xref: /linux/crypto/ecc.c (revision 1d39d02a1535658962f9370312be7b2d634946a5)
1 /*
2  * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3  * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <crypto/ecc_curve.h>
28 #include <linux/module.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/swab.h>
32 #include <linux/fips.h>
33 #include <crypto/ecdh.h>
34 #include <crypto/rng.h>
35 #include <crypto/internal/ecc.h>
36 #include <linux/unaligned.h>
37 #include <linux/ratelimit.h>
38 
39 #include "ecc_curve_defs.h"
40 
41 typedef struct {
42 	u64 m_low;
43 	u64 m_high;
44 } uint128_t;
45 
46 /* Returns curv25519 curve param */
47 const struct ecc_curve *ecc_get_curve25519(void)
48 {
49 	return &ecc_25519;
50 }
51 EXPORT_SYMBOL(ecc_get_curve25519);
52 
53 const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
54 {
55 	switch (curve_id) {
56 	/* In FIPS mode only allow P256 and higher */
57 	case ECC_CURVE_NIST_P192:
58 		return fips_enabled ? NULL : &nist_p192;
59 	case ECC_CURVE_NIST_P256:
60 		return &nist_p256;
61 	case ECC_CURVE_NIST_P384:
62 		return &nist_p384;
63 	case ECC_CURVE_NIST_P521:
64 		return &nist_p521;
65 	default:
66 		return NULL;
67 	}
68 }
69 EXPORT_SYMBOL(ecc_get_curve);
70 
71 void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
72 			   u64 *out, unsigned int ndigits)
73 {
74 	int diff = ndigits - DIV_ROUND_UP(nbytes, sizeof(u64));
75 	unsigned int o = nbytes & 7;
76 	__be64 msd = 0;
77 
78 	/* diff > 0: not enough input bytes: set most significant digits to 0 */
79 	if (diff > 0) {
80 		ndigits -= diff;
81 		memset(&out[ndigits], 0, diff * sizeof(u64));
82 	}
83 
84 	if (o) {
85 		memcpy((u8 *)&msd + sizeof(msd) - o, in, o);
86 		out[--ndigits] = be64_to_cpu(msd);
87 		in += o;
88 	}
89 	ecc_swap_digits(in, out, ndigits);
90 }
91 EXPORT_SYMBOL(ecc_digits_from_bytes);
92 
93 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
94 {
95 	size_t len = ndigits * sizeof(u64);
96 
97 	if (!len)
98 		return NULL;
99 
100 	return kmalloc(len, GFP_KERNEL);
101 }
102 
103 static void ecc_free_digits_space(u64 *space)
104 {
105 	kfree_sensitive(space);
106 }
107 
108 struct ecc_point *ecc_alloc_point(unsigned int ndigits)
109 {
110 	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
111 
112 	if (!p)
113 		return NULL;
114 
115 	p->x = ecc_alloc_digits_space(ndigits);
116 	if (!p->x)
117 		goto err_alloc_x;
118 
119 	p->y = ecc_alloc_digits_space(ndigits);
120 	if (!p->y)
121 		goto err_alloc_y;
122 
123 	p->ndigits = ndigits;
124 
125 	return p;
126 
127 err_alloc_y:
128 	ecc_free_digits_space(p->x);
129 err_alloc_x:
130 	kfree(p);
131 	return NULL;
132 }
133 EXPORT_SYMBOL(ecc_alloc_point);
134 
135 void ecc_free_point(struct ecc_point *p)
136 {
137 	if (!p)
138 		return;
139 
140 	kfree_sensitive(p->x);
141 	kfree_sensitive(p->y);
142 	kfree_sensitive(p);
143 }
144 EXPORT_SYMBOL(ecc_free_point);
145 
146 static void vli_clear(u64 *vli, unsigned int ndigits)
147 {
148 	int i;
149 
150 	for (i = 0; i < ndigits; i++)
151 		vli[i] = 0;
152 }
153 
154 /* Returns true if vli == 0, false otherwise. */
155 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
156 {
157 	int i;
158 
159 	for (i = 0; i < ndigits; i++) {
160 		if (vli[i])
161 			return false;
162 	}
163 
164 	return true;
165 }
166 EXPORT_SYMBOL(vli_is_zero);
167 
168 /* Returns nonzero if bit of vli is set. */
169 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
170 {
171 	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
172 }
173 
174 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
175 {
176 	return vli_test_bit(vli, ndigits * 64 - 1);
177 }
178 
179 /* Counts the number of 64-bit "digits" in vli. */
180 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
181 {
182 	int i;
183 
184 	/* Search from the end until we find a non-zero digit.
185 	 * We do it in reverse because we expect that most digits will
186 	 * be nonzero.
187 	 */
188 	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
189 
190 	return (i + 1);
191 }
192 
193 /* Counts the number of bits required for vli. */
194 unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
195 {
196 	unsigned int i, num_digits;
197 	u64 digit;
198 
199 	num_digits = vli_num_digits(vli, ndigits);
200 	if (num_digits == 0)
201 		return 0;
202 
203 	digit = vli[num_digits - 1];
204 	for (i = 0; digit; i++)
205 		digit >>= 1;
206 
207 	return ((num_digits - 1) * 64 + i);
208 }
209 EXPORT_SYMBOL(vli_num_bits);
210 
211 /* Set dest from unaligned bit string src. */
212 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
213 {
214 	int i;
215 	const u64 *from = src;
216 
217 	for (i = 0; i < ndigits; i++)
218 		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
219 }
220 EXPORT_SYMBOL(vli_from_be64);
221 
222 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
223 {
224 	int i;
225 	const u64 *from = src;
226 
227 	for (i = 0; i < ndigits; i++)
228 		dest[i] = get_unaligned_le64(&from[i]);
229 }
230 EXPORT_SYMBOL(vli_from_le64);
231 
232 /* Sets dest = src. */
233 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
234 {
235 	int i;
236 
237 	for (i = 0; i < ndigits; i++)
238 		dest[i] = src[i];
239 }
240 
241 /* Returns sign of left - right. */
242 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
243 {
244 	int i;
245 
246 	for (i = ndigits - 1; i >= 0; i--) {
247 		if (left[i] > right[i])
248 			return 1;
249 		else if (left[i] < right[i])
250 			return -1;
251 	}
252 
253 	return 0;
254 }
255 EXPORT_SYMBOL(vli_cmp);
256 
257 /* Computes result = in << c, returning carry. Can modify in place
258  * (if result == in). 0 < shift < 64.
