xref: /linux/crypto/drbg.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 #include <linux/string.h>
102 
103 /***************************************************************
104  * Backend cipher definitions available to DRBG
105  ***************************************************************/
106 
107 /*
108  * The order of the DRBG definitions here matter: every DRBG is registered
109  * as stdrng. Each DRBG receives an increasing cra_priority values the later
110  * they are defined in this array (see drbg_fill_array).
111  *
112  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113  * the SHA256 / AES 256 over other ciphers. Thus, the favored
114  * DRBGs are the latest entries in this array.
115  */
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
118 	{
119 		.flags = DRBG_CTR | DRBG_STRENGTH128,
120 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
121 		.blocklen_bytes = 16,
122 		.cra_name = "ctr_aes128",
123 		.backend_cra_name = "ecb(aes)",
124 	}, {
125 		.flags = DRBG_CTR | DRBG_STRENGTH192,
126 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
127 		.blocklen_bytes = 16,
128 		.cra_name = "ctr_aes192",
129 		.backend_cra_name = "ecb(aes)",
130 	}, {
131 		.flags = DRBG_CTR | DRBG_STRENGTH256,
132 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
133 		.blocklen_bytes = 16,
134 		.cra_name = "ctr_aes256",
135 		.backend_cra_name = "ecb(aes)",
136 	},
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
139 	{
140 		.flags = DRBG_HASH | DRBG_STRENGTH128,
141 		.statelen = 55, /* 440 bits */
142 		.blocklen_bytes = 20,
143 		.cra_name = "sha1",
144 		.backend_cra_name = "sha1",
145 	}, {
146 		.flags = DRBG_HASH | DRBG_STRENGTH256,
147 		.statelen = 111, /* 888 bits */
148 		.blocklen_bytes = 48,
149 		.cra_name = "sha384",
150 		.backend_cra_name = "sha384",
151 	}, {
152 		.flags = DRBG_HASH | DRBG_STRENGTH256,
153 		.statelen = 111, /* 888 bits */
154 		.blocklen_bytes = 64,
155 		.cra_name = "sha512",
156 		.backend_cra_name = "sha512",
157 	}, {
158 		.flags = DRBG_HASH | DRBG_STRENGTH256,
159 		.statelen = 55, /* 440 bits */
160 		.blocklen_bytes = 32,
161 		.cra_name = "sha256",
162 		.backend_cra_name = "sha256",
163 	},
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
166 	{
167 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
168 		.statelen = 20, /* block length of cipher */
169 		.blocklen_bytes = 20,
170 		.cra_name = "hmac_sha1",
171 		.backend_cra_name = "hmac(sha1)",
172 	}, {
173 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
174 		.statelen = 48, /* block length of cipher */
175 		.blocklen_bytes = 48,
176 		.cra_name = "hmac_sha384",
177 		.backend_cra_name = "hmac(sha384)",
178 	}, {
179 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
180 		.statelen = 64, /* block length of cipher */
181 		.blocklen_bytes = 64,
182 		.cra_name = "hmac_sha512",
183 		.backend_cra_name = "hmac(sha512)",
184 	}, {
185 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
186 		.statelen = 32, /* block length of cipher */
187 		.blocklen_bytes = 32,
188 		.cra_name = "hmac_sha256",
189 		.backend_cra_name = "hmac(sha256)",
190 	},
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
192 };
193 
194 /******************************************************************
195  * Generic helper functions
196  ******************************************************************/
197 
198 /*
199  * Return strength of DRBG according to SP800-90A section 8.4
200  *
201  * @flags DRBG flags reference
202  *
203  * Return: normalized strength in *bytes* value or 32 as default
204  *	   to counter programming errors
205  */
206 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
207 {
208 	switch (flags & DRBG_STRENGTH_MASK) {
209 	case DRBG_STRENGTH128:
210 		return 16;
211 	case DRBG_STRENGTH192:
212 		return 24;
213 	case DRBG_STRENGTH256:
214 		return 32;
215 	default:
216 		return 32;
217 	}
218 }
219 
220 /*
221  * FIPS 140-2 continuous self test
222  * The test is performed on the result of one round of the output
223  * function. Thus, the function implicitly knows the size of the
224  * buffer.
225  *
226  * The FIPS test can be called in an endless loop until it returns
227  * true. Although the code looks like a potential for a deadlock, it
228  * is not the case, because returning a false cannot mathematically
229  * occur (except once when a reseed took place and the updated state
230  * would is now set up such that the generation of new value returns
231  * an identical one -- this is most unlikely and would happen only once).
232  * Thus, if this function repeatedly returns false and thus would cause
233  * a deadlock, the integrity of the entire kernel is lost.
234  *
235  * @drbg DRBG handle
236  * @buf output buffer of random data to be checked
237  *
238  * return:
239  *	true on success
240  *	false on error
241  */
242 static bool drbg_fips_continuous_test(struct drbg_state *drbg,
243 				      const unsigned char *buf)
244 {
245 #ifdef CONFIG_CRYPTO_FIPS
246 	int ret = 0;
247 	/* skip test if we test the overall system */
248 	if (drbg->test_data)
249 		return true;
250 	/* only perform test in FIPS mode */
251 	if (0 == fips_enabled)
252 		return true;
253 	if (!drbg->fips_primed) {
254 		/* Priming of FIPS test */
255 		memcpy(drbg->prev, buf, drbg_blocklen(drbg));
256 		drbg->fips_primed = true;
257 		/* return false due to priming, i.e. another round is needed */
258 		return false;
259 	}
260 	ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
261 	memcpy(drbg->prev, buf, drbg_blocklen(drbg));
262 	/* the test shall pass when the two compared values are not equal */
263 	return ret != 0;
264 #else
265 	return true;
266 #endif /* CONFIG_CRYPTO_FIPS */
267 }
268 
269 /*
270  * Convert an integer into a byte representation of this integer.
271  * The byte representation is big-endian
272  *
273  * @val value to be converted
274  * @buf buffer holding the converted integer -- caller must ensure that
275  *      buffer size is at least 32 bit
276  */
277 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
278 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
279 {
280 	struct s {
281 		__be32 conv;
282 	};
283 	struct s *conversion = (struct s *) buf;
284 
285 	conversion->conv = cpu_to_be32(val);
286 }
287 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
288 
289 /******************************************************************
290  * CTR DRBG callback functions
291  ******************************************************************/
292 
293 #ifdef CONFIG_CRYPTO_DRBG_CTR
294 #define CRYPTO_DRBG_CTR_STRING "CTR "
295 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
296 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
297 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
298 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
299 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
300 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
301 
302 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
303 			  unsigned char *outval, const struct drbg_string *in);
304 static int drbg_init_sym_kernel(struct drbg_state *drbg);
305 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
306 
307 /* BCC function for CTR DRBG as defined in 10.4.3 */
308 static int drbg_ctr_bcc(struct drbg_state *drbg,
309 			unsigned char *out, const unsigned char *key,
310 			struct list_head *in)
311 {
312 	int ret = 0;
313 	struct drbg_string *curr = NULL;
314 	struct drbg_string data;
315 	short cnt = 0;
316 
317 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
318 
319 	/* 10.4.3 step 1 */
320 	memset(out, 0, drbg_blocklen(drbg));
321 
322 	/* 10.4.3 step 2 / 4 */
323 	list_for_each_entry(curr, in, list) {
324 		const unsigned char *pos = curr->buf;
325 		size_t len = curr->len;
326 		/* 10.4.3 step 4.1 */
327 		while (len) {
328 			/* 10.4.3 step 4.2 */
329 			if (drbg_blocklen(drbg) == cnt) {
330 				cnt = 0;
331 				ret = drbg_kcapi_sym(drbg, key, out, &data);
332 				if (ret)
333 					return ret;
334 			}
335 			out[cnt] ^= *pos;
336 			pos++;
337 			cnt++;
338 			len--;
339 		}
340 	}
341 	/* 10.4.3 step 4.2 for last block */
342 	if (cnt)
343 		ret = drbg_kcapi_sym(drbg, key, out, &data);
344 
345 	return ret;
346 }
347 
348 /*
349  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
350  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
351  * the scratchpad is used as follows:
352  * drbg_ctr_update:
353  *	temp
354  *		start: drbg->scratchpad
355  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
356  *			note: the cipher writing into this variable works
357  *			blocklen-wise. Now, when the statelen is not a multiple
358  *			of blocklen, the generateion loop below "spills over"
359  *			by at most blocklen. Thus, we need to give sufficient
360  *			memory.
