xref: /linux/crypto/drbg.c (revision 5acac83bf2e42f51ab9fd315d657798754bf0bb8)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 #include <crypto/internal/cipher.h>
102 #include <linux/kernel.h>
103 
104 /***************************************************************
105  * Backend cipher definitions available to DRBG
106  ***************************************************************/
107 
108 /*
109  * The order of the DRBG definitions here matter: every DRBG is registered
110  * as stdrng. Each DRBG receives an increasing cra_priority values the later
111  * they are defined in this array (see drbg_fill_array).
112  *
113  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
114  * the SHA256 / AES 256 over other ciphers. Thus, the favored
115  * DRBGs are the latest entries in this array.
116  */
117 static const struct drbg_core drbg_cores[] = {
118 #ifdef CONFIG_CRYPTO_DRBG_CTR
119 	{
120 		.flags = DRBG_CTR | DRBG_STRENGTH128,
121 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
122 		.blocklen_bytes = 16,
123 		.cra_name = "ctr_aes128",
124 		.backend_cra_name = "aes",
125 	}, {
126 		.flags = DRBG_CTR | DRBG_STRENGTH192,
127 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
128 		.blocklen_bytes = 16,
129 		.cra_name = "ctr_aes192",
130 		.backend_cra_name = "aes",
131 	}, {
132 		.flags = DRBG_CTR | DRBG_STRENGTH256,
133 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
134 		.blocklen_bytes = 16,
135 		.cra_name = "ctr_aes256",
136 		.backend_cra_name = "aes",
137 	},
138 #endif /* CONFIG_CRYPTO_DRBG_CTR */
139 #ifdef CONFIG_CRYPTO_DRBG_HASH
140 	{
141 		.flags = DRBG_HASH | DRBG_STRENGTH128,
142 		.statelen = 55, /* 440 bits */
143 		.blocklen_bytes = 20,
144 		.cra_name = "sha1",
145 		.backend_cra_name = "sha1",
146 	}, {
147 		.flags = DRBG_HASH | DRBG_STRENGTH256,
148 		.statelen = 111, /* 888 bits */
149 		.blocklen_bytes = 48,
150 		.cra_name = "sha384",
151 		.backend_cra_name = "sha384",
152 	}, {
153 		.flags = DRBG_HASH | DRBG_STRENGTH256,
154 		.statelen = 111, /* 888 bits */
155 		.blocklen_bytes = 64,
156 		.cra_name = "sha512",
157 		.backend_cra_name = "sha512",
158 	}, {
159 		.flags = DRBG_HASH | DRBG_STRENGTH256,
160 		.statelen = 55, /* 440 bits */
161 		.blocklen_bytes = 32,
162 		.cra_name = "sha256",
163 		.backend_cra_name = "sha256",
164 	},
165 #endif /* CONFIG_CRYPTO_DRBG_HASH */
166 #ifdef CONFIG_CRYPTO_DRBG_HMAC
167 	{
168 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
169 		.statelen = 20, /* block length of cipher */
170 		.blocklen_bytes = 20,
171 		.cra_name = "hmac_sha1",
172 		.backend_cra_name = "hmac(sha1)",
173 	}, {
174 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
175 		.statelen = 48, /* block length of cipher */
176 		.blocklen_bytes = 48,
177 		.cra_name = "hmac_sha384",
178 		.backend_cra_name = "hmac(sha384)",
179 	}, {
180 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
181 		.statelen = 64, /* block length of cipher */
182 		.blocklen_bytes = 64,
183 		.cra_name = "hmac_sha512",
184 		.backend_cra_name = "hmac(sha512)",
185 	}, {
186 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
187 		.statelen = 32, /* block length of cipher */
188 		.blocklen_bytes = 32,
189 		.cra_name = "hmac_sha256",
190 		.backend_cra_name = "hmac(sha256)",
191 	},
192 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
193 };
194 
195 static int drbg_uninstantiate(struct drbg_state *drbg);
196 
197 /******************************************************************
198  * Generic helper functions
199  ******************************************************************/
200 
201 /*
202  * Return strength of DRBG according to SP800-90A section 8.4
203  *
204  * @flags DRBG flags reference
205  *
206  * Return: normalized strength in *bytes* value or 32 as default
207  *	   to counter programming errors
208  */
209 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
210 {
211 	switch (flags & DRBG_STRENGTH_MASK) {
212 	case DRBG_STRENGTH128:
213 		return 16;
214 	case DRBG_STRENGTH192:
215 		return 24;
216 	case DRBG_STRENGTH256:
217 		return 32;
218 	default:
219 		return 32;
220 	}
221 }
222 
223 /*
224  * FIPS 140-2 continuous self test for the noise source
225  * The test is performed on the noise source input data. Thus, the function
226  * implicitly knows the size of the buffer to be equal to the security
227  * strength.
228  *
229  * Note, this function disregards the nonce trailing the entropy data during
230  * initial seeding.
231  *
232  * drbg->drbg_mutex must have been taken.
233  *
234  * @drbg DRBG handle
235  * @entropy buffer of seed data to be checked
236  *
237  * return:
238  *	0 on success
239  *	-EAGAIN on when the CTRNG is not yet primed
240  *	< 0 on error
241  */
242 static int drbg_fips_continuous_test(struct drbg_state *drbg,
243 				     const unsigned char *entropy)
244 {
245 	unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
246 	int ret = 0;
247 
248 	if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
249 		return 0;
250 
251 	/* skip test if we test the overall system */
252 	if (list_empty(&drbg->test_data.list))
253 		return 0;
254 	/* only perform test in FIPS mode */
255 	if (!fips_enabled)
256 		return 0;
257 
258 	if (!drbg->fips_primed) {
259 		/* Priming of FIPS test */
260 		memcpy(drbg->prev, entropy, entropylen);
261 		drbg->fips_primed = true;
262 		/* priming: another round is needed */
263 		return -EAGAIN;
264 	}
265 	ret = memcmp(drbg->prev, entropy, entropylen);
266 	if (!ret)
267 		panic("DRBG continuous self test failed\n");
268 	memcpy(drbg->prev, entropy, entropylen);
269 
270 	/* the test shall pass when the two values are not equal */
271 	return 0;
272 }
273 
274 /*
275  * Convert an integer into a byte representation of this integer.