259  */
260 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
261 		      unsigned int ndigits)
262 {
263 	u64 carry = 0;
264 	int i;
265 
266 	for (i = 0; i < ndigits; i++) {
267 		u64 temp = in[i];
268 
269 		result[i] = (temp << shift) | carry;
270 		carry = temp >> (64 - shift);
271 	}
272 
273 	return carry;
274 }
275 
276 /* Computes vli = vli >> 1. */
277 static void vli_rshift1(u64 *vli, unsigned int ndigits)
278 {
279 	u64 *end = vli;
280 	u64 carry = 0;
281 
282 	vli += ndigits;
283 
284 	while (vli-- > end) {
285 		u64 temp = *vli;
286 		*vli = (temp >> 1) | carry;
287 		carry = temp << 63;
288 	}
289 }
290 
291 /* Computes result = left + right, returning carry. Can modify in place. */
292 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
293 		   unsigned int ndigits)
294 {
295 	u64 carry = 0;
296 	int i;
297 
298 	for (i = 0; i < ndigits; i++) {
299 		u64 sum;
300 
301 		sum = left[i] + right[i] + carry;
302 		if (sum != left[i])
303 			carry = (sum < left[i]);
304 
305 		result[i] = sum;
306 	}
307 
308 	return carry;
309 }
310 
311 /* Computes result = left + right, returning carry. Can modify in place. */
312 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
313 		    unsigned int ndigits)
314 {
315 	u64 carry = right;
316 	int i;
317 
318 	for (i = 0; i < ndigits; i++) {
319 		u64 sum;
320 
321 		sum = left[i] + carry;
322 		if (sum != left[i])
323 			carry = (sum < left[i]);
324 		else
325 			carry = !!carry;
326 
327 		result[i] = sum;
328 	}
329 
330 	return carry;
331 }
332 
333 /* Computes result = left - right, returning borrow. Can modify in place. */
334 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
335 		   unsigned int ndigits)
336 {
337 	u64 borrow = 0;
338 	int i;
339 
340 	for (i = 0; i < ndigits; i++) {
341 		u64 diff;
342 
343 		diff = left[i] - right[i] - borrow;
344 		if (diff != left[i])
345 			borrow = (diff > left[i]);
346 
347 		result[i] = diff;
348 	}
349 
350 	return borrow;
351 }
352 EXPORT_SYMBOL(vli_sub);
353 
354 /* Computes result = left - right, returning borrow. Can modify in place. */
355 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
356 	     unsigned int ndigits)
357 {
358 	u64 borrow = right;
359 	int i;
360 
361 	for (i = 0; i < ndigits; i++) {
362 		u64 diff;
363 
364 		diff = left[i] - borrow;
365 		if (diff != left[i])
366 			borrow = (diff > left[i]);
367 
368 		result[i] = diff;
369 	}
370 
371 	return borrow;
372 }
373 
374 static uint128_t mul_64_64(u64 left, u64 right)
375 {
376 	uint128_t result;
377 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
378 	unsigned __int128 m = (unsigned __int128)left * right;
379 
380 	result.m_low  = m;
381 	result.m_high = m >> 64;
382 #else
383 	u64 a0 = left & 0xffffffffull;
384 	u64 a1 = left >> 32;
385 	u64 b0 = right & 0xffffffffull;
386 	u64 b1 = right >> 32;
387 	u64 m0 = a0 * b0;
388 	u64 m1 = a0 * b1;
389 	u64 m2 = a1 * b0;
390 	u64 m3 = a1 * b1;
391 
392 	m2 += (m0 >> 32);
393 	m2 += m1;
394 
395 	/* Overflow */
396 	if (m2 < m1)
397 		m3 += 0x100000000ull;
398 
399 	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
400 	result.m_high = m3 + (m2 >> 32);
401 #endif
402 	return result;
403 }
404 
405 static uint128_t add_128_128(uint128_t a, uint128_t b)
406 {
407 	uint128_t result;
408 
409 	result.m_low = a.m_low + b.m_low;
410 	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
411 
412 	return result;
413 }
414 
415 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
416 		     unsigned int ndigits)
417 {
418 	uint128_t r01 = { 0, 0 };
419 	u64 r2 = 0;
420 	unsigned int i, k;
421 
422 	/* Compute each digit of result in sequence, maintaining the
423 	 * carries.
424 	 */
425 	for (k = 0; k < ndigits * 2 - 1; k++) {
426 		unsigned int min;
427 
428 		if (k < ndigits)
429 			min = 0;
430 		else
431 			min = (k + 1) - ndigits;
432 
433 		for (i = min; i <= k && i < ndigits; i++) {
434 			uint128_t product;
435 
436 			product = mul_64_64(left[i], right[k - i]);
437 
438 			r01 = add_128_128(r01, product);
439 			r2 += (r01.m_high < product.m_high);
440 		}
441 
442 		result[k] = r01.m_low;
443 		r01.m_low = r01.m_high;
444 		r01.m_high = r2;
445 		r2 = 0;
446 	}
447 
448 	result[ndigits * 2 - 1] = r01.m_low;
449 }
450 
451 /* Compute product = left * right, for a small right value. */
452 static void vli_umult(u64 *result, const u64 *left, u32 right,
453 		      unsigned int ndigits)
454 {
455 	uint128_t r01 = { 0 };
456 	unsigned int k;
457 
458 	for (k = 0; k < ndigits; k++) {
459 		uint128_t product;
460 
461 		product = mul_64_64(left[k], right);
462 		r01 = add_128_128(r01, product);
463 		/* no carry */
464 		result[k] = r01.m_low;
465 		r01.m_low = r01.m_high;
466 		r01.m_high = 0;
467 	}
468 	result[k] = r01.m_low;
469 	for (++k; k < ndigits * 2; k++)
470 		result[k] = 0;
471 }
472 
473 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
474 {
475 	uint128_t r01 = { 0, 0 };
476 	u64 r2 = 0;
477 	int i, k;
478 
479 	for (k = 0; k < ndigits * 2 - 1; k++) {
480 		unsigned int min;
481 
482 		if (k < ndigits)
483 			min = 0;
484 		else
485 			min = (k + 1) - ndigits;
486 
487 		for (i = min; i <= k && i <= k - i; i++) {
488 			uint128_t product;
489 
490 			product = mul_64_64(left[i], left[k - i]);
491 
492 			if (i < k - i) {
493 				r2 += product.m_high >> 63;
494 				product.m_high = (product.m_high << 1) |
495 						 (product.m_low >> 63);
496 				product.m_low <<= 1;
497 			}
498 
499 			r01 = add_128_128(r01, product);
500 			r2 += (r01.m_high < product.m_high);
501 		}
502 
503 		result[k] = r01.m_low;
504 		r01.m_low = r01.m_high;
505 		r01.m_high = r2;
506 		r2 = 0;
507 	}
508 
509 	result[ndigits * 2 - 1] = r01.m_low;
510 }
511 
512 /* Computes result = (left + right) % mod.
513  * Assumes that left < mod and right < mod, result != mod.
514  */
515 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
516 			const u64 *mod, unsigned int ndigits)
517 {
518 	u64 carry;
519 
520 	carry = vli_add(result, left, right, ndigits);
521 
522 	/* result > mod (result = mod + remainder), so subtract mod to
523 	 * get remainder.
524 	 */
525 	if (carry || vli_cmp(result, mod, ndigits) >= 0)
526 		vli_sub(result, result, mod, ndigits);
527 }
528 
529 /* Computes result = (left - right) % mod.
530  * Assumes that left < mod and right < mod, result != mod.
531  */
532 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
533 			const u64 *mod, unsigned int ndigits)
534 {
535 	u64 borrow = vli_sub(result, left, right, ndigits);
536 
537 	/* In this case, p_result == -diff == (max int) - diff.