361  *	df_data
362  *		start: drbg->scratchpad +
363  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
364  *		length: drbg_statelen(drbg)
365  *
366  * drbg_ctr_df:
367  *	pad
368  *		start: df_data + drbg_statelen(drbg)
369  *		length: drbg_blocklen(drbg)
370  *	iv
371  *		start: pad + drbg_blocklen(drbg)
372  *		length: drbg_blocklen(drbg)
373  *	temp
374  *		start: iv + drbg_blocklen(drbg)
375  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
376  *			note: temp is the buffer that the BCC function operates
377  *			on. BCC operates blockwise. drbg_statelen(drbg)
378  *			is sufficient when the DRBG state length is a multiple
379  *			of the block size. For AES192 (and maybe other ciphers)
380  *			this is not correct and the length for temp is
381  *			insufficient (yes, that also means for such ciphers,
382  *			the final output of all BCC rounds are truncated).
383  *			Therefore, add drbg_blocklen(drbg) to cover all
384  *			possibilities.
385  */
386 
387 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
388 static int drbg_ctr_df(struct drbg_state *drbg,
389 		       unsigned char *df_data, size_t bytes_to_return,
390 		       struct list_head *seedlist)
391 {
392 	int ret = -EFAULT;
393 	unsigned char L_N[8];
394 	/* S3 is input */
395 	struct drbg_string S1, S2, S4, cipherin;
396 	LIST_HEAD(bcc_list);
397 	unsigned char *pad = df_data + drbg_statelen(drbg);
398 	unsigned char *iv = pad + drbg_blocklen(drbg);
399 	unsigned char *temp = iv + drbg_blocklen(drbg);
400 	size_t padlen = 0;
401 	unsigned int templen = 0;
402 	/* 10.4.2 step 7 */
403 	unsigned int i = 0;
404 	/* 10.4.2 step 8 */
405 	const unsigned char *K = (unsigned char *)
406 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
407 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
408 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
409 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
410 	unsigned char *X;
411 	size_t generated_len = 0;
412 	size_t inputlen = 0;
413 	struct drbg_string *seed = NULL;
414 
415 	memset(pad, 0, drbg_blocklen(drbg));
416 	memset(iv, 0, drbg_blocklen(drbg));
417 	memset(temp, 0, drbg_statelen(drbg));
418 
419 	/* 10.4.2 step 1 is implicit as we work byte-wise */
420 
421 	/* 10.4.2 step 2 */
422 	if ((512/8) < bytes_to_return)
423 		return -EINVAL;
424 
425 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
426 	list_for_each_entry(seed, seedlist, list)
427 		inputlen += seed->len;
428 	drbg_cpu_to_be32(inputlen, &L_N[0]);
429 
430 	/* 10.4.2 step 3 */
431 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
432 
433 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
434 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
435 	/* wrap the padlen appropriately */
436 	if (padlen)
437 		padlen = drbg_blocklen(drbg) - padlen;
438 	/*
439 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
440 	 * As the calculated padlen value only covers the number of zero
441 	 * bytes, this value has to be incremented by one for the 0x80 byte.
442 	 */
443 	padlen++;
444 	pad[0] = 0x80;
445 
446 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
447 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
448 	list_add_tail(&S1.list, &bcc_list);
449 	drbg_string_fill(&S2, L_N, sizeof(L_N));
450 	list_add_tail(&S2.list, &bcc_list);
451 	list_splice_tail(seedlist, &bcc_list);
452 	drbg_string_fill(&S4, pad, padlen);
453 	list_add_tail(&S4.list, &bcc_list);
454 
455 	/* 10.4.2 step 9 */
456 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
457 		/*
458 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
459 		 * holds zeros after allocation -- even the increment of i
460 		 * is irrelevant as the increment remains within length of i
461 		 */
462 		drbg_cpu_to_be32(i, iv);
463 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
464 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
465 		if (ret)
466 			goto out;
467 		/* 10.4.2 step 9.3 */
468 		i++;
469 		templen += drbg_blocklen(drbg);
470 	}
471 
472 	/* 10.4.2 step 11 */
473 	X = temp + (drbg_keylen(drbg));
474 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
475 
476 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
477 
478 	/* 10.4.2 step 13 */
479 	while (generated_len < bytes_to_return) {
480 		short blocklen = 0;
481 		/*
482 		 * 10.4.2 step 13.1: the truncation of the key length is
483 		 * implicit as the key is only drbg_blocklen in size based on
484 		 * the implementation of the cipher function callback
485 		 */
486 		ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
487 		if (ret)
488 			goto out;
489 		blocklen = (drbg_blocklen(drbg) <
490 				(bytes_to_return - generated_len)) ?
491 			    drbg_blocklen(drbg) :
492 				(bytes_to_return - generated_len);
493 		/* 10.4.2 step 13.2 and 14 */
494 		memcpy(df_data + generated_len, X, blocklen);
495 		generated_len += blocklen;
496 	}
497 
498 	ret = 0;
499 
500 out:
501 	memzero_explicit(iv, drbg_blocklen(drbg));
502 	memzero_explicit(temp, drbg_statelen(drbg));
503 	memzero_explicit(pad, drbg_blocklen(drbg));
504 	return ret;
505 }
506 
507 /*
508  * update function of CTR DRBG as defined in 10.2.1.2
509  *
510  * The reseed variable has an enhanced meaning compared to the update
511  * functions of the other DRBGs as follows:
512  * 0 => initial seed from initialization
513  * 1 => reseed via drbg_seed
514  * 2 => first invocation from drbg_ctr_update when addtl is present. In
515  *      this case, the df_data scratchpad is not deleted so that it is
516  *      available for another calls to prevent calling the DF function
517  *      again.
518  * 3 => second invocation from drbg_ctr_update. When the update function
519  *      was called with addtl, the df_data memory already contains the
520  *      DFed addtl information and we do not need to call DF again.