276  * The byte representation is big-endian
277  *
278  * @val value to be converted
279  * @buf buffer holding the converted integer -- caller must ensure that
280  *      buffer size is at least 32 bit
281  */
282 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
283 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
284 {
285 	struct s {
286 		__be32 conv;
287 	};
288 	struct s *conversion = (struct s *) buf;
289 
290 	conversion->conv = cpu_to_be32(val);
291 }
292 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
293 
294 /******************************************************************
295  * CTR DRBG callback functions
296  ******************************************************************/
297 
298 #ifdef CONFIG_CRYPTO_DRBG_CTR
299 #define CRYPTO_DRBG_CTR_STRING "CTR "
300 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
301 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
302 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
303 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
304 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
305 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
306 
307 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
308 				 const unsigned char *key);
309 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
310 			  const struct drbg_string *in);
311 static int drbg_init_sym_kernel(struct drbg_state *drbg);
312 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
313 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
314 			      u8 *inbuf, u32 inbuflen,
315 			      u8 *outbuf, u32 outlen);
316 #define DRBG_OUTSCRATCHLEN 256
317 
318 /* BCC function for CTR DRBG as defined in 10.4.3 */
319 static int drbg_ctr_bcc(struct drbg_state *drbg,
320 			unsigned char *out, const unsigned char *key,
321 			struct list_head *in)
322 {
323 	int ret = 0;
324 	struct drbg_string *curr = NULL;
325 	struct drbg_string data;
326 	short cnt = 0;
327 
328 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
329 
330 	/* 10.4.3 step 2 / 4 */
331 	drbg_kcapi_symsetkey(drbg, key);
332 	list_for_each_entry(curr, in, list) {
333 		const unsigned char *pos = curr->buf;
334 		size_t len = curr->len;
335 		/* 10.4.3 step 4.1 */
336 		while (len) {
337 			/* 10.4.3 step 4.2 */
338 			if (drbg_blocklen(drbg) == cnt) {
339 				cnt = 0;
340 				ret = drbg_kcapi_sym(drbg, out, &data);
341 				if (ret)
342 					return ret;
343 			}
344 			out[cnt] ^= *pos;
345 			pos++;
346 			cnt++;
347 			len--;
348 		}
349 	}
350 	/* 10.4.3 step 4.2 for last block */
351 	if (cnt)
352 		ret = drbg_kcapi_sym(drbg, out, &data);
353 
354 	return ret;
355 }
356 
357 /*
358  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
359  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
360  * the scratchpad is used as follows:
361  * drbg_ctr_update:
362  *	temp
363  *		start: drbg->scratchpad
364  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
365  *			note: the cipher writing into this variable works
366  *			blocklen-wise. Now, when the statelen is not a multiple
367  *			of blocklen, the generateion loop below "spills over"
368  *			by at most blocklen. Thus, we need to give sufficient
369  *			memory.
370  *	df_data
371  *		start: drbg->scratchpad +
372  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
373  *		length: drbg_statelen(drbg)
374  *
375  * drbg_ctr_df:
376  *	pad
377  *		start: df_data + drbg_statelen(drbg)
378  *		length: drbg_blocklen(drbg)
379  *	iv
380  *		start: pad + drbg_blocklen(drbg)
381  *		length: drbg_blocklen(drbg)
382  *	temp
383  *		start: iv + drbg_blocklen(drbg)
384  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
385  *			note: temp is the buffer that the BCC function operates
386  *			on. BCC operates blockwise. drbg_statelen(drbg)
387  *			is sufficient when the DRBG state length is a multiple
388  *			of the block size. For AES192 (and maybe other ciphers)
389  *			this is not correct and the length for temp is
390  *			insufficient (yes, that also means for such ciphers,
391  *			the final output of all BCC rounds are truncated).
392  *			Therefore, add drbg_blocklen(drbg) to cover all
393  *			possibilities.
394  */
395 
396 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
397 static int drbg_ctr_df(struct drbg_state *drbg,
398 		       unsigned char *df_data, size_t bytes_to_return,
399 		       struct list_head *seedlist)
400 {
401 	int ret = -EFAULT;
402 	unsigned char L_N[8];
403 	/* S3 is input */
404 	struct drbg_string S1, S2, S4, cipherin;
405 	LIST_HEAD(bcc_list);
406 	unsigned char *pad = df_data + drbg_statelen(drbg);
407 	unsigned char *iv = pad + drbg_blocklen(drbg);
408 	unsigned char *temp = iv + drbg_blocklen(drbg);
409 	size_t padlen = 0;
410 	unsigned int templen = 0;
411 	/* 10.4.2 step 7 */
412 	unsigned int i = 0;
413 	/* 10.4.2 step 8 */
414 	const unsigned char *K = (unsigned char *)
415 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
416 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
417 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
418 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
419 	unsigned char *X;
420 	size_t generated_len = 0;
421 	size_t inputlen = 0;
422 	struct drbg_string *seed = NULL;
423 
424 	memset(pad, 0, drbg_blocklen(drbg));
425 	memset(iv, 0, drbg_blocklen(drbg));
426 
427 	/* 10.4.2 step 1 is implicit as we work byte-wise */
428 
429 	/* 10.4.2 step 2 */
430 	if ((512/8) < bytes_to_return)
431 		return -EINVAL;
432 
433 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
434 	list_for_each_entry(seed, seedlist, list)
435 		inputlen += seed->len;
436 	drbg_cpu_to_be32(inputlen, &L_N[0]);
437 
438 	/* 10.4.2 step 3 */
439 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
440 
441 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
442 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
443 	/* wrap the padlen appropriately */
444 	if (padlen)
445 		padlen = drbg_blocklen(drbg) - padlen;
446 	/*
447 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
448 	 * As the calculated padlen value only covers the number of zero
449 	 * bytes, this value has to be incremented by one for the 0x80 byte.