538 	 * Since -x % d == d - x, we can get the correct result from
539 	 * result + mod (with overflow).
540 	 */
541 	if (borrow)
542 		vli_add(result, result, mod, ndigits);
543 }
544 
545 /*
546  * Computes result = product % mod
547  * for special form moduli: p = 2^k-c, for small c (note the minus sign)
548  *
549  * References:
550  * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
551  * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
552  * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
553  */
554 static void vli_mmod_special(u64 *result, const u64 *product,
555 			      const u64 *mod, unsigned int ndigits)
556 {
557 	u64 c = -mod[0];
558 	u64 t[ECC_MAX_DIGITS * 2];
559 	u64 r[ECC_MAX_DIGITS * 2];
560 
561 	vli_set(r, product, ndigits * 2);
562 	while (!vli_is_zero(r + ndigits, ndigits)) {
563 		vli_umult(t, r + ndigits, c, ndigits);
564 		vli_clear(r + ndigits, ndigits);
565 		vli_add(r, r, t, ndigits * 2);
566 	}
567 	vli_set(t, mod, ndigits);
568 	vli_clear(t + ndigits, ndigits);
569 	while (vli_cmp(r, t, ndigits * 2) >= 0)
570 		vli_sub(r, r, t, ndigits * 2);
571 	vli_set(result, r, ndigits);
572 }
573 
574 /*
575  * Computes result = product % mod
576  * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
577  * where k-1 does not fit into qword boundary by -1 bit (such as 255).
578 
579  * References (loosely based on):
580  * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
581  * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
582  * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
583  *
584  * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
585  * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
586  * Algorithm 10.25 Fast reduction for special form moduli
587  */
588 static void vli_mmod_special2(u64 *result, const u64 *product,
589 			       const u64 *mod, unsigned int ndigits)
590 {
591 	u64 c2 = mod[0] * 2;
592 	u64 q[ECC_MAX_DIGITS];
593 	u64 r[ECC_MAX_DIGITS * 2];
594 	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
595 	int carry; /* last bit that doesn't fit into q */
596 	int i;
597 
598 	vli_set(m, mod, ndigits);
599 	vli_clear(m + ndigits, ndigits);
600 
601 	vli_set(r, product, ndigits);
602 	/* q and carry are top bits */
603 	vli_set(q, product + ndigits, ndigits);
604 	vli_clear(r + ndigits, ndigits);
605 	carry = vli_is_negative(r, ndigits);
606 	if (carry)
607 		r[ndigits - 1] &= (1ull << 63) - 1;
608 	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
609 		u64 qc[ECC_MAX_DIGITS * 2];
610 
611 		vli_umult(qc, q, c2, ndigits);
612 		if (carry)
613 			vli_uadd(qc, qc, mod[0], ndigits * 2);
614 		vli_set(q, qc + ndigits, ndigits);
615 		vli_clear(qc + ndigits, ndigits);
616 		carry = vli_is_negative(qc, ndigits);
617 		if (carry)
618 			qc[ndigits - 1] &= (1ull << 63) - 1;
619 		if (i & 1)
620 			vli_sub(r, r, qc, ndigits * 2);
621 		else
622 			vli_add(r, r, qc, ndigits * 2);
623 	}
624 	while (vli_is_negative(r, ndigits * 2))
625 		vli_add(r, r, m, ndigits * 2);
626 	while (vli_cmp(r, m, ndigits * 2) >= 0)
627 		vli_sub(r, r, m, ndigits * 2);
628 
629 	vli_set(result, r, ndigits);
630 }
631 
632 /*
633  * Computes result = product % mod, where product is 2N words long.
634  * Reference: Ken MacKay's micro-ecc.
635  * Currently only designed to work for curve_p or curve_n.
636  */
637 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
638 			  unsigned int ndigits)
639 {
640 	u64 mod_m[2 * ECC_MAX_DIGITS];
641 	u64 tmp[2 * ECC_MAX_DIGITS];
642 	u64 *v[2] = { tmp, product };
643 	u64 carry = 0;
644 	unsigned int i;
645 	/* Shift mod so its highest set bit is at the maximum position. */
646 	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
647 	int word_shift = shift / 64;
648 	int bit_shift = shift % 64;
649 
650 	vli_clear(mod_m, word_shift);
651 	if (bit_shift > 0) {
652 		for (i = 0; i < ndigits; ++i) {
653 			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
654 			carry = mod[i] >> (64 - bit_shift);
655 		}
656 	} else
657 		vli_set(mod_m + word_shift, mod, ndigits);
658 
659 	for (i = 1; shift >= 0; --shift) {
660 		u64 borrow = 0;
661 		unsigned int j;
662 
663 		for (j = 0; j < ndigits * 2; ++j) {
664 			u64 diff = v[i][j] - mod_m[j] - borrow;
665 
666 			if (diff != v[i][j])
667 				borrow = (diff > v[i][j]);
668 			v[1 - i][j] = diff;
669 		}
670 		i = !(i ^ borrow); /* Swap the index if there was no borrow */
671 		vli_rshift1(mod_m, ndigits);
672 		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
673 		vli_rshift1(mod_m + ndigits, ndigits);
674 	}
675 	vli_set(result, v[i], ndigits);
676 }
677 
678 /* Computes result = product % mod using Barrett's reduction with precomputed
679  * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
680  * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
681  * boundary.
682  *
683  * Reference:
684  * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
685  * 2.4.1 Barrett's algorithm. Algorithm 2.5.
686  */
687 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
688 			     unsigned int ndigits)
689 {
690 	u64 q[ECC_MAX_DIGITS * 2];
691 	u64 r[ECC_MAX_DIGITS * 2];
692 	const u64 *mu = mod + ndigits;
693 
694 	vli_mult(q, product + ndigits, mu, ndigits);
695 	if (mu[ndigits])
696 		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
697 	vli_mult(r, mod, q + ndigits, ndigits);
698 	vli_sub(r, product, r, ndigits * 2);
699 	while (!vli_is_zero(r + ndigits, ndigits) ||
700 	       vli_cmp(r, mod, ndigits) != -1) {
701 		u64 carry;
702 
703 		carry = vli_sub(r, r, mod, ndigits);
704 		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
705 	}
706 	vli_set(result, r, ndigits);
707 }
708 
709 /* Computes p_result = p_product % curve_p.
