int num_bits; 1369 struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); 1370 const struct ecc_point *points[4]; 1371 const struct ecc_point *point; 1372 unsigned int idx; 1373 int i; 1374 1375 ecc_point_add(&sum, p, q, curve); 1376 points[0] = NULL; 1377 points[1] = p; 1378 points[2] = q; 1379 points[3] = ∑ 1380 1381 num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits)); 1382 i = num_bits - 1; 1383 idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); 1384 point = points[idx]; 1385 1386 vli_set(rx, point->x, ndigits); 1387 vli_set(ry, point->y, ndigits); 1388 vli_clear(z + 1, ndigits - 1); 1389 z[0] = 1; 1390 1391 for (--i; i >= 0; i--) { 1392 ecc_point_double_jacobian(rx, ry, z, curve); 1393 idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); 1394 point = points[idx]; 1395 if (point) { 1396 u64 tx[ECC_MAX_DIGITS]; 1397 u64 ty[ECC_MAX_DIGITS]; 1398 u64 tz[ECC_MAX_DIGITS]; 1399 1400 vli_set(tx, point->x, ndigits); 1401 vli_set(ty, point->y, ndigits); 1402 apply_z(tx, ty, z, curve); 1403 vli_mod_sub(tz, rx, tx, curve->p, ndigits); 1404 xycz_add(tx, ty, rx, ry, curve); 1405 vli_mod_mult_fast(z, z, tz, curve); 1406 } 1407 } 1408 vli_mod_inv(z, z, curve->p, ndigits); 1409 apply_z(rx, ry, z, curve); 1410 } 1411 EXPORT_SYMBOL(ecc_point_mult_shamir); 1412 1413 static int __ecc_is_key_valid(const struct ecc_curve *curve, 1414 const u64 *private_key, unsigned int ndigits) 1415 { 1416 u64 one[ECC_MAX_DIGITS] = { 1, }; 1417 u64 res[ECC_MAX_DIGITS]; 1418 1419 if (!private_key) 1420 return -EINVAL; 1421 1422 if (curve->g.ndigits != ndigits) 1423 return -EINVAL; 1424 1425 /* Make sure the private key is in the range [2, n-3]. */ 1426 if (vli_cmp(one, private_key, ndigits) != -1) 1427 return -EINVAL; 1428 vli_sub(res, curve->n, one, ndigits); 1429 vli_sub(res, res, one, ndigits); 1430 if (vli_cmp(res, private_key, ndigits) != 1) 1431 return -EINVAL; 1432 1433 return 0; 1434 } 1435 1436 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, 1437 const u64 *private_key, unsigned int private_key_len) 1438 { 1439 int nbytes; 1440 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1441 1442 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; 1443 1444 if (private_key_len != nbytes) 1445 return -EINVAL; 1446 1447 return __ecc_is_key_valid(curve, private_key, ndigits); 1448 } 1449 EXPORT_SYMBOL(ecc_is_key_valid); 1450 1451 /* 1452 * ECC private keys are generated using the method of extra random bits, 1453 * equivalent to that described in FIPS 186-4, Appendix B.4.1. 1454 * 1455 * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer 1456 * than requested 1457 * 0 <= c mod(n-1) <= n-2 and implies that 1458 * 1 <= d <= n-1 1459 * 1460 * This method generates a private key uniformly distributed in the range 1461 * [1, n-1]. 1462 */ 1463 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey) 1464 { 1465 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1466 u64 priv[ECC_MAX_DIGITS]; 1467 unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; 1468 unsigned int nbits = vli_num_bits(curve->n, ndigits); 1469 int err; 1470 1471 /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */ 1472 if (nbits < 160 || ndigits > ARRAY_SIZE(priv)) 1473 return -EINVAL; 1474 1475 /* 1476 * FIPS 186-4 recommends that the private key should be obtained from a 1477 * RBG with a security strength equal to or greater than the security 1478 * strength associated with N. 1479 * 1480 * The maximum security strength identified by NIST SP800-57pt1r4 for 1481 * ECC is 256 (N >= 512). 1482 * 1483 * This condition is met by the default RNG because it selects a favored 1484 * DRBG with a security strength of 256. 1485 */ 1486 if (crypto_get_default_rng()) 1487 return -EFAULT; 1488 1489 err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes); 1490 crypto_put_default_rng(); 1491 if (err) 1492 return err; 1493 1494 /* Make sure the private key is in the valid range. */ 1495 if (__ecc_is_key_valid(curve, priv, ndigits)) 1496 return -EINVAL; 1497 1498 ecc_swap_digits(priv, privkey, ndigits); 1499 1500 return 0; 1501 } 1502 EXPORT_SYMBOL(ecc_gen_privkey); 1503 1504 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, 1505 const u64 *private_key, u64 *public_key) 1506 { 1507 int ret = 0; 1508 struct ecc_point *pk; 1509 u64 priv[ECC_MAX_DIGITS]; 1510 