521  */
522 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
523 			   int reseed)
524 {
525 	int ret = -EFAULT;
526 	/* 10.2.1.2 step 1 */
527 	unsigned char *temp = drbg->scratchpad;
528 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
529 				 drbg_blocklen(drbg);
530 	unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
531 	unsigned int len = 0;
532 	struct drbg_string cipherin;
533 
534 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
535 	if (3 > reseed)
536 		memset(df_data, 0, drbg_statelen(drbg));
537 
538 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
539 	if (seed) {
540 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
541 		if (ret)
542 			goto out;
543 	}
544 
545 	drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
546 	/*
547 	 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
548 	 * zeroizes all memory during initialization
549 	 */
550 	while (len < (drbg_statelen(drbg))) {
551 		/* 10.2.1.2 step 2.1 */
552 		crypto_inc(drbg->V, drbg_blocklen(drbg));
553 		/*
554 		 * 10.2.1.2 step 2.2 */
555 		ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
556 		if (ret)
557 			goto out;
558 		/* 10.2.1.2 step 2.3 and 3 */
559 		len += drbg_blocklen(drbg);
560 	}
561 
562 	/* 10.2.1.2 step 4 */
563 	temp_p = temp;
564 	df_data_p = df_data;
565 	for (len = 0; len < drbg_statelen(drbg); len++) {
566 		*temp_p ^= *df_data_p;
567 		df_data_p++; temp_p++;
568 	}
569 
570 	/* 10.2.1.2 step 5 */
571 	memcpy(drbg->C, temp, drbg_keylen(drbg));
572 	/* 10.2.1.2 step 6 */
573 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
574 	ret = 0;
575 
576 out:
577 	memzero_explicit(temp, drbg_statelen(drbg) + drbg_blocklen(drbg));
578 	if (2 != reseed)
579 		memzero_explicit(df_data, drbg_statelen(drbg));
580 	return ret;
581 }
582 
583 /*
584  * scratchpad use: drbg_ctr_update is called independently from
585  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
586  */
587 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
588 static int drbg_ctr_generate(struct drbg_state *drbg,
589 			     unsigned char *buf, unsigned int buflen,
590 			     struct list_head *addtl)
591 {
592 	int len = 0;
593 	int ret = 0;
594 	struct drbg_string data;
595 
596 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
597 
598 	/* 10.2.1.5.2 step 2 */
599 	if (addtl && !list_empty(addtl)) {
600 		ret = drbg_ctr_update(drbg, addtl, 2);
601 		if (ret)
602 			return 0;
603 	}
604 
605 	/* 10.2.1.5.2 step 4.1 */
606 	crypto_inc(drbg->V, drbg_blocklen(drbg));
607 	drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
608 	while (len < buflen) {
609 		int outlen = 0;
610 		/* 10.2.1.5.2 step 4.2 */
611 		ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
612 		if (ret) {
613 			len = ret;
614 			goto out;
615 		}
616 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
617 			  drbg_blocklen(drbg) : (buflen - len);
618 		if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
619 			/* 10.2.1.5.2 step 6 */
620 			crypto_inc(drbg->V, drbg_blocklen(drbg));
621 			continue;
622 		}
623 		/* 10.2.1.5.2 step 4.3 */
624 		memcpy(buf + len, drbg->scratchpad, outlen);
625 		len += outlen;
626 		/* 10.2.1.5.2 step 6 */
627 		if (len < buflen)
628 			crypto_inc(drbg->V, drbg_blocklen(drbg));
629 	}
630 
631 	/* 10.2.1.5.2 step 6 */
632 	ret = drbg_ctr_update(drbg, NULL, 3);
633 	if (ret)
634 		len = ret;
635 
636 out:
637 	memzero_explicit(drbg->scratchpad, drbg_blocklen(drbg));
638 	return len;
639 }
640 
641 static struct drbg_state_ops drbg_ctr_ops = {
642 	.update		= drbg_ctr_update,
643 	.generate	= drbg_ctr_generate,
644 	.crypto_init	= drbg_init_sym_kernel,
645 	.crypto_fini	= drbg_fini_sym_kernel,
646 };
647 #endif /* CONFIG_CRYPTO_DRBG_CTR */
648 
649 /******************************************************************
650  * HMAC DRBG callback functions
651  ******************************************************************/
652 
653 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
654 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
655 			   unsigned char *outval, const struct list_head *in);
656 static int drbg_init_hash_kernel(struct drbg_state *drbg);
657 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
658 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
659 
660 #ifdef CONFIG_CRYPTO_DRBG_HMAC
661 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
662 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
663 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
664 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
665 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
666 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
667 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
668 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
669 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
670 
671 /* update function of HMAC DRBG as defined in 10.1.2.2 */
672 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
673 			    int reseed)
674 {
675 	int ret = -EFAULT;
676 	int i = 0;
677 	struct drbg_string seed1, seed2, vdata;
678 	LIST_HEAD(seedlist);
679 	LIST_HEAD(vdatalist);
680 
681 	if (!reseed)
682 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
683 		memset(drbg->V, 1, drbg_statelen(drbg));
684 
685 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
686 	list_add_tail(&seed1.list, &seedlist);
687 	/* buffer of seed2 will be filled in for loop below with one byte */
688 	drbg_string_fill(&seed2, NULL, 1);
689 	list_add_tail(&seed2.list, &seedlist);
690 	/* input data of seed is allowed to be NULL at this point */
691 	if (seed)
692 		list_splice_tail(seed, &seedlist);
693 
694 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
695 	list_add_tail(&vdata.list, &vdatalist);
696 	for (i = 2; 0 < i; i--) {
697 		/* first round uses 0x0, second 0x1 */
698 		unsigned char prefix = DRBG_PREFIX0;
699 		if (1 == i)
700 			prefix = DRBG_PREFIX1;
701 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
702 		seed2.buf = &prefix;
703 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
704 		if (ret)
705 			return ret;
706 
707 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
708 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
709 		if (ret)
710 			return ret;
711 
712 		/* 10.1.2.2 step 3 */
713 		if (!seed)
714 			return ret;
715 	}
716 
717 	return 0;
718 }
719 
720 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
721 static int drbg_hmac_generate(struct drbg_state *drbg,
722 			      unsigned char *buf,
723 			      unsigned int buflen,
724 			      struct list_head *addtl)
725 {
726 	int len = 0;
727 	int ret = 0;
728 	struct drbg_string data;
729 	LIST_HEAD(datalist);
730 
731 	/* 10.1.2.5 step 2 */
732 	if (addtl && !list_empty(addtl)) {
733 		ret = drbg_hmac_update(drbg, addtl, 1);
734 		if (ret)
735 			return ret;
736 	}
737 
738 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
739 	list_add_tail(&data.list, &datalist);
740 	while (len < buflen) {
741 		unsigned int outlen = 0;
742 		/* 10.1.2.5 step 4.1 */
743 		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
744 		if (ret)
745 			return ret;
746 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
747 			  drbg_blocklen(drbg) : (buflen - len);
748 		if (!drbg_fips_continuous_test(drbg, drbg->V))
749 			continue;
750 
751 		/* 10.1.2.5 step 4.2 */
752 		memcpy(buf + len, drbg->V, outlen);
753 		len += outlen;
754 	}
755 
756 	/* 10.1.2.5 step 6 */
757 	if (addtl && !list_empty(addtl))
758 		ret = drbg_hmac_update(drbg, addtl, 1);
759 	else
760 		ret = drbg_hmac_update(drbg, NULL, 1);
761 	if (ret)
762 		return ret;
763 
764 	return len;
765 }
766 
767 static struct drbg_state_ops drbg_hmac_ops = {
768 	.update		= drbg_hmac_update,
769 	.generate	= drbg_hmac_generate,
770 	.crypto_init	= drbg_init_hash_kernel,
771 	.crypto_fini	= drbg_fini_hash_kernel,
772 
773 };
774 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
775 
776 /******************************************************************
777  * Hash DRBG callback functions
778  ******************************************************************/
779 
780 #ifdef CONFIG_CRYPTO_DRBG_HASH
781 #define CRYPTO_DRBG_HASH_STRING "HASH "
782 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
783 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
784 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
785 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
786 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
787 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
788 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
789 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
790 
791 /*
792  * Increment buffer
793  *
794  * @dst buffer to increment
795  * @add value to add
796  */
797 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
798 				const unsigned char *add, size_t addlen)
799 {
800 	/* implied: dstlen > addlen */
801 	unsigned char *dstptr;
802 	const unsigned char *addptr;
803 	unsigned int remainder = 0;
804 	size_t len = addlen;
805 
806 	dstptr = dst + (dstlen-1);
807 	addptr = add + (addlen-1);
808 	while (len) {
809 		remainder += *dstptr + *addptr;
810 		*dstptr = remainder & 0xff;
811 		remainder >>= 8;
812 		len--; dstptr--; addptr--;
813 	}
814 	len = dstlen - addlen;
815 	while (len && remainder > 0) {
816 		remainder = *dstptr + 1;
817 		*dstptr = remainder & 0xff;
818 		remainder >>= 8;
819 		len--; dstptr--;
820 	}
821 }
822 
823 /*
824  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
825  * interlinked, the scratchpad is used as follows:
826  * drbg_hash_update
827  *	start: drbg->scratchpad
828  *	length: drbg_statelen(drbg)
829  * drbg_hash_df:
830  *	start: drbg->scratchpad + drbg_statelen(drbg)
831  *	length: drbg_blocklen(drbg)
832  *
833  * drbg_hash_process_addtl uses the scratchpad, but fully completes
834  * before either of the functions mentioned before are invoked. Therefore,
835  * drbg_hash_process_addtl does not need to be specifically considered.