710  * See algorithm 5 and 6 from
711  * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
712  */
713 static void vli_mmod_fast_192(u64 *result, const u64 *product,
714 			      const u64 *curve_prime, u64 *tmp)
715 {
716 	const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS;
717 	int carry;
718 
719 	vli_set(result, product, ndigits);
720 
721 	vli_set(tmp, &product[3], ndigits);
722 	carry = vli_add(result, result, tmp, ndigits);
723 
724 	tmp[0] = 0;
725 	tmp[1] = product[3];
726 	tmp[2] = product[4];
727 	carry += vli_add(result, result, tmp, ndigits);
728 
729 	tmp[0] = tmp[1] = product[5];
730 	tmp[2] = 0;
731 	carry += vli_add(result, result, tmp, ndigits);
732 
733 	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
734 		carry -= vli_sub(result, result, curve_prime, ndigits);
735 }
736 
737 /* Computes result = product % curve_prime
738  * from http://www.nsa.gov/ia/_files/nist-routines.pdf
739  */
740 static void vli_mmod_fast_256(u64 *result, const u64 *product,
741 			      const u64 *curve_prime, u64 *tmp)
742 {
743 	int carry;
744 	const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS;
745 
746 	/* t */
747 	vli_set(result, product, ndigits);
748 
749 	/* s1 */
750 	tmp[0] = 0;
751 	tmp[1] = product[5] & 0xffffffff00000000ull;
752 	tmp[2] = product[6];
753 	tmp[3] = product[7];
754 	carry = vli_lshift(tmp, tmp, 1, ndigits);
755 	carry += vli_add(result, result, tmp, ndigits);
756 
757 	/* s2 */
758 	tmp[1] = product[6] << 32;
759 	tmp[2] = (product[6] >> 32) | (product[7] << 32);
760 	tmp[3] = product[7] >> 32;
761 	carry += vli_lshift(tmp, tmp, 1, ndigits);
762 	carry += vli_add(result, result, tmp, ndigits);
763 
764 	/* s3 */
765 	tmp[0] = product[4];
766 	tmp[1] = product[5] & 0xffffffff;
767 	tmp[2] = 0;
768 	tmp[3] = product[7];
769 	carry += vli_add(result, result, tmp, ndigits);
770 
771 	/* s4 */
772 	tmp[0] = (product[4] >> 32) | (product[5] << 32);
773 	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
774 	tmp[2] = product[7];
775 	tmp[3] = (product[6] >> 32) | (product[4] << 32);
776 	carry += vli_add(result, result, tmp, ndigits);
777 
778 	/* d1 */
779 	tmp[0] = (product[5] >> 32) | (product[6] << 32);
780 	tmp[1] = (product[6] >> 32);
781 	tmp[2] = 0;
782 	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
783 	carry -= vli_sub(result, result, tmp, ndigits);
784 
785 	/* d2 */
786 	tmp[0] = product[6];
787 	tmp[1] = product[7];
788 	tmp[2] = 0;
789 	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
790 	carry -= vli_sub(result, result, tmp, ndigits);
791 
792 	/* d3 */
793 	tmp[0] = (product[6] >> 32) | (product[7] << 32);
794 	tmp[1] = (product[7] >> 32) | (product[4] << 32);
795 	tmp[2] = (product[4] >> 32) | (product[5] << 32);
796 	tmp[3] = (product[6] << 32);
797 	carry -= vli_sub(result, result, tmp, ndigits);
798 
799 	/* d4 */
800 	tmp[0] = product[7];
801 	tmp[1] = product[4] & 0xffffffff00000000ull;
802 	tmp[2] = product[5];
803 	tmp[3] = product[6] & 0xffffffff00000000ull;
804 	carry -= vli_sub(result, result, tmp, ndigits);
805 
806 	if (carry < 0) {
807 		do {
808 			carry += vli_add(result, result, curve_prime, ndigits);
809 		} while (carry < 0);
810 	} else {
811 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
812 			carry -= vli_sub(result, result, curve_prime, ndigits);
813 	}
814 }
815 
816 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
817 #define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
818 #define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
819 
820 /* Computes result = product % curve_prime
821  * from "Mathematical routines for the NIST prime elliptic curves"
822  */
823 static void vli_mmod_fast_384(u64 *result, const u64 *product,
824 				const u64 *curve_prime, u64 *tmp)
825 {
826 	int carry;
827 	const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS;
828 
829 	/* t */
830 	vli_set(result, product, ndigits);
831 
832 	/* s1 */
833 	tmp[0] = 0;		// 0 || 0
834 	tmp[1] = 0;		// 0 || 0
835 	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
836 	tmp[3] = product[11]>>32;	// 0 ||a23
837 	tmp[4] = 0;		// 0 || 0
838 	tmp[5] = 0;		// 0 || 0
839 	carry = vli_lshift(tmp, tmp, 1, ndigits);
840 	carry += vli_add(result, result, tmp, ndigits);
841 
842 	/* s2 */
843 	tmp[0] = product[6];	//a13||a12
844 	tmp[1] = product[7];	//a15||a14
845 	tmp[2] = product[8];	//a17||a16
846 	tmp[3] = product[9];	//a19||a18
847 	tmp[4] = product[10];	//a21||a20
848 	tmp[5] = product[11];	//a23||a22
849 	carry += vli_add(result, result, tmp, ndigits);
850 
851 	/* s3 */
852 	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
853 	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
854 	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
855 	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
856 	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
857 	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
858 	carry += vli_add(result, result, tmp, ndigits);
859 
860 	/* s4 */
861 	tmp[0] = AND64H(product[11]);	//a23|| 0
862 	tmp[1] = (product[10]<<32);	//a20|| 0
863 	tmp[2] = product[6];	//a13||a12
864 	tmp[3] = product[7];	//a15||a14
865 	tmp[4] = product[8];	//a17||a16
866 	tmp[5] = product[9];	//a19||a18
867 	carry += vli_add(result, result, tmp, ndigits);
868 
869 	/* s5 */
870 	tmp[0] = 0;		//  0|| 0
871 	tmp[1] = 0;		//  0|| 0
872 	tmp[2] = product[10];	//a21||a20
873 	tmp[3] = product[11];	//a23||a22
874 	tmp[4] = 0;		//  0|| 0
875 	tmp[5] = 0;		//  0|| 0
876 	carry += vli_add(result, result, tmp, ndigits);
877 
878 	/* s6 */
879 	tmp[0] = AND64L(product[10]);	// 0 ||a20
880 	tmp[1] = AND64H(product[10]);	//a21|| 0
881 	tmp[2] = product[11];	//a23||a22
882 	tmp[3] = 0;		// 0 || 0
883 	tmp[4] = 0;		// 0 || 0
884 	tmp[5] = 0;		// 0 || 0
885 	carry += vli_add(result, result, tmp, ndigits);
886 
887 	/* d1 */
888 	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
889 	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
890 	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
891 	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
892 	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
893 	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
894 	carry -= vli_sub(result, result, tmp, ndigits);
895 
896 	/* d2 */
897 	tmp[0] = (product[10]<<32);	//a20|| 0
898 	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
899 	tmp[2] = (product[11]>>32);	// 0 ||a23
900 	tmp[3] = 0;		// 0 || 0
901 	tmp[4] = 0;		// 0 || 0
902 	tmp[5] = 0;		// 0 || 0
903 	carry -= vli_sub(result, result, tmp, ndigits);
904 
905 	/* d3 */
906 	tmp[0] = 0;		// 0 || 0
907 	tmp[1] = AND64H(product[11]);	//a23|| 0
908 	tmp[2] = product[11]>>32;	// 0 ||a23
909 	tmp[3] = 0;		// 0 || 0
910 	tmp[4] = 0;		// 0 || 0
911 	tmp[5] = 0;		// 0 || 0
912 	carry -= vli_sub(result, result, tmp, ndigits);
913 
914 	if (carry < 0) {
915 		do {
916 			carry += vli_add(result, result, curve_prime, ndigits);
917 		} while (carry < 0);
918 	} else {
919 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
920 			carry -= vli_sub(result, result, curve_prime, ndigits);
921 	}
922 
923 }
924 
925 #undef SL32OR32
926 #undef AND64H
927 #undef AND64L
928 
929 /*
930  * Computes result = product % curve_prime
931  * from "Recommendations for Discrete Logarithm-Based Cryptography:
932  *       Elliptic Curve Domain Parameters" section G.1.4
933  */
934 static void vli_mmod_fast_521(u64 *result, const u64 *product,
935 			      const u64 *curve_prime, u64 *tmp)
936 {
937 	const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS;
938 	size_t i;
939 
940 	/* Initialize result with lowest 521 bits from product */
941 	vli_set(result, product, ndigits);
942 	result[8] &= 0x1ff;
943 
944 	for (i = 0; i < ndigits; i++)
945 		tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55);
946 	tmp[8] &= 0x1ff;
947 
948 	vli_mod_add(result, result, tmp, curve_prime, ndigits);
949 }
950 
951 /* Computes result = product % curve_prime for different curve_primes.