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1511 1512 if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) { 1513 ret = -EINVAL; 1514 goto out; 1515 } 1516 1517 ecc_swap_digits(private_key, priv, ndigits); 1518 1519 pk = ecc_alloc_point(ndigits); 1520 if (!pk) { 1521 ret = -ENOMEM; 1522 goto out; 1523 } 1524 1525 ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits); 1526 1527 /* SP800-56A rev 3 5.6.2.1.3 key check */ 1528 if (ecc_is_pubkey_valid_full(curve, pk)) { 1529 ret = -EAGAIN; 1530 goto err_free_point; 1531 } 1532 1533 ecc_swap_digits(pk->x, public_key, ndigits); 1534 ecc_swap_digits(pk->y, &public_key[ndigits], ndigits); 1535 1536 err_free_point: 1537 ecc_free_point(pk); 1538 out: 1539 return ret; 1540 } 1541 EXPORT_SYMBOL(ecc_make_pub_key); 1542 1543 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ 1544 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, 1545 struct ecc_point *pk) 1546 { 1547 u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; 1548 1549 if (WARN_ON(pk->ndigits != curve->g.ndigits)) 1550 return -EINVAL; 1551 1552 /* Check 1: Verify key is not the zero point. */ 1553 if (ecc_point_is_zero(pk)) 1554 return -EINVAL; 1555 1556 /* Check 2: Verify key is in the range [1, p-1]. */ 1557 if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) 1558 return -EINVAL; 1559 if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) 1560 return -EINVAL; 1561 1562 /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ 1563 vli_mod_square_fast(yy, pk->y, curve); /* y^2 */ 1564 vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */ 1565 vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */ 1566 vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */ 1567 vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */ 1568 vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */ 1569 if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ 1570 return -EINVAL; 1571 1572 return 0; 1573 } 1574 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial); 1575 1576 /* SP800-56A section 5.6.2.3.3 full verification */ 1577 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, 1578 struct ecc_point *pk) 1579 { 1580 struct ecc_point *nQ; 1581 1582 /* Checks 1 through 3 */ 1583 int ret = ecc_is_pubkey_valid_partial(curve, pk); 1584 1585 if (ret) 1586 return ret; 1587 1588 /* Check 4: Verify that nQ is the zero point. */ 1589 nQ = ecc_alloc_point(pk->ndigits); 1590 if (!nQ) 1591 return -ENOMEM; 1592 1593 ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits); 1594 if (!ecc_point_is_zero(nQ)) 1595 ret = -EINVAL; 1596 1597 ecc_free_point(nQ); 1598 1599 return ret; 1600 } 1601 EXPORT_SYMBOL(ecc_is_pubkey_valid_full); 1602 1603 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, 1604 const u64 *private_key, const u64 *public_key, 1605 u64 *secret) 1606 { 1607 int ret = 0; 1608 struct ecc_point *product, *pk; 1609 u64 priv[ECC_MAX_DIGITS]; 1610 u64 rand_z[ECC_MAX_DIGITS]; 1611 unsigned int nbytes; 1612 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1613 1614 if (!private_key || !public_key || !curve || 1615 ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) { 1616 ret = -EINVAL; 1617 goto out; 1618 } 1619 1620 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; 1621 1622 get_random_bytes(rand_z, nbytes); 1623 1624 pk = ecc_alloc_point(ndigits); 1625 if (!pk) { 1626 ret = -ENOMEM; 1627 goto out; 1628 } 1629 1630 ecc_swap_digits(public_key, pk->x, ndigits); 1631 ecc_swap_digits(&public_key[ndigits], pk->y, ndigits); 1632 ret = ecc_is_pubkey_valid_partial(curve, pk); 1633 if (ret) 1634 goto err_alloc_product; 1635 1636 ecc_swap_digits(private_key, priv, ndigits); 1637 1638 product = ecc_alloc_point(ndigits); 1639 if (!product) { 1640 ret = -ENOMEM; 1641 goto err_alloc_product; 1642 } 1643 1644 ecc_point_mult(product, pk, priv, rand_z, curve, ndigits); 1645 1646 if (ecc_point_is_zero(product)) { 1647 ret = -EFAULT; 1648 goto err_validity; 1649 } 1650 1651 ecc_swap_digits(product->x, secret, ndigits); 1652 1653 err_validity: 1654 memzero_explicit(priv, sizeof(priv)); 1655 memzero_explicit(rand_z, sizeof(rand_z)); 1656 ecc_free_point(product); 1657 err_alloc_product: 1658 ecc_free_point(pk); 1659 out: 1660 return ret; 1661 } 1662 EXPORT_SYMBOL(crypto_ecdh_shared_secret); 1663 1664 MODULE_LICENSE("Dual BSD/GPL"); 1665