450 	 */
451 	padlen++;
452 	pad[0] = 0x80;
453 
454 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
455 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
456 	list_add_tail(&S1.list, &bcc_list);
457 	drbg_string_fill(&S2, L_N, sizeof(L_N));
458 	list_add_tail(&S2.list, &bcc_list);
459 	list_splice_tail(seedlist, &bcc_list);
460 	drbg_string_fill(&S4, pad, padlen);
461 	list_add_tail(&S4.list, &bcc_list);
462 
463 	/* 10.4.2 step 9 */
464 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
465 		/*
466 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
467 		 * holds zeros after allocation -- even the increment of i
468 		 * is irrelevant as the increment remains within length of i
469 		 */
470 		drbg_cpu_to_be32(i, iv);
471 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
472 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
473 		if (ret)
474 			goto out;
475 		/* 10.4.2 step 9.3 */
476 		i++;
477 		templen += drbg_blocklen(drbg);
478 	}
479 
480 	/* 10.4.2 step 11 */
481 	X = temp + (drbg_keylen(drbg));
482 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
483 
484 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
485 
486 	/* 10.4.2 step 13 */
487 	drbg_kcapi_symsetkey(drbg, temp);
488 	while (generated_len < bytes_to_return) {
489 		short blocklen = 0;
490 		/*
491 		 * 10.4.2 step 13.1: the truncation of the key length is
492 		 * implicit as the key is only drbg_blocklen in size based on
493 		 * the implementation of the cipher function callback
494 		 */
495 		ret = drbg_kcapi_sym(drbg, X, &cipherin);
496 		if (ret)
497 			goto out;
498 		blocklen = (drbg_blocklen(drbg) <
499 				(bytes_to_return - generated_len)) ?
500 			    drbg_blocklen(drbg) :
501 				(bytes_to_return - generated_len);
502 		/* 10.4.2 step 13.2 and 14 */
503 		memcpy(df_data + generated_len, X, blocklen);
504 		generated_len += blocklen;
505 	}
506 
507 	ret = 0;
508 
509 out:
510 	memset(iv, 0, drbg_blocklen(drbg));
511 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
512 	memset(pad, 0, drbg_blocklen(drbg));
513 	return ret;
514 }
515 
516 /*
517  * update function of CTR DRBG as defined in 10.2.1.2
518  *
519  * The reseed variable has an enhanced meaning compared to the update
520  * functions of the other DRBGs as follows:
521  * 0 => initial seed from initialization
522  * 1 => reseed via drbg_seed
523  * 2 => first invocation from drbg_ctr_update when addtl is present. In
524  *      this case, the df_data scratchpad is not deleted so that it is
525  *      available for another calls to prevent calling the DF function
526  *      again.
527  * 3 => second invocation from drbg_ctr_update. When the update function
528  *      was called with addtl, the df_data memory already contains the
529  *      DFed addtl information and we do not need to call DF again.
530  */
531 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
532 			   int reseed)
533 {
534 	int ret = -EFAULT;
535 	/* 10.2.1.2 step 1 */
536 	unsigned char *temp = drbg->scratchpad;
537 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
538 				 drbg_blocklen(drbg);
539 
540 	if (3 > reseed)
541 		memset(df_data, 0, drbg_statelen(drbg));
542 
543 	if (!reseed) {
544 		/*
545 		 * The DRBG uses the CTR mode of the underlying AES cipher. The
546 		 * CTR mode increments the counter value after the AES operation
547 		 * but SP800-90A requires that the counter is incremented before
548 		 * the AES operation. Hence, we increment it at the time we set
549 		 * it by one.
550 		 */
551 		crypto_inc(drbg->V, drbg_blocklen(drbg));
552 
553 		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
554 					     drbg_keylen(drbg));
555 		if (ret)
556 			goto out;
557 	}
558 
559 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
560 	if (seed) {
561 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
562 		if (ret)
563 			goto out;
564 	}
565 
566 	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
567 				 temp, drbg_statelen(drbg));
568 	if (ret)
569 		return ret;
570 
571 	/* 10.2.1.2 step 5 */
572 	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
573 				     drbg_keylen(drbg));
574 	if (ret)
575 		goto out;
576 	/* 10.2.1.2 step 6 */
577 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
578 	/* See above: increment counter by one to compensate timing of CTR op */
579 	crypto_inc(drbg->V, drbg_blocklen(drbg));
580 	ret = 0;
581 
582 out:
583 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
584 	if (2 != reseed)
585 		memset(df_data, 0, drbg_statelen(drbg));
586 	return ret;
587 }
588 
589 /*
590  * scratchpad use: drbg_ctr_update is called independently from
591  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
592  */
593 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
594 static int drbg_ctr_generate(struct drbg_state *drbg,
595 			     unsigned char *buf, unsigned int buflen,
596 			     struct list_head *addtl)
597 {
598 	int ret;
599 	int len = min_t(int, buflen, INT_MAX);
600 
601 	/* 10.2.1.5.2 step 2 */
602 	if (addtl && !list_empty(addtl)) {
603 		ret = drbg_ctr_update(drbg, addtl, 2);
604 		if (ret)
605 			return 0;
606 	}
607 
608 	/* 10.2.1.5.2 step 4.1 */
609 	ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
610 	if (ret)
611 		return ret;
612 
613 	/* 10.2.1.5.2 step 6 */
614 	ret = drbg_ctr_update(drbg, NULL, 3);
615 	if (ret)
616 		len = ret;
617 
618 	return len;
619 }
620 
621 static const struct drbg_state_ops drbg_ctr_ops = {
622 	.update		= drbg_ctr_update,
623 	.generate	= drbg_ctr_generate,
624 	.crypto_init	= drbg_init_sym_kernel,
625 	.crypto_fini	= drbg_fini_sym_kernel,
626 };
627 #endif /* CONFIG_CRYPTO_DRBG_CTR */
628 
629 /******************************************************************
630  * HMAC DRBG callback functions
631  ******************************************************************/
632 
633 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
634 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
635 			   const struct list_head *in);
636 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
637 				  const unsigned char *key);
638 static int drbg_init_hash_kernel(struct drbg_state *drbg);
639 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
640 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
641 
642 #ifdef CONFIG_CRYPTO_DRBG_HMAC
643 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
644 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
645 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
646 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
647 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
648 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
649 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
650 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