952  *
953  * Note that curve_primes are distinguished just by heuristic check and
954  * not by complete conformance check.
955  */
956 static bool vli_mmod_fast(u64 *result, u64 *product,
957 			  const struct ecc_curve *curve)
958 {
959 	u64 tmp[2 * ECC_MAX_DIGITS];
960 	const u64 *curve_prime = curve->p;
961 	const unsigned int ndigits = curve->g.ndigits;
962 
963 	/* All NIST curves have name prefix 'nist_' */
964 	if (strncmp(curve->name, "nist_", 5) != 0) {
965 		/* Try to handle Pseudo-Marsenne primes. */
966 		if (curve_prime[ndigits - 1] == -1ull) {
967 			vli_mmod_special(result, product, curve_prime,
968 					 ndigits);
969 			return true;
970 		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
971 			   curve_prime[ndigits - 2] == 0) {
972 			vli_mmod_special2(result, product, curve_prime,
973 					  ndigits);
974 			return true;
975 		}
976 		vli_mmod_barrett(result, product, curve_prime, ndigits);
977 		return true;
978 	}
979 
980 	switch (ndigits) {
981 	case ECC_CURVE_NIST_P192_DIGITS:
982 		vli_mmod_fast_192(result, product, curve_prime, tmp);
983 		break;
984 	case ECC_CURVE_NIST_P256_DIGITS:
985 		vli_mmod_fast_256(result, product, curve_prime, tmp);
986 		break;
987 	case ECC_CURVE_NIST_P384_DIGITS:
988 		vli_mmod_fast_384(result, product, curve_prime, tmp);
989 		break;
990 	case ECC_CURVE_NIST_P521_DIGITS:
991 		vli_mmod_fast_521(result, product, curve_prime, tmp);
992 		break;
993 	default:
994 		pr_err_ratelimited("ecc: unsupported digits size!\n");
995 		return false;
996 	}
997 
998 	return true;
999 }
1000 
1001 /* Computes result = (left * right) % mod.
1002  * Assumes that mod is big enough curve order.
1003  */
1004 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
1005 		       const u64 *mod, unsigned int ndigits)
1006 {
1007 	u64 product[ECC_MAX_DIGITS * 2];
1008 
1009 	vli_mult(product, left, right, ndigits);
1010 	vli_mmod_slow(result, product, mod, ndigits);
1011 }
1012 EXPORT_SYMBOL(vli_mod_mult_slow);
1013 
1014 /* Computes result = (left * right) % curve_prime. */
1015 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
1016 			      const struct ecc_curve *curve)
1017 {
1018 	u64 product[2 * ECC_MAX_DIGITS];
1019 
1020 	vli_mult(product, left, right, curve->g.ndigits);
1021 	vli_mmod_fast(result, product, curve);
1022 }
1023 
1024 /* Computes result = left^2 % curve_prime. */
1025 static void vli_mod_square_fast(u64 *result, const u64 *left,
1026 				const struct ecc_curve *curve)
1027 {
1028 	u64 product[2 * ECC_MAX_DIGITS];
1029 
1030 	vli_square(product, left, curve->g.ndigits);
1031 	vli_mmod_fast(result, product, curve);
1032 }
1033 
1034 #define EVEN(vli) (!(vli[0] & 1))
1035 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
1036  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
1037  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
1038  */
1039 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
1040 			unsigned int ndigits)
1041 {
1042 	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
1043 	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
1044 	u64 carry;
1045 	int cmp_result;
1046 
1047 	if (vli_is_zero(input, ndigits)) {
1048 		vli_clear(result, ndigits);
1049 		return;
1050 	}
1051 
1052 	vli_set(a, input, ndigits);
1053 	vli_set(b, mod, ndigits);
1054 	vli_clear(u, ndigits);
1055 	u[0] = 1;
1056 	vli_clear(v, ndigits);
1057 
1058 	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1059 		carry = 0;
1060 
1061 		if (EVEN(a)) {
1062 			vli_rshift1(a, ndigits);
1063 
1064 			if (!EVEN(u))
1065 				carry = vli_add(u, u, mod, ndigits);
1066 
1067 			vli_rshift1(u, ndigits);
1068 			if (carry)
1069 				u[ndigits - 1] |= 0x8000000000000000ull;
1070 		} else if (EVEN(b)) {
1071 			vli_rshift1(b, ndigits);
1072 
1073 			if (!EVEN(v))
1074 				carry = vli_add(v, v, mod, ndigits);
1075 
1076 			vli_rshift1(v, ndigits);
1077 			if (carry)
1078 				v[ndigits - 1] |= 0x8000000000000000ull;
1079 		} else if (cmp_result > 0) {
1080 			vli_sub(a, a, b, ndigits);
1081 			vli_rshift1(a, ndigits);
1082 
1083 			if (vli_cmp(u, v, ndigits) < 0)
1084 				vli_add(u, u, mod, ndigits);
1085 
1086 			vli_sub(u, u, v, ndigits);
1087 			if (!EVEN(u))
1088 				carry = vli_add(u, u, mod, ndigits);
1089 
1090 			vli_rshift1(u, ndigits);
1091 			if (carry)
1092 				u[ndigits - 1] |= 0x8000000000000000ull;
1093 		} else {
1094 			vli_sub(b, b, a, ndigits);
1095 			vli_rshift1(b, ndigits);
1096 
1097 			if (vli_cmp(v, u, ndigits) < 0)
1098 				vli_add(v, v, mod, ndigits);
1099 
1100 			vli_sub(v, v, u, ndigits);
1101 			if (!EVEN(v))
1102 				carry = vli_add(v, v, mod, ndigits);
1103 
1104 			vli_rshift1(v, ndigits);
1105 			if (carry)
1106 				v[ndigits - 1] |= 0x8000000000000000ull;
1107 		}
1108 	}
1109 
1110 	vli_set(result, u, ndigits);
1111 }
1112 EXPORT_SYMBOL(vli_mod_inv);
1113 
1114 /* ------ Point operations ------ */
1115 
1116 /* Returns true if p_point is the point at infinity, false otherwise. */
1117 bool ecc_point_is_zero(const struct ecc_point *point)
1118 {
1119 	return (vli_is_zero(point->x, point->ndigits) &&
1120 		vli_is_zero(point->y, point->ndigits));
1121 }
1122 EXPORT_SYMBOL(ecc_point_is_zero);
1123 
1124 /* Point multiplication algorithm using Montgomery's ladder with co-Z
1125  * coordinates. From https://eprint.iacr.org/2011/338.pdf
1126  */
1127 
1128 /* Double in place */
1129 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1130 					const struct ecc_curve *curve)
1131 {
1132 	/* t1 = x, t2 = y, t3 = z */
1133 	u64 t4[ECC_MAX_DIGITS];
1134 	u64 t5[ECC_MAX_DIGITS];
1135 	const u64 *curve_prime = curve->p;
1136 	const unsigned int ndigits = curve->g.ndigits;
1137 
1138 	if (vli_is_zero(z1, ndigits))