836  */
837 
838 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
839 static int drbg_hash_df(struct drbg_state *drbg,
840 			unsigned char *outval, size_t outlen,
841 			struct list_head *entropylist)
842 {
843 	int ret = 0;
844 	size_t len = 0;
845 	unsigned char input[5];
846 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
847 	struct drbg_string data;
848 
849 	memset(tmp, 0, drbg_blocklen(drbg));
850 
851 	/* 10.4.1 step 3 */
852 	input[0] = 1;
853 	drbg_cpu_to_be32((outlen * 8), &input[1]);
854 
855 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
856 	drbg_string_fill(&data, input, 5);
857 	list_add(&data.list, entropylist);
858 
859 	/* 10.4.1 step 4 */
860 	while (len < outlen) {
861 		short blocklen = 0;
862 		/* 10.4.1 step 4.1 */
863 		ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
864 		if (ret)
865 			goto out;
866 		/* 10.4.1 step 4.2 */
867 		input[0]++;
868 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
869 			    drbg_blocklen(drbg) : (outlen - len);
870 		memcpy(outval + len, tmp, blocklen);
871 		len += blocklen;
872 	}
873 
874 out:
875 	memzero_explicit(tmp, drbg_blocklen(drbg));
876 	return ret;
877 }
878 
879 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
880 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
881 			    int reseed)
882 {
883 	int ret = 0;
884 	struct drbg_string data1, data2;
885 	LIST_HEAD(datalist);
886 	LIST_HEAD(datalist2);
887 	unsigned char *V = drbg->scratchpad;
888 	unsigned char prefix = DRBG_PREFIX1;
889 
890 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
891 	if (!seed)
892 		return -EINVAL;
893 
894 	if (reseed) {
895 		/* 10.1.1.3 step 1 */
896 		memcpy(V, drbg->V, drbg_statelen(drbg));
897 		drbg_string_fill(&data1, &prefix, 1);
898 		list_add_tail(&data1.list, &datalist);
899 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
900 		list_add_tail(&data2.list, &datalist);
901 	}
902 	list_splice_tail(seed, &datalist);
903 
904 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
905 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
906 	if (ret)
907 		goto out;
908 
909 	/* 10.1.1.2 / 10.1.1.3 step 4  */
910 	prefix = DRBG_PREFIX0;
911 	drbg_string_fill(&data1, &prefix, 1);
912 	list_add_tail(&data1.list, &datalist2);
913 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
914 	list_add_tail(&data2.list, &datalist2);
915 	/* 10.1.1.2 / 10.1.1.3 step 4 */
916 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
917 
918 out:
919 	memzero_explicit(drbg->scratchpad, drbg_statelen(drbg));
920 	return ret;
921 }
922 
923 /* processing of additional information string for Hash DRBG */
924 static int drbg_hash_process_addtl(struct drbg_state *drbg,
925 				   struct list_head *addtl)
926 {
927 	int ret = 0;
928 	struct drbg_string data1, data2;
929 	LIST_HEAD(datalist);
930 	unsigned char prefix = DRBG_PREFIX2;
931 
932 	/* this is value w as per documentation */
933 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
934 
935 	/* 10.1.1.4 step 2 */
936 	if (!addtl || list_empty(addtl))
937 		return 0;
938 
939 	/* 10.1.1.4 step 2a */
940 	drbg_string_fill(&data1, &prefix, 1);
941 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
942 	list_add_tail(&data1.list, &datalist);
943 	list_add_tail(&data2.list, &datalist);
944 	list_splice_tail(addtl, &datalist);
945 	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
946 	if (ret)
947 		goto out;
948 
949 	/* 10.1.1.4 step 2b */
950 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
951 		     drbg->scratchpad, drbg_blocklen(drbg));
952 
953 out:
954 	memzero_explicit(drbg->scratchpad, drbg_blocklen(drbg));
955 	return ret;
956 }
957 
958 /* Hashgen defined in 10.1.1.4 */
959 static int drbg_hash_hashgen(struct drbg_state *drbg,
960 			     unsigned char *buf,
961 			     unsigned int buflen)
962 {
963 	int len = 0;
964 	int ret = 0;
965 	unsigned char *src = drbg->scratchpad;
966 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
967 	struct drbg_string data;
968 	LIST_HEAD(datalist);
969 
970 	memset(src, 0, drbg_statelen(drbg));
971 	memset(dst, 0, drbg_blocklen(drbg));
972 
973 	/* 10.1.1.4 step hashgen 2 */
974 	memcpy(src, drbg->V, drbg_statelen(drbg));
975 
976 	drbg_string_fill(&data, src, drbg_statelen(drbg));
977 	list_add_tail(&data.list, &datalist);
978 	while (len < buflen) {
979 		unsigned int outlen = 0;
980 		/* 10.1.1.4 step hashgen 4.1 */
981 		ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
982 		if (ret) {
983 			len = ret;
984 			goto out;
985 		}
986 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
987 			  drbg_blocklen(drbg) : (buflen - len);
988 		if (!drbg_fips_continuous_test(drbg, dst)) {
989 			crypto_inc(src, drbg_statelen(drbg));
990 			continue;
991 		}
992 		/* 10.1.1.4 step hashgen 4.2 */
993 		memcpy(buf + len, dst, outlen);
994 		len += outlen;
995 		/* 10.1.1.4 hashgen step 4.3 */
996 		if (len < buflen)
997 			crypto_inc(src, drbg_statelen(drbg));
998 	}
999 
1000 out:
1001 	memzero_explicit(drbg->scratchpad,
1002 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
1003 	return len;
1004 }
1005 
1006 /* generate function for Hash DRBG as defined in  10.1.1.4 */
1007 static int drbg_hash_generate(struct drbg_state *drbg,
1008 			      unsigned char *buf, unsigned int buflen,
1009 			      struct list_head *addtl)
1010 {
1011 	int len = 0;
1012 	int ret = 0;
1013 	union {
1014 		unsigned char req[8];
1015 		__be64 req_int;
1016 	} u;
1017 	unsigned char prefix = DRBG_PREFIX3;
1018 	struct drbg_string data1, data2;
1019 	LIST_HEAD(datalist);
1020 
1021 	/* 10.1.1.4 step 2 */
1022 	ret = drbg_hash_process_addtl(drbg, addtl);
1023 	if (ret)
1024 		return ret;
1025 	/* 10.1.1.4 step 3 */
1026 	len = drbg_hash_hashgen(drbg, buf, buflen);
1027 
1028 	/* this is the value H as documented in 10.1.1.4 */
1029 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1030 	/* 10.1.1.4 step 4 */
1031 	drbg_string_fill(&data1, &prefix, 1);
1032 	list_add_tail(&data1.list, &datalist);
1033 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1034 	list_add_tail(&data2.list, &datalist);
1035 	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1036 	if (ret) {
1037 		len = ret;
1038 		goto out;
1039 	}
1040 
1041 	/* 10.1.1.4 step 5 */
1042 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1043 		     drbg->scratchpad, drbg_blocklen(drbg));
1044 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1045 		     drbg->C, drbg_statelen(drbg));
1046 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1047 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1048 
1049 out:
1050 	memzero_explicit(drbg->scratchpad, drbg_blocklen(drbg));
1051 	return len;
1052 }
1053 
1054 /*
1055  * scratchpad usage: as update and generate are used isolated, both
1056  * can use the scratchpad
1057  */
1058 static struct drbg_state_ops drbg_hash_ops = {
1059 	.update		= drbg_hash_update,
1060 	.generate	= drbg_hash_generate,
1061 	.crypto_init	= drbg_init_hash_kernel,
1062 	.crypto_fini	= drbg_fini_hash_kernel,
1063 };
1064 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1065 
1066 /******************************************************************
1067  * Functions common for DRBG implementations
1068  ******************************************************************/
1069 
1070 /*
1071  * Seeding or reseeding of the DRBG
1072  *
1073  * @drbg: DRBG state struct
1074  * @pers: personalization / additional information buffer
1075  * @reseed: 0 for initial seed process, 1 for reseeding
1076  *
1077  * return:
1078  *	0 on success
1079  *	error value otherwise
1080  */
1081 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1082 		     bool reseed)
1083 {
1084 	int ret = 0;
1085 	unsigned char *entropy = NULL;
1086 	size_t entropylen = 0;
1087 	struct drbg_string data1;
1088 	LIST_HEAD(seedlist);
1089 
1090 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1091 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1092 		pr_devel("DRBG: personalization string too long %zu\n",
1093 			 pers->len);
1094 		return -EINVAL;
1095 	}
1096 
1097 	if (drbg->test_data && drbg->test_data->testentropy) {
1098 		drbg_string_fill(&data1, drbg->test_data->testentropy->buf,
1099 				 drbg->test_data->testentropy->len);
1100 		pr_devel("DRBG: using test entropy\n");
1101 	} else {
1102 		/*
1103 		 * Gather entropy equal to the security strength of the DRBG.