651 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
652 
653 /* update function of HMAC DRBG as defined in 10.1.2.2 */
654 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
655 			    int reseed)
656 {
657 	int ret = -EFAULT;
658 	int i = 0;
659 	struct drbg_string seed1, seed2, vdata;
660 	LIST_HEAD(seedlist);
661 	LIST_HEAD(vdatalist);
662 
663 	if (!reseed) {
664 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
665 		memset(drbg->V, 1, drbg_statelen(drbg));
666 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
667 	}
668 
669 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
670 	list_add_tail(&seed1.list, &seedlist);
671 	/* buffer of seed2 will be filled in for loop below with one byte */
672 	drbg_string_fill(&seed2, NULL, 1);
673 	list_add_tail(&seed2.list, &seedlist);
674 	/* input data of seed is allowed to be NULL at this point */
675 	if (seed)
676 		list_splice_tail(seed, &seedlist);
677 
678 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
679 	list_add_tail(&vdata.list, &vdatalist);
680 	for (i = 2; 0 < i; i--) {
681 		/* first round uses 0x0, second 0x1 */
682 		unsigned char prefix = DRBG_PREFIX0;
683 		if (1 == i)
684 			prefix = DRBG_PREFIX1;
685 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
686 		seed2.buf = &prefix;
687 		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
688 		if (ret)
689 			return ret;
690 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
691 
692 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
693 		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
694 		if (ret)
695 			return ret;
696 
697 		/* 10.1.2.2 step 3 */
698 		if (!seed)
699 			return ret;
700 	}
701 
702 	return 0;
703 }
704 
705 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
706 static int drbg_hmac_generate(struct drbg_state *drbg,
707 			      unsigned char *buf,
708 			      unsigned int buflen,
709 			      struct list_head *addtl)
710 {
711 	int len = 0;
712 	int ret = 0;
713 	struct drbg_string data;
714 	LIST_HEAD(datalist);
715 
716 	/* 10.1.2.5 step 2 */
717 	if (addtl && !list_empty(addtl)) {
718 		ret = drbg_hmac_update(drbg, addtl, 1);
719 		if (ret)
720 			return ret;
721 	}
722 
723 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
724 	list_add_tail(&data.list, &datalist);
725 	while (len < buflen) {
726 		unsigned int outlen = 0;
727 		/* 10.1.2.5 step 4.1 */
728 		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
729 		if (ret)
730 			return ret;
731 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
732 			  drbg_blocklen(drbg) : (buflen - len);
733 
734 		/* 10.1.2.5 step 4.2 */
735 		memcpy(buf + len, drbg->V, outlen);
736 		len += outlen;
737 	}
738 
739 	/* 10.1.2.5 step 6 */
740 	if (addtl && !list_empty(addtl))
741 		ret = drbg_hmac_update(drbg, addtl, 1);
742 	else
743 		ret = drbg_hmac_update(drbg, NULL, 1);
744 	if (ret)
745 		return ret;
746 
747 	return len;
748 }
749 
750 static const struct drbg_state_ops drbg_hmac_ops = {
751 	.update		= drbg_hmac_update,
752 	.generate	= drbg_hmac_generate,
753 	.crypto_init	= drbg_init_hash_kernel,
754 	.crypto_fini	= drbg_fini_hash_kernel,
755 };
756 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
757 
758 /******************************************************************
759  * Hash DRBG callback functions
760  ******************************************************************/
761 
762 #ifdef CONFIG_CRYPTO_DRBG_HASH
763 #define CRYPTO_DRBG_HASH_STRING "HASH "
764 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
765 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
766 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
767 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
768 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
769 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
770 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
771 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
772 
773 /*
774  * Increment buffer
775  *
776  * @dst buffer to increment
777  * @add value to add
778  */
779 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
780 				const unsigned char *add, size_t addlen)
781 {
782 	/* implied: dstlen > addlen */
783 	unsigned char *dstptr;
784 	const unsigned char *addptr;
785 	unsigned int remainder = 0;
786 	size_t len = addlen;
787 
788 	dstptr = dst + (dstlen-1);
789 	addptr = add + (addlen-1);
790 	while (len) {
791 		remainder += *dstptr + *addptr;
792 		*dstptr = remainder & 0xff;
793 		remainder >>= 8;
794 		len--; dstptr--; addptr--;
795 	}
796 	len = dstlen - addlen;
797 	while (len && remainder > 0) {
798 		remainder = *dstptr + 1;
799 		*dstptr = remainder & 0xff;
800 		remainder >>= 8;
801 		len--; dstptr--;
802 	}
803 }
804 
805 /*
806  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
807  * interlinked, the scratchpad is used as follows:
808  * drbg_hash_update
809  *	start: drbg->scratchpad
810  *	length: drbg_statelen(drbg)
811  * drbg_hash_df:
812  *	start: drbg->scratchpad + drbg_statelen(drbg)
813  *	length: drbg_blocklen(drbg)
814  *
815  * drbg_hash_process_addtl uses the scratchpad, but fully completes
816  * before either of the functions mentioned before are invoked. Therefore,
817  * drbg_hash_process_addtl does not need to be specifically considered.
818  */
819 
820 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
821 static int drbg_hash_df(struct drbg_state *drbg,
822 			unsigned char *outval, size_t outlen,
823 			struct list_head *entropylist)
824 {
825 	int ret = 0;
826 	size_t len = 0;
827 	unsigned char input[5];
828 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
829 	struct drbg_string data;
830 
831 	/* 10.4.1 step 3 */
832 	input[0] = 1;
833 	drbg_cpu_to_be32((outlen * 8), &input[1]);
834 
835 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
836 	drbg_string_fill(&data, input, 5);
837 	list_add(&data.list, entropylist);
838 
839 	/* 10.4.1 step 4 */
840 	while (len < outlen) {
841 		short blocklen = 0;
842 		/* 10.4.1 step 4.1 */
843 		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
844 		if (ret)
845 			goto out;
846 		/* 10.4.1 step 4.2 */
847 		input[0]++;
848 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
849 			    drbg_blocklen(drbg) : (outlen - len);
850 		memcpy(outval + len, tmp, blocklen);
851 		len += blocklen;
852 	}
853 
854 out:
855 	memset(tmp, 0, drbg_blocklen(drbg));
856 	return ret;
857 }
858 
859 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
860 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
861 			    int reseed)
862 {
863 	int ret = 0;
864 	struct drbg_string data1, data2;
865 	LIST_HEAD(datalist);
866 	LIST_HEAD(datalist2);
867 	unsigned char *V = drbg->scratchpad;
868 	unsigned char prefix = DRBG_PREFIX1;