1139 		return;
1140 
1141 	/* t4 = y1^2 */
1142 	vli_mod_square_fast(t4, y1, curve);
1143 	/* t5 = x1*y1^2 = A */
1144 	vli_mod_mult_fast(t5, x1, t4, curve);
1145 	/* t4 = y1^4 */
1146 	vli_mod_square_fast(t4, t4, curve);
1147 	/* t2 = y1*z1 = z3 */
1148 	vli_mod_mult_fast(y1, y1, z1, curve);
1149 	/* t3 = z1^2 */
1150 	vli_mod_square_fast(z1, z1, curve);
1151 
1152 	/* t1 = x1 + z1^2 */
1153 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1154 	/* t3 = 2*z1^2 */
1155 	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1156 	/* t3 = x1 - z1^2 */
1157 	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1158 	/* t1 = x1^2 - z1^4 */
1159 	vli_mod_mult_fast(x1, x1, z1, curve);
1160 
1161 	/* t3 = 2*(x1^2 - z1^4) */
1162 	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1163 	/* t1 = 3*(x1^2 - z1^4) */
1164 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1165 	if (vli_test_bit(x1, 0)) {
1166 		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1167 
1168 		vli_rshift1(x1, ndigits);
1169 		x1[ndigits - 1] |= carry << 63;
1170 	} else {
1171 		vli_rshift1(x1, ndigits);
1172 	}
1173 	/* t1 = 3/2*(x1^2 - z1^4) = B */
1174 
1175 	/* t3 = B^2 */
1176 	vli_mod_square_fast(z1, x1, curve);
1177 	/* t3 = B^2 - A */
1178 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1179 	/* t3 = B^2 - 2A = x3 */
1180 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1181 	/* t5 = A - x3 */
1182 	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1183 	/* t1 = B * (A - x3) */
1184 	vli_mod_mult_fast(x1, x1, t5, curve);
1185 	/* t4 = B * (A - x3) - y1^4 = y3 */
1186 	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1187 
1188 	vli_set(x1, z1, ndigits);
1189 	vli_set(z1, y1, ndigits);
1190 	vli_set(y1, t4, ndigits);
1191 }
1192 
1193 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
1194 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1195 {
1196 	u64 t1[ECC_MAX_DIGITS];
1197 
1198 	vli_mod_square_fast(t1, z, curve);		/* z^2 */
1199 	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
1200 	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
1201 	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
1202 }
1203 
1204 /* P = (x1, y1) => 2P, (x2, y2) => P' */
1205 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1206 				u64 *p_initial_z, const struct ecc_curve *curve)
1207 {
1208 	u64 z[ECC_MAX_DIGITS];
1209 	const unsigned int ndigits = curve->g.ndigits;
1210 
1211 	vli_set(x2, x1, ndigits);
1212 	vli_set(y2, y1, ndigits);
1213 
1214 	vli_clear(z, ndigits);
1215 	z[0] = 1;
1216 
1217 	if (p_initial_z)
1218 		vli_set(z, p_initial_z, ndigits);
1219 
1220 	apply_z(x1, y1, z, curve);
1221 
1222 	ecc_point_double_jacobian(x1, y1, z, curve);
1223 
1224 	apply_z(x2, y2, z, curve);
1225 }
1226 
1227 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1228  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1229  * or P => P', Q => P + Q
1230  */
1231 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1232 			const struct ecc_curve *curve)
1233 {
1234 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1235 	u64 t5[ECC_MAX_DIGITS];
1236 	const u64 *curve_prime = curve->p;
1237 	const unsigned int ndigits = curve->g.ndigits;
1238 
1239 	/* t5 = x2 - x1 */
1240 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1241 	/* t5 = (x2 - x1)^2 = A */
1242 	vli_mod_square_fast(t5, t5, curve);
1243 	/* t1 = x1*A = B */
1244 	vli_mod_mult_fast(x1, x1, t5, curve);
1245 	/* t3 = x2*A = C */
1246 	vli_mod_mult_fast(x2, x2, t5, curve);
1247 	/* t4 = y2 - y1 */
1248 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1249 	/* t5 = (y2 - y1)^2 = D */
1250 	vli_mod_square_fast(t5, y2, curve);
1251 
1252 	/* t5 = D - B */
1253 	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1254 	/* t5 = D - B - C = x3 */
1255 	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1256 	/* t3 = C - B */
1257 	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1258 	/* t2 = y1*(C - B) */
1259 	vli_mod_mult_fast(y1, y1, x2, curve);
1260 	/* t3 = B - x3 */
1261 	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1262 	/* t4 = (y2 - y1)*(B - x3) */
1263 	vli_mod_mult_fast(y2, y2, x2, curve);
1264 	/* t4 = y3 */
1265 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1266 
1267 	vli_set(x2, t5, ndigits);
1268 }
1269 
1270 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1271  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1272  * or P => P - Q, Q => P + Q
1273  */
1274 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1275 			const struct ecc_curve *curve)
1276 {
1277 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1278 	u64 t5[ECC_MAX_DIGITS];
1279 	u64 t6[ECC_MAX_DIGITS];
1280 	u64 t7[ECC_MAX_DIGITS];
1281 	const u64 *curve_prime = curve->p;
1282 	const unsigned int ndigits = curve->g.ndigits;
1283 
1284 	/* t5 = x2 - x1 */
1285 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1286 	/* t5 = (x2 - x1)^2 = A */
1287 	vli_mod_square_fast(t5, t5, curve);
1288 	/* t1 = x1*A = B */
1289 	vli_mod_mult_fast(x1, x1, t5, curve);
1290 	/* t3 = x2*A = C */
1291 	vli_mod_mult_fast(x2, x2, t5, curve);
1292 	/* t4 = y2 + y1 */
1293 	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1294 	/* t4 = y2 - y1 */
1295 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1296 
1297 	/* t6 = C - B */
1298 	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1299 	/* t2 = y1 * (C - B) */
1300 	vli_mod_mult_fast(y1, y1, t6, curve);
1301 	/* t6 = B + C */
1302 	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1303 	/* t3 = (y2 - y1)^2 */
1304 	vli_mod_square_fast(x2, y2, curve);
1305 	/* t3 = x3 */
1306 	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1307 