1104 		 * With a derivation function, a nonce is required in addition
1105 		 * to the entropy. A nonce must be at least 1/2 of the security
1106 		 * strength of the DRBG in size. Thus, entropy * nonce is 3/2
1107 		 * of the strength. The consideration of a nonce is only
1108 		 * applicable during initial seeding.
1109 		 */
1110 		entropylen = drbg_sec_strength(drbg->core->flags);
1111 		if (!entropylen)
1112 			return -EFAULT;
1113 		if (!reseed)
1114 			entropylen = ((entropylen + 1) / 2) * 3;
1115 		pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
1116 			 entropylen);
1117 		entropy = kzalloc(entropylen, GFP_KERNEL);
1118 		if (!entropy)
1119 			return -ENOMEM;
1120 		get_random_bytes(entropy, entropylen);
1121 		drbg_string_fill(&data1, entropy, entropylen);
1122 	}
1123 	list_add_tail(&data1.list, &seedlist);
1124 
1125 	/*
1126 	 * concatenation of entropy with personalization str / addtl input)
1127 	 * the variable pers is directly handed in by the caller, so check its
1128 	 * contents whether it is appropriate
1129 	 */
1130 	if (pers && pers->buf && 0 < pers->len) {
1131 		list_add_tail(&pers->list, &seedlist);
1132 		pr_devel("DRBG: using personalization string\n");
1133 	}
1134 
1135 	if (!reseed) {
1136 		memset(drbg->V, 0, drbg_statelen(drbg));
1137 		memset(drbg->C, 0, drbg_statelen(drbg));
1138 	}
1139 
1140 	ret = drbg->d_ops->update(drbg, &seedlist, reseed);
1141 	if (ret)
1142 		goto out;
1143 
1144 	drbg->seeded = true;
1145 	/* 10.1.1.2 / 10.1.1.3 step 5 */
1146 	drbg->reseed_ctr = 1;
1147 
1148 out:
1149 	kzfree(entropy);
1150 	return ret;
1151 }
1152 
1153 /* Free all substructures in a DRBG state without the DRBG state structure */
1154 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1155 {
1156 	if (!drbg)
1157 		return;
1158 	kzfree(drbg->V);
1159 	drbg->V = NULL;
1160 	kzfree(drbg->C);
1161 	drbg->C = NULL;
1162 	kzfree(drbg->scratchpad);
1163 	drbg->scratchpad = NULL;
1164 	drbg->reseed_ctr = 0;
1165 #ifdef CONFIG_CRYPTO_FIPS
1166 	kzfree(drbg->prev);
1167 	drbg->prev = NULL;
1168 	drbg->fips_primed = false;
1169 #endif
1170 }
1171 
1172 /*
1173  * Allocate all sub-structures for a DRBG state.
1174  * The DRBG state structure must already be allocated.
1175  */
1176 static inline int drbg_alloc_state(struct drbg_state *drbg)
1177 {
1178 	int ret = -ENOMEM;
1179 	unsigned int sb_size = 0;
1180 
1181 	drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1182 	if (!drbg->V)
1183 		goto err;
1184 	drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1185 	if (!drbg->C)
1186 		goto err;
1187 #ifdef CONFIG_CRYPTO_FIPS
1188 	drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1189 	if (!drbg->prev)
1190 		goto err;
1191 	drbg->fips_primed = false;
1192 #endif
1193 	/* scratchpad is only generated for CTR and Hash */
1194 	if (drbg->core->flags & DRBG_HMAC)
1195 		sb_size = 0;
1196 	else if (drbg->core->flags & DRBG_CTR)
1197 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1198 			  drbg_statelen(drbg) +	/* df_data */
1199 			  drbg_blocklen(drbg) +	/* pad */
1200 			  drbg_blocklen(drbg) +	/* iv */
1201 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1202 	else
1203 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1204 
1205 	if (0 < sb_size) {
1206 		drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1207 		if (!drbg->scratchpad)
1208 			goto err;
1209 	}
1210 	spin_lock_init(&drbg->drbg_lock);
1211 	return 0;
1212 
1213 err:
1214 	drbg_dealloc_state(drbg);
1215 	return ret;
1216 }
1217 
1218 /*
1219  * Strategy to avoid holding long term locks: generate a shadow copy of DRBG
1220  * and perform all operations on this shadow copy. After finishing, restore
1221  * the updated state of the shadow copy into original drbg state. This way,
1222  * only the read and write operations of the original drbg state must be
1223  * locked
1224  */
1225 static inline void drbg_copy_drbg(struct drbg_state *src,
1226 				  struct drbg_state *dst)
1227 {
1228 	if (!src || !dst)
1229 		return;
1230 	memcpy(dst->V, src->V, drbg_statelen(src));
1231 	memcpy(dst->C, src->C, drbg_statelen(src));
1232 	dst->reseed_ctr = src->reseed_ctr;
1233 	dst->seeded = src->seeded;
1234 	dst->pr = src->pr;
1235 #ifdef CONFIG_CRYPTO_FIPS
1236 	dst->fips_primed = src->fips_primed;
1237 	memcpy(dst->prev, src->prev, drbg_blocklen(src));
1238 #endif
1239 	/*
1240 	 * Not copied:
1241 	 * scratchpad is initialized drbg_alloc_state;
1242 	 * priv_data is initialized with call to crypto_init;
1243 	 * d_ops and core are set outside, as these parameters are const;
1244 	 * test_data is set outside to prevent it being copied back.
1245 	 */
1246 }
1247 
1248 static int drbg_make_shadow(struct drbg_state *drbg, struct drbg_state **shadow)
1249 {
1250 	int ret = -ENOMEM;
1251 	struct drbg_state *tmp = NULL;
1252 
1253 	tmp = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1254 	if (!tmp)
1255 		return -ENOMEM;
1256 
1257 	/* read-only data as they are defined as const, no lock needed */
1258 	tmp->core = drbg->core;
1259 	tmp->d_ops = drbg->d_ops;
1260 
1261 	ret = drbg_alloc_state(tmp);
1262 	if (ret)
1263 		goto err;
1264 
1265 	spin_lock_bh(&drbg->drbg_lock);
1266 	drbg_copy_drbg(drbg, tmp);
1267 	/* only make a link to the test buffer, as we only read that data */
1268 	tmp->test_data = drbg->test_data;
1269 	spin_unlock_bh(&drbg->drbg_lock);
1270 	*shadow = tmp;
1271 	return 0;
1272 
1273 err:
1274 	kzfree(tmp);
1275 	return ret;
1276 }
1277 
1278 static void drbg_restore_shadow(struct drbg_state *drbg,
1279 				struct drbg_state **shadow)
1280 {
1281 	struct drbg_state *tmp = *shadow;
1282 
1283 	spin_lock_bh(&drbg->drbg_lock);
1284 	drbg_copy_drbg(tmp, drbg);
1285 	spin_unlock_bh(&drbg->drbg_lock);
1286 	drbg_dealloc_state(tmp);
1287 	kzfree(tmp);
1288 	*shadow = NULL;
1289 }
1290 
1291 /*************************************************************************
1292  * DRBG interface functions
1293  *************************************************************************/
1294 
1295 /*
1296  * DRBG generate function as required by SP800-90A - this function
1297  * generates random numbers
1298  *
1299  * @drbg DRBG state handle
1300  * @buf Buffer where to store the random numbers -- the buffer must already
1301  *      be pre-allocated by caller
1302  * @buflen Length of output buffer - this value defines the number of random
1303  *	   bytes pulled from DRBG
1304  * @addtl Additional input that is mixed into state, may be NULL -- note
1305  *	  the entropy is pulled by the DRBG internally unconditionally
1306  *	  as defined in SP800-90A. The additional input is mixed into
1307  *	  the state in addition to the pulled entropy.