869 
870 	if (!seed)
871 		return -EINVAL;
872 
873 	if (reseed) {
874 		/* 10.1.1.3 step 1 */
875 		memcpy(V, drbg->V, drbg_statelen(drbg));
876 		drbg_string_fill(&data1, &prefix, 1);
877 		list_add_tail(&data1.list, &datalist);
878 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
879 		list_add_tail(&data2.list, &datalist);
880 	}
881 	list_splice_tail(seed, &datalist);
882 
883 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
884 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
885 	if (ret)
886 		goto out;
887 
888 	/* 10.1.1.2 / 10.1.1.3 step 4  */
889 	prefix = DRBG_PREFIX0;
890 	drbg_string_fill(&data1, &prefix, 1);
891 	list_add_tail(&data1.list, &datalist2);
892 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
893 	list_add_tail(&data2.list, &datalist2);
894 	/* 10.1.1.2 / 10.1.1.3 step 4 */
895 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
896 
897 out:
898 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
899 	return ret;
900 }
901 
902 /* processing of additional information string for Hash DRBG */
903 static int drbg_hash_process_addtl(struct drbg_state *drbg,
904 				   struct list_head *addtl)
905 {
906 	int ret = 0;
907 	struct drbg_string data1, data2;
908 	LIST_HEAD(datalist);
909 	unsigned char prefix = DRBG_PREFIX2;
910 
911 	/* 10.1.1.4 step 2 */
912 	if (!addtl || list_empty(addtl))
913 		return 0;
914 
915 	/* 10.1.1.4 step 2a */
916 	drbg_string_fill(&data1, &prefix, 1);
917 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
918 	list_add_tail(&data1.list, &datalist);
919 	list_add_tail(&data2.list, &datalist);
920 	list_splice_tail(addtl, &datalist);
921 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
922 	if (ret)
923 		goto out;
924 
925 	/* 10.1.1.4 step 2b */
926 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
927 		     drbg->scratchpad, drbg_blocklen(drbg));
928 
929 out:
930 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
931 	return ret;
932 }
933 
934 /* Hashgen defined in 10.1.1.4 */
935 static int drbg_hash_hashgen(struct drbg_state *drbg,
936 			     unsigned char *buf,
937 			     unsigned int buflen)
938 {
939 	int len = 0;
940 	int ret = 0;
941 	unsigned char *src = drbg->scratchpad;
942 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
943 	struct drbg_string data;
944 	LIST_HEAD(datalist);
945 
946 	/* 10.1.1.4 step hashgen 2 */
947 	memcpy(src, drbg->V, drbg_statelen(drbg));
948 
949 	drbg_string_fill(&data, src, drbg_statelen(drbg));
950 	list_add_tail(&data.list, &datalist);
951 	while (len < buflen) {
952 		unsigned int outlen = 0;
953 		/* 10.1.1.4 step hashgen 4.1 */
954 		ret = drbg_kcapi_hash(drbg, dst, &datalist);
955 		if (ret) {
956 			len = ret;
957 			goto out;
958 		}
959 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
960 			  drbg_blocklen(drbg) : (buflen - len);
961 		/* 10.1.1.4 step hashgen 4.2 */
962 		memcpy(buf + len, dst, outlen);
963 		len += outlen;
964 		/* 10.1.1.4 hashgen step 4.3 */
965 		if (len < buflen)
966 			crypto_inc(src, drbg_statelen(drbg));
967 	}
968 
969 out:
970 	memset(drbg->scratchpad, 0,
971 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
972 	return len;
973 }
974 
975 /* generate function for Hash DRBG as defined in  10.1.1.4 */
976 static int drbg_hash_generate(struct drbg_state *drbg,
977 			      unsigned char *buf, unsigned int buflen,
978 			      struct list_head *addtl)
979 {
980 	int len = 0;
981 	int ret = 0;
982 	union {
983 		unsigned char req[8];
984 		__be64 req_int;
985 	} u;
986 	unsigned char prefix = DRBG_PREFIX3;
987 	struct drbg_string data1, data2;
988 	LIST_HEAD(datalist);
989 
990 	/* 10.1.1.4 step 2 */
991 	ret = drbg_hash_process_addtl(drbg, addtl);
992 	if (ret)
993 		return ret;
994 	/* 10.1.1.4 step 3 */
995 	len = drbg_hash_hashgen(drbg, buf, buflen);
996 
997 	/* this is the value H as documented in 10.1.1.4 */
998 	/* 10.1.1.4 step 4 */
999 	drbg_string_fill(&data1, &prefix, 1);
1000 	list_add_tail(&data1.list, &datalist);
1001 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1002 	list_add_tail(&data2.list, &datalist);
1003 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
1004 	if (ret) {
1005 		len = ret;
1006 		goto out;
1007 	}
1008 
1009 	/* 10.1.1.4 step 5 */
1010 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1011 		     drbg->scratchpad, drbg_blocklen(drbg));
1012 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1013 		     drbg->C, drbg_statelen(drbg));
1014 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1015 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1016 
1017 out:
1018 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1019 	return len;
1020 }
1021 
1022 /*
1023  * scratchpad usage: as update and generate are used isolated, both
1024  * can use the scratchpad
1025  */
1026 static const struct drbg_state_ops drbg_hash_ops = {
1027 	.update		= drbg_hash_update,
1028 	.generate	= drbg_hash_generate,
1029 	.crypto_init	= drbg_init_hash_kernel,
1030 	.crypto_fini	= drbg_fini_hash_kernel,
1031 };
1032 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1033 
1034 /******************************************************************
1035  * Functions common for DRBG implementations
1036  ******************************************************************/
1037 
1038 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1039 			      int reseed)
1040 {
1041 	int ret = drbg->d_ops->update(drbg, seed, reseed);
1042 
1043 	if (ret)
1044 		return ret;
1045 
1046 	drbg->seeded = true;
1047 	/* 10.1.1.2 / 10.1.1.3 step 5 */
1048 	drbg->reseed_ctr = 1;
1049 
1050 	return ret;
1051 }
1052 
1053 static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1054 					unsigned char *entropy,
1055 					unsigned int entropylen)
1056 {
1057 	int ret;
1058 
1059 	do {
1060 		get_random_bytes(entropy, entropylen);
1061 		ret = drbg_fips_continuous_test(drbg, entropy);
1062 		if (ret && ret != -EAGAIN)
1063 			return ret;
1064 	} while (ret);
1065 
1066 	return 0;
1067 }
1068 
1069 static void drbg_async_seed(struct work_struct *work)
1070 {
1071 	struct drbg_string data;
1072 	LIST_HEAD(seedlist);
1073 	struct drbg_state *drbg = container_of(work, struct drbg_state,
1074 					       seed_work);
1075 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1076 	unsigned char entropy[32];
1077 	int ret;
1078 
1079 	BUG_ON(!entropylen);
1080 	BUG_ON(entropylen > sizeof(entropy));
1081 
1082 	drbg_string_fill(&data, entropy, entropylen);
1083 	list_add_tail(&data.list, &seedlist);
1084 
1085 	mutex_lock(&drbg->drbg_mutex);
1086 
1087 	ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1088 	if (ret)
1089 		goto unlock;
1090 
1091 	/* Set seeded to false so that if __drbg_seed fails the
1092 	 * next generate call will trigger a reseed.