1308 	/* t7 = B - x3 */
1309 	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1310 	/* t4 = (y2 - y1)*(B - x3) */
1311 	vli_mod_mult_fast(y2, y2, t7, curve);
1312 	/* t4 = y3 */
1313 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1314 
1315 	/* t7 = (y2 + y1)^2 = F */
1316 	vli_mod_square_fast(t7, t5, curve);
1317 	/* t7 = x3' */
1318 	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1319 	/* t6 = x3' - B */
1320 	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1321 	/* t6 = (y2 + y1)*(x3' - B) */
1322 	vli_mod_mult_fast(t6, t6, t5, curve);
1323 	/* t2 = y3' */
1324 	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1325 
1326 	vli_set(x1, t7, ndigits);
1327 }
1328 
1329 static void ecc_point_mult(struct ecc_point *result,
1330 			   const struct ecc_point *point, const u64 *scalar,
1331 			   u64 *initial_z, const struct ecc_curve *curve,
1332 			   unsigned int ndigits)
1333 {
1334 	/* R0 and R1 */
1335 	u64 rx[2][ECC_MAX_DIGITS];
1336 	u64 ry[2][ECC_MAX_DIGITS];
1337 	u64 z[ECC_MAX_DIGITS];
1338 	u64 sk[2][ECC_MAX_DIGITS];
1339 	u64 *curve_prime = curve->p;
1340 	int i, nb;
1341 	int num_bits;
1342 	int carry;
1343 
1344 	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1345 	vli_add(sk[1], sk[0], curve->n, ndigits);
1346 	scalar = sk[!carry];
1347 	if (curve->nbits == 521)	/* NIST P521 */
1348 		num_bits = curve->nbits + 2;
1349 	else
1350 		num_bits = sizeof(u64) * ndigits * 8 + 1;
1351 
1352 	vli_set(rx[1], point->x, ndigits);
1353 	vli_set(ry[1], point->y, ndigits);
1354 
1355 	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1356 
1357 	for (i = num_bits - 2; i > 0; i--) {
1358 		nb = !vli_test_bit(scalar, i);
1359 		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1360 		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1361 	}
1362 
1363 	nb = !vli_test_bit(scalar, 0);
1364 	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1365 
1366 	/* Find final 1/Z value. */
1367 	/* X1 - X0 */
1368 	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1369 	/* Yb * (X1 - X0) */
1370 	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1371 	/* xP * Yb * (X1 - X0) */
1372 	vli_mod_mult_fast(z, z, point->x, curve);
1373 
1374 	/* 1 / (xP * Yb * (X1 - X0)) */
1375 	vli_mod_inv(z, z, curve_prime, point->ndigits);
1376 
1377 	/* yP / (xP * Yb * (X1 - X0)) */
1378 	vli_mod_mult_fast(z, z, point->y, curve);
1379 	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1380 	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1381 	/* End 1/Z calculation */
1382 
1383 	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1384 
1385 	apply_z(rx[0], ry[0], z, curve);
1386 
1387 	vli_set(result->x, rx[0], ndigits);
1388 	vli_set(result->y, ry[0], ndigits);
1389 }
1390 
1391 /* Computes R = P + Q mod p */
1392 static void ecc_point_add(const struct ecc_point *result,
1393 		   const struct ecc_point *p, const struct ecc_point *q,
1394 		   const struct ecc_curve *curve)
1395 {
1396 	u64 z[ECC_MAX_DIGITS];
1397 	u64 px[ECC_MAX_DIGITS];
1398 	u64 py[ECC_MAX_DIGITS];
1399 	unsigned int ndigits = curve->g.ndigits;
1400 
1401 	vli_set(result->x, q->x, ndigits);
1402 	vli_set(result->y, q->y, ndigits);
1403 	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1404 	vli_set(px, p->x, ndigits);
1405 	vli_set(py, p->y, ndigits);
1406 	xycz_add(px, py, result->x, result->y, curve);
1407 	vli_mod_inv(z, z, curve->p, ndigits);
1408 	apply_z(result->x, result->y, z, curve);
1409 }
1410 
1411 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1412  * Based on: Kenneth MacKay's micro-ecc (2014).
1413  */
1414 void ecc_point_mult_shamir(const struct ecc_point *result,
1415 			   const u64 *u1, const struct ecc_point *p,
1416 			   const u64 *u2, const struct ecc_point *q,
1417 			   const struct ecc_curve *curve)
1418 {
1419 	u64 z[ECC_MAX_DIGITS];
1420 	u64 sump[2][ECC_MAX_DIGITS];
1421 	u64 *rx = result->x;
1422 	u64 *ry = result->y;
1423 	unsigned int ndigits = curve->g.ndigits;
1424 	unsigned int num_bits;
1425 	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1426 	const struct ecc_point *points[4];
1427 	const struct ecc_point *point;
1428 	unsigned int idx;
1429 	int i;
1430 
1431 	ecc_point_add(&sum, p, q, curve);
1432 	points[0] = NULL;
1433 	points[1] = p;
1434 	points[2] = q;
1435 	points[3] = &sum;
1436 
1437 	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1438 	i = num_bits - 1;
1439 	idx = !!vli_test_bit(u1, i);
1440 	idx |= (!!vli_test_bit(u2, i)) << 1;
1441 	point = points[idx];
1442 
1443 	vli_set(rx, point->x, ndigits);
1444 	vli_set(ry, point->y, ndigits);
1445 	vli_clear(z + 1, ndigits - 1);
1446 	z[0] = 1;
1447 
1448 	for (--i; i >= 0; i--) {
1449 		ecc_point_double_jacobian(rx, ry, z, curve);
1450 		idx = !!vli_test_bit(u1, i);
1451 		idx |= (!!vli_test_bit(u2, i)) << 1;
1452 		point = points[idx];
1453 		if (point) {
1454 			u64 tx[ECC_MAX_DIGITS];
1455 			u64 ty[ECC_MAX_DIGITS];
1456 			u64 tz[ECC_MAX_DIGITS];
1457 
1458 			vli_set(tx, point->x, ndigits);
1459 			vli_set(ty, point->y, ndigits);
1460 			apply_z(tx, ty, z, curve);
1461 			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1462 			xycz_add(tx, ty, rx, ry, curve);
1463 			vli_mod_mult_fast(z, z, tz, curve);
1464 		}
1465 	}
1466 	vli_mod_inv(z, z, curve->p, ndigits);
1467 	apply_z(rx, ry, z, curve);
1468 }
1469 EXPORT_SYMBOL(ecc_point_mult_shamir);
1470 
1471 /*
1472  * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5.
1473  * Whereas A.4.2 results in an integer in the interval [1, n-1], this function
1474  * ensures that the integer is in the range of [2, n-3]. We are slightly
1475  * stricter because of the currently used scalar multiplication algorithm.