1308  *
1309  * return: generated number of bytes
1310  */
1311 static int drbg_generate(struct drbg_state *drbg,
1312 			 unsigned char *buf, unsigned int buflen,
1313 			 struct drbg_string *addtl)
1314 {
1315 	int len = 0;
1316 	struct drbg_state *shadow = NULL;
1317 	LIST_HEAD(addtllist);
1318 	struct drbg_string timestamp;
1319 	union {
1320 		cycles_t cycles;
1321 		unsigned char char_cycles[sizeof(cycles_t)];
1322 	} now;
1323 
1324 	if (0 == buflen || !buf) {
1325 		pr_devel("DRBG: no output buffer provided\n");
1326 		return -EINVAL;
1327 	}
1328 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1329 		pr_devel("DRBG: wrong format of additional information\n");
1330 		return -EINVAL;
1331 	}
1332 
1333 	len = drbg_make_shadow(drbg, &shadow);
1334 	if (len) {
1335 		pr_devel("DRBG: shadow copy cannot be generated\n");
1336 		return len;
1337 	}
1338 
1339 	/* 9.3.1 step 2 */
1340 	len = -EINVAL;
1341 	if (buflen > (drbg_max_request_bytes(shadow))) {
1342 		pr_devel("DRBG: requested random numbers too large %u\n",
1343 			 buflen);
1344 		goto err;
1345 	}
1346 
1347 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1348 
1349 	/* 9.3.1 step 4 */
1350 	if (addtl && addtl->len > (drbg_max_addtl(shadow))) {
1351 		pr_devel("DRBG: additional information string too long %zu\n",
1352 			 addtl->len);
1353 		goto err;
1354 	}
1355 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1356 
1357 	/*
1358 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1359 	 * here. The spec is a bit convoluted here, we make it simpler.
1360 	 */
1361 	if ((drbg_max_requests(shadow)) < shadow->reseed_ctr)
1362 		shadow->seeded = false;
1363 
1364 	/* allocate cipher handle */
1365 	len = shadow->d_ops->crypto_init(shadow);
1366 	if (len)
1367 		goto err;
1368 
1369 	if (shadow->pr || !shadow->seeded) {
1370 		pr_devel("DRBG: reseeding before generation (prediction "
1371 			 "resistance: %s, state %s)\n",
1372 			 drbg->pr ? "true" : "false",
1373 			 drbg->seeded ? "seeded" : "unseeded");
1374 		/* 9.3.1 steps 7.1 through 7.3 */
1375 		len = drbg_seed(shadow, addtl, true);
1376 		if (len)
1377 			goto err;
1378 		/* 9.3.1 step 7.4 */
1379 		addtl = NULL;
1380 	}
1381 
1382 	/*
1383 	 * Mix the time stamp into the DRBG state if the DRBG is not in
1384 	 * test mode. If there are two callers invoking the DRBG at the same
1385 	 * time, i.e. before the first caller merges its shadow state back,
1386 	 * both callers would obtain the same random number stream without
1387 	 * changing the state here.
1388 	 */
1389 	if (!drbg->test_data) {
1390 		now.cycles = random_get_entropy();
1391 		drbg_string_fill(&timestamp, now.char_cycles, sizeof(cycles_t));
1392 		list_add_tail(&timestamp.list, &addtllist);
1393 	}
1394 	if (addtl && 0 < addtl->len)
1395 		list_add_tail(&addtl->list, &addtllist);
1396 	/* 9.3.1 step 8 and 10 */
1397 	len = shadow->d_ops->generate(shadow, buf, buflen, &addtllist);
1398 
1399 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1400 	shadow->reseed_ctr++;
1401 	if (0 >= len)
1402 		goto err;
1403 
1404 	/*
1405 	 * Section 11.3.3 requires to re-perform self tests after some
1406 	 * generated random numbers. The chosen value after which self
1407 	 * test is performed is arbitrary, but it should be reasonable.
1408 	 * However, we do not perform the self tests because of the following
1409 	 * reasons: it is mathematically impossible that the initial self tests
1410 	 * were successfully and the following are not. If the initial would
1411 	 * pass and the following would not, the kernel integrity is violated.
1412 	 * In this case, the entire kernel operation is questionable and it
1413 	 * is unlikely that the integrity violation only affects the
1414 	 * correct operation of the DRBG.
1415 	 *
1416 	 * Albeit the following code is commented out, it is provided in
1417 	 * case somebody has a need to implement the test of 11.3.3.
1418 	 */
1419 #if 0
1420 	if (shadow->reseed_ctr && !(shadow->reseed_ctr % 4096)) {
1421 		int err = 0;
1422 		pr_devel("DRBG: start to perform self test\n");
1423 		if (drbg->core->flags & DRBG_HMAC)
1424 			err = alg_test("drbg_pr_hmac_sha256",
1425 				       "drbg_pr_hmac_sha256", 0, 0);
1426 		else if (drbg->core->flags & DRBG_CTR)
1427 			err = alg_test("drbg_pr_ctr_aes128",
1428 				       "drbg_pr_ctr_aes128", 0, 0);
1429 		else
1430 			err = alg_test("drbg_pr_sha256",
1431 				       "drbg_pr_sha256", 0, 0);
1432 		if (err) {
1433 			pr_err("DRBG: periodical self test failed\n");
1434 			/*
1435 			 * uninstantiate implies that from now on, only errors
1436 			 * are returned when reusing this DRBG cipher handle
1437 			 */
1438 			drbg_uninstantiate(drbg);
1439 			drbg_dealloc_state(shadow);
1440 			kzfree(shadow);
1441 			return 0;
1442 		} else {
1443 			pr_devel("DRBG: self test successful\n");
1444 		}
1445 	}
1446 #endif
1447 
1448 err:
1449 	shadow->d_ops->crypto_fini(shadow);
1450 	drbg_restore_shadow(drbg, &shadow);
1451 	return len;
1452 }
1453 
1454 /*
1455  * Wrapper around drbg_generate which can pull arbitrary long strings
1456  * from the DRBG without hitting the maximum request limitation.
1457  *
1458  * Parameters: see drbg_generate
1459  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1460  *		 the entire drbg_generate_long request fails
1461  */
1462 static int drbg_generate_long(struct drbg_state *drbg,
1463 			      unsigned char *buf, unsigned int buflen,
1464 			      struct drbg_string *addtl)
1465 {
1466 	int len = 0;
1467 	unsigned int slice = 0;
1468 	do {
1469 		int tmplen = 0;
1470 		unsigned int chunk = 0;
1471 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1472 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1473 		tmplen = drbg_generate(drbg, buf + len, chunk, addtl);
1474 		if (0 >= tmplen)
1475 			return tmplen;
1476 		len += tmplen;
1477 	} while (slice > 0 && (len < buflen));
1478 	return len;
1479 }
1480 
1481 /*
1482  * DRBG instantiation function as required by SP800-90A - this function
1483  * sets up the DRBG handle, performs the initial seeding and all sanity
1484  * checks required by SP800-90A
1485  *
1486  * @drbg memory of state -- if NULL, new memory is allocated
1487  * @pers Personalization string that is mixed into state, may be NULL -- note
1488  *	 the entropy is pulled by the DRBG internally unconditionally
1489  *	 as defined in SP800-90A. The additional input is mixed into
1490  *	 the state in addition to the pulled entropy.