1093 	 */
1094 	drbg->seeded = false;
1095 
1096 	__drbg_seed(drbg, &seedlist, true);
1097 
1098 	if (drbg->seeded)
1099 		drbg->reseed_threshold = drbg_max_requests(drbg);
1100 
1101 unlock:
1102 	mutex_unlock(&drbg->drbg_mutex);
1103 
1104 	memzero_explicit(entropy, entropylen);
1105 }
1106 
1107 /*
1108  * Seeding or reseeding of the DRBG
1109  *
1110  * @drbg: DRBG state struct
1111  * @pers: personalization / additional information buffer
1112  * @reseed: 0 for initial seed process, 1 for reseeding
1113  *
1114  * return:
1115  *	0 on success
1116  *	error value otherwise
1117  */
1118 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1119 		     bool reseed)
1120 {
1121 	int ret;
1122 	unsigned char entropy[((32 + 16) * 2)];
1123 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1124 	struct drbg_string data1;
1125 	LIST_HEAD(seedlist);
1126 
1127 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1128 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1129 		pr_devel("DRBG: personalization string too long %zu\n",
1130 			 pers->len);
1131 		return -EINVAL;
1132 	}
1133 
1134 	if (list_empty(&drbg->test_data.list)) {
1135 		drbg_string_fill(&data1, drbg->test_data.buf,
1136 				 drbg->test_data.len);
1137 		pr_devel("DRBG: using test entropy\n");
1138 	} else {
1139 		/*
1140 		 * Gather entropy equal to the security strength of the DRBG.
1141 		 * With a derivation function, a nonce is required in addition
1142 		 * to the entropy. A nonce must be at least 1/2 of the security
1143 		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1144 		 * of the strength. The consideration of a nonce is only
1145 		 * applicable during initial seeding.
1146 		 */
1147 		BUG_ON(!entropylen);
1148 		if (!reseed)
1149 			entropylen = ((entropylen + 1) / 2) * 3;
1150 		BUG_ON((entropylen * 2) > sizeof(entropy));
1151 
1152 		/* Get seed from in-kernel /dev/urandom */
1153 		ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1154 		if (ret)
1155 			goto out;
1156 
1157 		if (!drbg->jent) {
1158 			drbg_string_fill(&data1, entropy, entropylen);
1159 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1160 				 entropylen);
1161 		} else {
1162 			/* Get seed from Jitter RNG */
1163 			ret = crypto_rng_get_bytes(drbg->jent,
1164 						   entropy + entropylen,
1165 						   entropylen);
1166 			if (ret) {
1167 				pr_devel("DRBG: jent failed with %d\n", ret);
1168 
1169 				/*
1170 				 * Do not treat the transient failure of the
1171 				 * Jitter RNG as an error that needs to be
1172 				 * reported. The combined number of the
1173 				 * maximum reseed threshold times the maximum
1174 				 * number of Jitter RNG transient errors is
1175 				 * less than the reseed threshold required by
1176 				 * SP800-90A allowing us to treat the
1177 				 * transient errors as such.
1178 				 *
1179 				 * However, we mandate that at least the first
1180 				 * seeding operation must succeed with the
1181 				 * Jitter RNG.
1182 				 */
1183 				if (!reseed || ret != -EAGAIN)
1184 					goto out;
1185 			}
1186 
1187 			drbg_string_fill(&data1, entropy, entropylen * 2);
1188 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1189 				 entropylen * 2);
1190 		}
1191 	}
1192 	list_add_tail(&data1.list, &seedlist);
1193 
1194 	/*
1195 	 * concatenation of entropy with personalization str / addtl input)
1196 	 * the variable pers is directly handed in by the caller, so check its
1197 	 * contents whether it is appropriate
1198 	 */
1199 	if (pers && pers->buf && 0 < pers->len) {
1200 		list_add_tail(&pers->list, &seedlist);
1201 		pr_devel("DRBG: using personalization string\n");
1202 	}
1203 
1204 	if (!reseed) {
1205 		memset(drbg->V, 0, drbg_statelen(drbg));
1206 		memset(drbg->C, 0, drbg_statelen(drbg));
1207 	}
1208 
1209 	ret = __drbg_seed(drbg, &seedlist, reseed);
1210 
1211 out:
1212 	memzero_explicit(entropy, entropylen * 2);
1213 
1214 	return ret;
1215 }
1216 
1217 /* Free all substructures in a DRBG state without the DRBG state structure */
1218 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1219 {
1220 	if (!drbg)
1221 		return;
1222 	kfree_sensitive(drbg->Vbuf);
1223 	drbg->Vbuf = NULL;
1224 	drbg->V = NULL;
1225 	kfree_sensitive(drbg->Cbuf);
1226 	drbg->Cbuf = NULL;
1227 	drbg->C = NULL;
1228 	kfree_sensitive(drbg->scratchpadbuf);
1229 	drbg->scratchpadbuf = NULL;
1230 	drbg->reseed_ctr = 0;
1231 	drbg->d_ops = NULL;
1232 	drbg->core = NULL;
1233 	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1234 		kfree_sensitive(drbg->prev);
1235 		drbg->prev = NULL;
1236 		drbg->fips_primed = false;
1237 	}
1238 }
1239 
1240 /*
1241  * Allocate all sub-structures for a DRBG state.
1242  * The DRBG state structure must already be allocated.