1476  */
1477 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1478 			      const u64 *private_key, unsigned int ndigits)
1479 {
1480 	u64 one[ECC_MAX_DIGITS] = { 1, };
1481 	u64 res[ECC_MAX_DIGITS];
1482 
1483 	if (!private_key)
1484 		return -EINVAL;
1485 
1486 	if (curve->g.ndigits != ndigits)
1487 		return -EINVAL;
1488 
1489 	/* Make sure the private key is in the range [2, n-3]. */
1490 	if (vli_cmp(one, private_key, ndigits) != -1)
1491 		return -EINVAL;
1492 	vli_sub(res, curve->n, one, ndigits);
1493 	vli_sub(res, res, one, ndigits);
1494 	if (vli_cmp(res, private_key, ndigits) != 1)
1495 		return -EINVAL;
1496 
1497 	return 0;
1498 }
1499 
1500 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1501 		     const u64 *private_key, unsigned int private_key_len)
1502 {
1503 	int nbytes;
1504 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1505 
1506 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1507 
1508 	if (private_key_len != nbytes)
1509 		return -EINVAL;
1510 
1511 	return __ecc_is_key_valid(curve, private_key, ndigits);
1512 }
1513 EXPORT_SYMBOL(ecc_is_key_valid);
1514 
1515 /*
1516  * ECC private keys are generated using the method of rejection sampling,
1517  * equivalent to that described in FIPS 186-5, Appendix A.2.2.
1518  *
1519  * This method generates a private key uniformly distributed in the range
1520  * [2, n-3].
1521  */
1522 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits,
1523 		    u64 *private_key)
1524 {
1525 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1526 	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1527 	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1528 	int err;
1529 
1530 	/*
1531 	 * Step 1 & 2: check that N is included in Table 1 of FIPS 186-5,
1532 	 * section 6.1.1.
1533 	 */
1534 	if (nbits < 224)
1535 		return -EINVAL;
1536 
1537 	/*
1538 	 * FIPS 186-5 recommends that the private key should be obtained from a
1539 	 * RBG with a security strength equal to or greater than the security
1540 	 * strength associated with N.
1541 	 *
1542 	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1543 	 * ECC is 256 (N >= 512).
1544 	 *
1545 	 * This condition is met by the default RNG because it selects a favored
1546 	 * DRBG with a security strength of 256.
1547 	 */
1548 	if (crypto_get_default_rng())
1549 		return -EFAULT;
1550 
1551 	/* Step 3: obtain N returned_bits from the DRBG. */
1552 	err = crypto_rng_get_bytes(crypto_default_rng,
1553 				   (u8 *)private_key, nbytes);
1554 	crypto_put_default_rng();
1555 	if (err)
1556 		return err;
1557 
1558 	/* Step 4: make sure the private key is in the valid range. */
1559 	if (__ecc_is_key_valid(curve, private_key, ndigits))
1560 		return -EINVAL;
1561 
1562 	return 0;
1563 }
1564 EXPORT_SYMBOL(ecc_gen_privkey);
1565 
1566 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1567 		     const u64 *private_key, u64 *public_key)
1568 {
1569 	int ret = 0;
1570 	struct ecc_point *pk;
1571 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1572 
1573 	if (!private_key) {
1574 		ret = -EINVAL;
1575 		goto out;
1576 	}
1577 
1578 	pk = ecc_alloc_point(ndigits);
1579 	if (!pk) {
1580 		ret = -ENOMEM;
1581 		goto out;
1582 	}
1583 
1584 	ecc_point_mult(pk, &curve->g, private_key, NULL, curve, ndigits);
1585 
1586 	/* SP800-56A rev 3 5.6.2.1.3 key check */
1587 	if (ecc_is_pubkey_valid_full(curve, pk)) {
1588 		ret = -EAGAIN;
1589 		goto err_free_point;
1590 	}
1591 
1592 	ecc_swap_digits(pk->x, public_key, ndigits);
1593 	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1594 
1595 err_free_point:
1596 	ecc_free_point(pk);
1597 out:
1598 	return ret;
1599 }
1600 EXPORT_SYMBOL(ecc_make_pub_key);
1601 
1602 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
1603 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1604 				struct ecc_point *pk)
1605 {
1606 	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1607 
1608 	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1609 		return -EINVAL;
1610 
1611 	/* Check 1: Verify key is not the zero point. */
1612 	if (ecc_point_is_zero(pk))
1613 		return -EINVAL;
1614 
1615 	/* Check 2: Verify key is in the range [1, p-1]. */
1616 	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1617 		return -EINVAL;
1618 	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1619 		return -EINVAL;
1620 
1621 	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1622 	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1623 	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1624 	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1625 	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1626 	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1627 	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1628 	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1629 		return -EINVAL;
1630 
1631 	return 0;
1632 }
1633 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1634 
1635 /* SP800-56A section 5.6.2.3.3 full verification */
1636 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1637 			     struct ecc_point *pk)
1638 {
1639 	struct ecc_point *nQ;
1640 
1641 	/* Checks 1 through 3 */
1642 	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1643 
1644 	if (ret)
1645 		return ret;
1646 
1647 	/* Check 4: Verify that nQ is the zero point. */
1648 	nQ = ecc_alloc_point(pk->ndigits);
1649 	if (!nQ)
1650 		return -ENOMEM;
1651 
1652 	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1653 	if (!ecc_point_is_zero(nQ))
1654 		ret = -EINVAL;
1655 
1656 	ecc_free_point(nQ);
1657 
1658 	return ret;
1659 }
1660 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1661 
1662 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1663 			      const u64 *private_key, const u64 *public_key,
1664 			      u64 *secret)
1665 {
1666 	int ret = 0;
1667 	struct ecc_point *product, *pk;
1668 	u64 rand_z[ECC_MAX_DIGITS];
1669 	unsigned int nbytes;
1670 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1671 
1672 	if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) {
1673 		ret = -EINVAL;
1674 		goto out;
1675 	}
1676 
1677 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1678 
1679 	get_random_bytes(rand_z, nbytes);
1680 
1681 	pk = ecc_alloc_point(ndigits);
1682 	if (!pk) {
1683 		ret = -ENOMEM;
1684 		goto out;
1685 	}
1686 
1687 	ecc_swap_digits(public_key, pk->x, ndigits);
1688 	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1689 	ret = ecc_is_pubkey_valid_partial(curve, pk);
1690 	if (ret)
1691 		goto err_alloc_product;
1692 
1693 	product = ecc_alloc_point(ndigits);
1694 	if (!product) {
1695 		ret = -ENOMEM;
1696 		goto err_alloc_product;
1697 	}
1698 
1699 	ecc_point_mult(product, pk, private_key, rand_z, curve, ndigits);
1700 
1701 	if (ecc_point_is_zero(product)) {
1702 		ret = -EFAULT;
1703 		goto err_validity;
1704 	}
1705 
1706 	ecc_swap_digits(product->x, secret, ndigits);
1707 
1708 err_validity:
1709 	memzero_explicit(rand_z, sizeof(rand_z));
1710 	ecc_free_point(product);
1711 err_alloc_product:
1712 	ecc_free_point(pk);
1713 out:
1714 	return ret;
1715 }
1716 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1717 
1718 MODULE_DESCRIPTION("core elliptic curve module");
1719 MODULE_LICENSE("Dual BSD/GPL");
1720