1491  * @coreref reference to core
1492  * @pr prediction resistance enabled
1493  *
1494  * return
1495  *	0 on success
1496  *	error value otherwise
1497  */
1498 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1499 			    int coreref, bool pr)
1500 {
1501 	int ret = -ENOMEM;
1502 
1503 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1504 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1505 	drbg->core = &drbg_cores[coreref];
1506 	drbg->pr = pr;
1507 	drbg->seeded = false;
1508 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1509 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1510 	case DRBG_HMAC:
1511 		drbg->d_ops = &drbg_hmac_ops;
1512 		break;
1513 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1514 #ifdef CONFIG_CRYPTO_DRBG_HASH
1515 	case DRBG_HASH:
1516 		drbg->d_ops = &drbg_hash_ops;
1517 		break;
1518 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1519 #ifdef CONFIG_CRYPTO_DRBG_CTR
1520 	case DRBG_CTR:
1521 		drbg->d_ops = &drbg_ctr_ops;
1522 		break;
1523 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1524 	default:
1525 		return -EOPNOTSUPP;
1526 	}
1527 
1528 	/* 9.1 step 1 is implicit with the selected DRBG type */
1529 
1530 	/*
1531 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1532 	 * and the flag is copied into drbg->flags --
1533 	 * all DRBG types support prediction resistance
1534 	 */
1535 
1536 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1537 
1538 	ret = drbg_alloc_state(drbg);
1539 	if (ret)
1540 		return ret;
1541 
1542 	ret = -EFAULT;
1543 	if (drbg->d_ops->crypto_init(drbg))
1544 		goto err;
1545 	ret = drbg_seed(drbg, pers, false);
1546 	drbg->d_ops->crypto_fini(drbg);
1547 	if (ret)
1548 		goto err;
1549 
1550 	return 0;
1551 
1552 err:
1553 	drbg_dealloc_state(drbg);
1554 	return ret;
1555 }
1556 
1557 /*
1558  * DRBG uninstantiate function as required by SP800-90A - this function
1559  * frees all buffers and the DRBG handle
1560  *
1561  * @drbg DRBG state handle
1562  *
1563  * return
1564  *	0 on success
1565  */
1566 static int drbg_uninstantiate(struct drbg_state *drbg)
1567 {
1568 	spin_lock_bh(&drbg->drbg_lock);
1569 	drbg_dealloc_state(drbg);
1570 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1571 	spin_unlock_bh(&drbg->drbg_lock);
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Helper function for setting the test data in the DRBG
1577  *
1578  * @drbg DRBG state handle
1579  * @test_data test data to sets
1580  */
1581 static inline void drbg_set_testdata(struct drbg_state *drbg,
1582 				     struct drbg_test_data *test_data)
1583 {
1584 	if (!test_data || !test_data->testentropy)
1585 		return;
1586 	spin_lock_bh(&drbg->drbg_lock);
1587 	drbg->test_data = test_data;
1588 	spin_unlock_bh(&drbg->drbg_lock);
1589 }
1590 
1591 /***************************************************************
1592  * Kernel crypto API cipher invocations requested by DRBG
1593  ***************************************************************/
1594 
1595 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1596 struct sdesc {
1597 	struct shash_desc shash;
1598 	char ctx[];
1599 };
1600 
1601 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1602 {
1603 	struct sdesc *sdesc;
1604 	struct crypto_shash *tfm;
1605 
1606 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1607 	if (IS_ERR(tfm)) {
1608 		pr_info("DRBG: could not allocate digest TFM handle\n");
1609 		return PTR_ERR(tfm);
1610 	}
1611 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1612 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1613 			GFP_KERNEL);
1614 	if (!sdesc) {
1615 		crypto_free_shash(tfm);
1616 		return -ENOMEM;
1617 	}
1618 
1619 	sdesc->shash.tfm = tfm;
1620 	sdesc->shash.flags = 0;
1621 	drbg->priv_data = sdesc;
1622 	return 0;
1623 }
1624 
1625 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1626 {
1627 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1628 	if (sdesc) {
1629 		crypto_free_shash(sdesc->shash.tfm);
1630 		kzfree(sdesc);
1631 	}
1632 	drbg->priv_data = NULL;
1633 	return 0;
1634 }
1635 
1636 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1637 			   unsigned char *outval, const struct list_head *in)
1638 {
1639 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1640 	struct drbg_string *input = NULL;
1641 
1642 	if (key)
1643 		crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1644 	crypto_shash_init(&sdesc->shash);
1645 	list_for_each_entry(input, in, list)
1646 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1647 	return crypto_shash_final(&sdesc->shash, outval);
1648 }
1649 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1650 
1651 #ifdef CONFIG_CRYPTO_DRBG_CTR
1652 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1653 {
1654 	int ret = 0;
1655 	struct crypto_blkcipher *tfm;
1656 
1657 	tfm = crypto_alloc_blkcipher(drbg->core->backend_cra_name, 0, 0);
1658 	if (IS_ERR(tfm)) {
1659 		pr_info("DRBG: could not allocate cipher TFM handle\n");
1660 		return PTR_ERR(tfm);
1661 	}
1662 	BUG_ON(drbg_blocklen(drbg) != crypto_blkcipher_blocksize(tfm));
1663 	drbg->priv_data = tfm;
1664 	return ret;
1665 }
1666 
1667 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1668 {
1669 	struct crypto_blkcipher *tfm =
1670 		(struct crypto_blkcipher *)drbg->priv_data;
1671 	if (tfm)
1672 		crypto_free_blkcipher(tfm);
1673 	drbg->priv_data = NULL;
1674 	return 0;
1675 }
1676 
1677 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1678 			  unsigned char *outval, const struct drbg_string *in)
1679 {
1680 	int ret = 0;
1681 	struct scatterlist sg_in, sg_out;
1682 	struct blkcipher_desc desc;
1683 	struct crypto_blkcipher *tfm =
1684 		(struct crypto_blkcipher *)drbg->priv_data;
1685 
1686 	desc.tfm = tfm;
1687 	desc.flags = 0;
1688 	crypto_blkcipher_setkey(tfm, key, (drbg_keylen(drbg)));
1689 	/* there is only component in *in */
1690 	sg_init_one(&sg_in, in->buf, in->len);
1691 	sg_init_one(&sg_out, outval, drbg_blocklen(drbg));
1692 	ret = crypto_blkcipher_encrypt(&desc, &sg_out, &sg_in, in->len);
1693 
1694 	return ret;
1695 }
1696 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1697 
1698 /***************************************************************
1699  * Kernel crypto API interface to register DRBG
1700  ***************************************************************/
1701 
1702 /*
1703  * Look up the DRBG flags by given kernel crypto API cra_name
1704  * The code uses the drbg_cores definition to do this
1705  *
1706  * @cra_name kernel crypto API cra_name
1707  * @coreref reference to integer which is filled with the pointer to
1708  *  the applicable core
1709  * @pr reference for setting prediction resistance
1710  *
1711  * return: flags
1712  */
1713 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1714 					 int *coreref, bool *pr)
1715 {
1716 	int i = 0;
1717 	size_t start = 0;
1718 	int len = 0;
1719 
1720 	*pr = true;
1721 	/* disassemble the names */
1722 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1723 		start = 10;
1724 		*pr = false;
1725 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1726 		start = 8;
1727 	} else {
1728 		return;
1729 	}
1730 
1731 	/* remove the first part */
1732 	len = strlen(cra_driver_name) - start;
1733 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1734 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1735 			    len)) {
1736 			*coreref = i;
1737 			return;
1738 		}
1739 	}
1740 }
1741 
1742 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1743 {
1744 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1745 	bool pr = false;
1746 	int coreref = 0;
1747 
1748 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm), &coreref, &pr);
1749 	/*
1750 	 * when personalization string is needed, the caller must call reset
1751 	 * and provide the personalization string as seed information
1752 	 */
1753 	return drbg_instantiate(drbg, NULL, coreref, pr);
1754 }
1755 
1756 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1757 {
1758 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1759 }
1760 
1761 /*
1762  * Generate random numbers invoked by the kernel crypto API:
1763  * The API of the kernel crypto API is extended as follows:
1764  *
1765  * If dlen is larger than zero, rdata is interpreted as the output buffer
1766  * where random data is to be stored.
1767  *
1768  * If dlen is zero, rdata is interpreted as a pointer to a struct drbg_gen
1769  * which holds the additional information string that is used for the
1770  * DRBG generation process. The output buffer that is to be used to store
1771  * data is also pointed to by struct drbg_gen.