1243  */
1244 static inline int drbg_alloc_state(struct drbg_state *drbg)
1245 {
1246 	int ret = -ENOMEM;
1247 	unsigned int sb_size = 0;
1248 
1249 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1250 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1251 	case DRBG_HMAC:
1252 		drbg->d_ops = &drbg_hmac_ops;
1253 		break;
1254 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1255 #ifdef CONFIG_CRYPTO_DRBG_HASH
1256 	case DRBG_HASH:
1257 		drbg->d_ops = &drbg_hash_ops;
1258 		break;
1259 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1260 #ifdef CONFIG_CRYPTO_DRBG_CTR
1261 	case DRBG_CTR:
1262 		drbg->d_ops = &drbg_ctr_ops;
1263 		break;
1264 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1265 	default:
1266 		ret = -EOPNOTSUPP;
1267 		goto err;
1268 	}
1269 
1270 	ret = drbg->d_ops->crypto_init(drbg);
1271 	if (ret < 0)
1272 		goto err;
1273 
1274 	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1275 	if (!drbg->Vbuf) {
1276 		ret = -ENOMEM;
1277 		goto fini;
1278 	}
1279 	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1280 	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1281 	if (!drbg->Cbuf) {
1282 		ret = -ENOMEM;
1283 		goto fini;
1284 	}
1285 	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1286 	/* scratchpad is only generated for CTR and Hash */
1287 	if (drbg->core->flags & DRBG_HMAC)
1288 		sb_size = 0;
1289 	else if (drbg->core->flags & DRBG_CTR)
1290 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1291 			  drbg_statelen(drbg) +	/* df_data */
1292 			  drbg_blocklen(drbg) +	/* pad */
1293 			  drbg_blocklen(drbg) +	/* iv */
1294 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1295 	else
1296 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1297 
1298 	if (0 < sb_size) {
1299 		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1300 		if (!drbg->scratchpadbuf) {
1301 			ret = -ENOMEM;
1302 			goto fini;
1303 		}
1304 		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1305 	}
1306 
1307 	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1308 		drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1309 				     GFP_KERNEL);
1310 		if (!drbg->prev) {
1311 			ret = -ENOMEM;
1312 			goto fini;
1313 		}
1314 		drbg->fips_primed = false;
1315 	}
1316 
1317 	return 0;
1318 
1319 fini:
1320 	drbg->d_ops->crypto_fini(drbg);
1321 err:
1322 	drbg_dealloc_state(drbg);
1323 	return ret;
1324 }
1325 
1326 /*************************************************************************
1327  * DRBG interface functions
1328  *************************************************************************/
1329 
1330 /*
1331  * DRBG generate function as required by SP800-90A - this function
1332  * generates random numbers
1333  *
1334  * @drbg DRBG state handle
1335  * @buf Buffer where to store the random numbers -- the buffer must already
1336  *      be pre-allocated by caller
1337  * @buflen Length of output buffer - this value defines the number of random
1338  *	   bytes pulled from DRBG
1339  * @addtl Additional input that is mixed into state, may be NULL -- note
1340  *	  the entropy is pulled by the DRBG internally unconditionally
1341  *	  as defined in SP800-90A. The additional input is mixed into
1342  *	  the state in addition to the pulled entropy.
1343  *
1344  * return: 0 when all bytes are generated; < 0 in case of an error
1345  */
1346 static int drbg_generate(struct drbg_state *drbg,
1347 			 unsigned char *buf, unsigned int buflen,
1348 			 struct drbg_string *addtl)
1349 {
1350 	int len = 0;
1351 	LIST_HEAD(addtllist);
1352 
1353 	if (!drbg->core) {
1354 		pr_devel("DRBG: not yet seeded\n");
1355 		return -EINVAL;
1356 	}
1357 	if (0 == buflen || !buf) {
1358 		pr_devel("DRBG: no output buffer provided\n");
1359 		return -EINVAL;
1360 	}
1361 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1362 		pr_devel("DRBG: wrong format of additional information\n");
1363 		return -EINVAL;
1364 	}
1365 
1366 	/* 9.3.1 step 2 */
1367 	len = -EINVAL;
1368 	if (buflen > (drbg_max_request_bytes(drbg))) {
1369 		pr_devel("DRBG: requested random numbers too large %u\n",
1370 			 buflen);
1371 		goto err;
1372 	}
1373 
1374 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1375 
1376 	/* 9.3.1 step 4 */
1377 	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1378 		pr_devel("DRBG: additional information string too long %zu\n",
1379 			 addtl->len);
1380 		goto err;
1381 	}
1382 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1383 
1384 	/*
1385 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1386 	 * here. The spec is a bit convoluted here, we make it simpler.
1387 	 */
1388 	if (drbg->reseed_threshold < drbg->reseed_ctr)
1389 		drbg->seeded = false;
1390 
1391 	if (drbg->pr || !drbg->seeded) {
1392 		pr_devel("DRBG: reseeding before generation (prediction "
1393 			 "resistance: %s, state %s)\n",
1394 			 drbg->pr ? "true" : "false",
1395 			 drbg->seeded ? "seeded" : "unseeded");
1396 		/* 9.3.1 steps 7.1 through 7.3 */
1397 		len = drbg_seed(drbg, addtl, true);
1398 		if (len)
1399 			goto err;
1400 		/* 9.3.1 step 7.4 */
1401 		addtl = NULL;
1402 	}
1403 
1404 	if (addtl && 0 < addtl->len)
1405 		list_add_tail(&addtl->list, &addtllist);
1406 	/* 9.3.1 step 8 and 10 */
1407 	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1408 
1409 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1410 	drbg->reseed_ctr++;
1411 	if (0 >= len)
1412 		goto err;
1413 
1414 	/*
1415 	 * Section 11.3.3 requires to re-perform self tests after some
1416 	 * generated random numbers. The chosen value after which self
1417 	 * test is performed is arbitrary, but it should be reasonable.
1418 	 * However, we do not perform the self tests because of the following
1419 	 * reasons: it is mathematically impossible that the initial self tests
1420 	 * were successfully and the following are not. If the initial would
1421 	 * pass and the following would not, the kernel integrity is violated.
1422 	 * In this case, the entire kernel operation is questionable and it
1423 	 * is unlikely that the integrity violation only affects the
1424 	 * correct operation of the DRBG.
1425 	 *
1426 	 * Albeit the following code is commented out, it is provided in
1427 	 * case somebody has a need to implement the test of 11.3.3.
1428 	 */
1429 #if 0
1430 	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1431 		int err = 0;
1432 		pr_devel("DRBG: start to perform self test\n");
1433 		if (drbg->core->flags & DRBG_HMAC)
1434 			err = alg_test("drbg_pr_hmac_sha256",
1435 				       "drbg_pr_hmac_sha256", 0, 0);
1436 		else if (drbg->core->flags & DRBG_CTR)
1437 			err = alg_test("drbg_pr_ctr_aes128",
1438 				       "drbg_pr_ctr_aes128", 0, 0);
1439 		else
1440 			err = alg_test("drbg_pr_sha256",
1441 				       "drbg_pr_sha256", 0, 0);
1442 		if (err) {
1443 			pr_err("DRBG: periodical self test failed\n");
1444 			/*
1445 			 * uninstantiate implies that from now on, only errors
1446 			 * are returned when reusing this DRBG cipher handle
1447 			 */
1448 			drbg_uninstantiate(drbg);
1449 			return 0;
1450 		} else {
1451 			pr_devel("DRBG: self test successful\n");
1452 		}
1453 	}
1454 #endif
1455 
1456 	/*
1457 	 * All operations were successful, return 0 as mandated by
1458 	 * the kernel crypto API interface.