1772  */
1773 static int drbg_kcapi_random(struct crypto_rng *tfm, u8 *rdata,
1774 			     unsigned int dlen)
1775 {
1776 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1777 	if (0 < dlen) {
1778 		return drbg_generate_long(drbg, rdata, dlen, NULL);
1779 	} else {
1780 		struct drbg_gen *data = (struct drbg_gen *)rdata;
1781 		struct drbg_string addtl;
1782 		/* catch NULL pointer */
1783 		if (!data)
1784 			return 0;
1785 		drbg_set_testdata(drbg, data->test_data);
1786 		/* linked list variable is now local to allow modification */
1787 		drbg_string_fill(&addtl, data->addtl->buf, data->addtl->len);
1788 		return drbg_generate_long(drbg, data->outbuf, data->outlen,
1789 					  &addtl);
1790 	}
1791 }
1792 
1793 /*
1794  * Reset the DRBG invoked by the kernel crypto API
1795  * The reset implies a full re-initialization of the DRBG. Similar to the
1796  * generate function of drbg_kcapi_random, this function extends the
1797  * kernel crypto API interface with struct drbg_gen
1798  */
1799 static int drbg_kcapi_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
1800 {
1801 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1802 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1803 	bool pr = false;
1804 	struct drbg_string seed_string;
1805 	int coreref = 0;
1806 
1807 	drbg_uninstantiate(drbg);
1808 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1809 			      &pr);
1810 	if (0 < slen) {
1811 		drbg_string_fill(&seed_string, seed, slen);
1812 		return drbg_instantiate(drbg, &seed_string, coreref, pr);
1813 	} else {
1814 		struct drbg_gen *data = (struct drbg_gen *)seed;
1815 		/* allow invocation of API call with NULL, 0 */
1816 		if (!data)
1817 			return drbg_instantiate(drbg, NULL, coreref, pr);
1818 		drbg_set_testdata(drbg, data->test_data);
1819 		/* linked list variable is now local to allow modification */
1820 		drbg_string_fill(&seed_string, data->addtl->buf,
1821 				 data->addtl->len);
1822 		return drbg_instantiate(drbg, &seed_string, coreref, pr);
1823 	}
1824 }
1825 
1826 /***************************************************************
1827  * Kernel module: code to load the module
1828  ***************************************************************/
1829 
1830 /*
1831  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1832  * of the error handling.
1833  *
1834  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1835  * as seed source of get_random_bytes does not fail.
1836  *
1837  * Note 2: There is no sensible way of testing the reseed counter
1838  * enforcement, so skip it.
1839  */
1840 static inline int __init drbg_healthcheck_sanity(void)
1841 {
1842 #ifdef CONFIG_CRYPTO_FIPS
1843 	int len = 0;
1844 #define OUTBUFLEN 16
1845 	unsigned char buf[OUTBUFLEN];
1846 	struct drbg_state *drbg = NULL;
1847 	int ret = -EFAULT;
1848 	int rc = -EFAULT;
1849 	bool pr = false;
1850 	int coreref = 0;
1851 	struct drbg_string addtl;
1852 	size_t max_addtllen, max_request_bytes;
1853 
1854 	/* only perform test in FIPS mode */
1855 	if (!fips_enabled)
1856 		return 0;
1857 
1858 #ifdef CONFIG_CRYPTO_DRBG_CTR
1859 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1860 #elif defined CONFIG_CRYPTO_DRBG_HASH
1861 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1862 #else
1863 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1864 #endif
1865 
1866 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1867 	if (!drbg)
1868 		return -ENOMEM;
1869 
1870 	/*
1871 	 * if the following tests fail, it is likely that there is a buffer
1872 	 * overflow as buf is much smaller than the requested or provided
1873 	 * string lengths -- in case the error handling does not succeed
1874 	 * we may get an OOPS. And we want to get an OOPS as this is a
1875 	 * grave bug.
1876 	 */
1877 
1878 	/* get a valid instance of DRBG for following tests */
1879 	ret = drbg_instantiate(drbg, NULL, coreref, pr);
1880 	if (ret) {
1881 		rc = ret;
1882 		goto outbuf;
1883 	}
1884 	max_addtllen = drbg_max_addtl(drbg);
1885 	max_request_bytes = drbg_max_request_bytes(drbg);
1886 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
1887 	/* overflow addtllen with additonal info string */
1888 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1889 	BUG_ON(0 < len);
1890 	/* overflow max_bits */
1891 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1892 	BUG_ON(0 < len);
1893 	drbg_uninstantiate(drbg);
1894 
1895 	/* overflow max addtllen with personalization string */
1896 	ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1897 	BUG_ON(0 == ret);
1898 	/* all tests passed */
1899 	rc = 0;
1900 
1901 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
1902 		 "completed\n");
1903 
1904 	drbg_uninstantiate(drbg);
1905 outbuf:
1906 	kzfree(drbg);
1907 	return rc;
1908 #else /* CONFIG_CRYPTO_FIPS */
1909 	return 0;
1910 #endif /* CONFIG_CRYPTO_FIPS */
1911 }
1912 
1913 static struct crypto_alg drbg_algs[22];
1914 
1915 /*
1916  * Fill the array drbg_algs used to register the different DRBGs
1917  * with the kernel crypto API. To fill the array, the information
1918  * from drbg_cores[] is used.
1919  */
1920 static inline void __init drbg_fill_array(struct crypto_alg *alg,
1921 					  const struct drbg_core *core, int pr)
1922 {
1923 	int pos = 0;
1924 	static int priority = 100;
1925 
1926 	memset(alg, 0, sizeof(struct crypto_alg));
1927 	memcpy(alg->cra_name, "stdrng", 6);
1928 	if (pr) {
1929 		memcpy(alg->cra_driver_name, "drbg_pr_", 8);
1930 		pos = 8;
1931 	} else {
1932 		memcpy(alg->cra_driver_name, "drbg_nopr_", 10);
1933 		pos = 10;
1934 	}
1935 	memcpy(alg->cra_driver_name + pos, core->cra_name,
1936 	       strlen(core->cra_name));
1937 
1938 	alg->cra_priority = priority;
1939 	priority++;
1940 	/*
1941 	 * If FIPS mode enabled, the selected DRBG shall have the
1942 	 * highest cra_priority over other stdrng instances to ensure
1943 	 * it is selected.
1944 	 */
1945 	if (fips_enabled)
1946 		alg->cra_priority += 200;
1947 
1948 	alg->cra_flags		= CRYPTO_ALG_TYPE_RNG;
1949 	alg->cra_ctxsize 	= sizeof(struct drbg_state);
1950 	alg->cra_type		= &crypto_rng_type;
1951 	alg->cra_module		= THIS_MODULE;
1952 	alg->cra_init		= drbg_kcapi_init;
1953 	alg->cra_exit		= drbg_kcapi_cleanup;
1954 	alg->cra_u.rng.rng_make_random	= drbg_kcapi_random;
1955 	alg->cra_u.rng.rng_reset	= drbg_kcapi_reset;
1956 	alg->cra_u.rng.seedsize	= 0;
1957 }
1958 
1959 static int __init drbg_init(void)
1960 {
1961 	unsigned int i = 0; /* pointer to drbg_algs */
1962 	unsigned int j = 0; /* pointer to drbg_cores */
1963 	int ret = -EFAULT;
1964 
1965 	ret = drbg_healthcheck_sanity();
1966 	if (ret)
1967 		return ret;
1968 
1969 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1970 		pr_info("DRBG: Cannot register all DRBG types"
1971 			"(slots needed: %zu, slots available: %zu)\n",
1972 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1973 		return ret;
1974 	}
1975 
1976 	/*
1977 	 * each DRBG definition can be used with PR and without PR, thus
1978 	 * we instantiate each DRBG in drbg_cores[] twice.
1979 	 *
1980 	 * As the order of placing them into the drbg_algs array matters
1981 	 * (the later DRBGs receive a higher cra_priority) we register the
1982 	 * prediction resistance DRBGs first as the should not be too
1983 	 * interesting.
1984 	 */
1985 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1986 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1987 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1988 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1989 	return crypto_register_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1990 }
1991 
1992 static void __exit drbg_exit(void)
1993 {
1994 	crypto_unregister_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1995 }
1996 
1997 module_init(drbg_init);
1998 module_exit(drbg_exit);
1999 #ifndef CRYPTO_DRBG_HASH_STRING
2000 #define CRYPTO_DRBG_HASH_STRING ""
2001 #endif
2002 #ifndef CRYPTO_DRBG_HMAC_STRING
2003 #define CRYPTO_DRBG_HMAC_STRING ""
2004 #endif
2005 #ifndef CRYPTO_DRBG_CTR_STRING
2006 #define CRYPTO_DRBG_CTR_STRING ""
2007 #endif
2008 MODULE_LICENSE("GPL");
2009 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2010 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2011 		   "using following cores: "
2012 		   CRYPTO_DRBG_HASH_STRING
2013 		   CRYPTO_DRBG_HMAC_STRING
2014 		   CRYPTO_DRBG_CTR_STRING);
2015