1459 	 */
1460 	len = 0;
1461 err:
1462 	return len;
1463 }
1464 
1465 /*
1466  * Wrapper around drbg_generate which can pull arbitrary long strings
1467  * from the DRBG without hitting the maximum request limitation.
1468  *
1469  * Parameters: see drbg_generate
1470  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1471  *		 the entire drbg_generate_long request fails
1472  */
1473 static int drbg_generate_long(struct drbg_state *drbg,
1474 			      unsigned char *buf, unsigned int buflen,
1475 			      struct drbg_string *addtl)
1476 {
1477 	unsigned int len = 0;
1478 	unsigned int slice = 0;
1479 	do {
1480 		int err = 0;
1481 		unsigned int chunk = 0;
1482 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1483 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1484 		mutex_lock(&drbg->drbg_mutex);
1485 		err = drbg_generate(drbg, buf + len, chunk, addtl);
1486 		mutex_unlock(&drbg->drbg_mutex);
1487 		if (0 > err)
1488 			return err;
1489 		len += chunk;
1490 	} while (slice > 0 && (len < buflen));
1491 	return 0;
1492 }
1493 
1494 static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1495 {
1496 	struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1497 					       random_ready);
1498 
1499 	schedule_work(&drbg->seed_work);
1500 }
1501 
1502 static int drbg_prepare_hrng(struct drbg_state *drbg)
1503 {
1504 	int err;
1505 
1506 	/* We do not need an HRNG in test mode. */
1507 	if (list_empty(&drbg->test_data.list))
1508 		return 0;
1509 
1510 	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1511 
1512 	INIT_WORK(&drbg->seed_work, drbg_async_seed);
1513 
1514 	drbg->random_ready.owner = THIS_MODULE;
1515 	drbg->random_ready.func = drbg_schedule_async_seed;
1516 
1517 	err = add_random_ready_callback(&drbg->random_ready);
1518 
1519 	switch (err) {
1520 	case 0:
1521 		break;
1522 
1523 	case -EALREADY:
1524 		err = 0;
1525 		fallthrough;
1526 
1527 	default:
1528 		drbg->random_ready.func = NULL;
1529 		return err;
1530 	}
1531 
1532 	/*
1533 	 * Require frequent reseeds until the seed source is fully
1534 	 * initialized.
1535 	 */
1536 	drbg->reseed_threshold = 50;
1537 
1538 	return err;
1539 }
1540 
1541 /*
1542  * DRBG instantiation function as required by SP800-90A - this function
1543  * sets up the DRBG handle, performs the initial seeding and all sanity
1544  * checks required by SP800-90A
1545  *
1546  * @drbg memory of state -- if NULL, new memory is allocated
1547  * @pers Personalization string that is mixed into state, may be NULL -- note
1548  *	 the entropy is pulled by the DRBG internally unconditionally
1549  *	 as defined in SP800-90A. The additional input is mixed into
1550  *	 the state in addition to the pulled entropy.
1551  * @coreref reference to core
1552  * @pr prediction resistance enabled
1553  *
1554  * return
1555  *	0 on success
1556  *	error value otherwise
1557  */
1558 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1559 			    int coreref, bool pr)
1560 {
1561 	int ret;
1562 	bool reseed = true;
1563 
1564 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1565 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1566 	mutex_lock(&drbg->drbg_mutex);
1567 
1568 	/* 9.1 step 1 is implicit with the selected DRBG type */
1569 
1570 	/*
1571 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1572 	 * and the flag is copied into drbg->flags --
1573 	 * all DRBG types support prediction resistance
1574 	 */
1575 
1576 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1577 
1578 	if (!drbg->core) {
1579 		drbg->core = &drbg_cores[coreref];
1580 		drbg->pr = pr;
1581 		drbg->seeded = false;
1582 		drbg->reseed_threshold = drbg_max_requests(drbg);
1583 
1584 		ret = drbg_alloc_state(drbg);
1585 		if (ret)
1586 			goto unlock;
1587 
1588 		ret = drbg_prepare_hrng(drbg);
1589 		if (ret)
1590 			goto free_everything;
1591 
1592 		if (IS_ERR(drbg->jent)) {
1593 			ret = PTR_ERR(drbg->jent);
1594 			drbg->jent = NULL;
1595 			if (fips_enabled || ret != -ENOENT)
1596 				goto free_everything;
1597 			pr_info("DRBG: Continuing without Jitter RNG\n");
1598 		}
1599 
1600 		reseed = false;
1601 	}
1602 
1603 	ret = drbg_seed(drbg, pers, reseed);
1604 
1605 	if (ret && !reseed)
1606 		goto free_everything;
1607 
1608 	mutex_unlock(&drbg->drbg_mutex);
1609 	return ret;
1610 
1611 unlock:
1612 	mutex_unlock(&drbg->drbg_mutex);
1613 	return ret;
1614 
1615 free_everything:
1616 	mutex_unlock(&drbg->drbg_mutex);
1617 	drbg_uninstantiate(drbg);
1618 	return ret;
1619 }
1620 
1621 /*
1622  * DRBG uninstantiate function as required by SP800-90A - this function
1623  * frees all buffers and the DRBG handle
1624  *
1625  * @drbg DRBG state handle
1626  *
1627  * return
1628  *	0 on success
1629  */
1630 static int drbg_uninstantiate(struct drbg_state *drbg)
1631 {
1632 	if (drbg->random_ready.func) {
1633 		del_random_ready_callback(&drbg->random_ready);
1634 		cancel_work_sync(&drbg->seed_work);
1635 	}
1636 
1637 	if (!IS_ERR_OR_NULL(drbg->jent))
1638 		crypto_free_rng(drbg->jent);
1639 	drbg->jent = NULL;
1640 
1641 	if (drbg->d_ops)
1642 		drbg->d_ops->crypto_fini(drbg);
1643 	drbg_dealloc_state(drbg);
1644 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1645 	return 0;
1646 }
1647 
1648 /*
1649  * Helper function for setting the test data in the DRBG
1650  *
1651  * @drbg DRBG state handle
1652  * @data test data
1653  * @len test data length
1654  */
1655 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1656 				   const u8 *data, unsigned int len)
1657 {
1658 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1659 
1660 	mutex_lock(&drbg->drbg_mutex);
1661 	drbg_string_fill(&drbg->test_data, data, len);
1662 	mutex_unlock(&drbg->drbg_mutex);
1663 }
1664 
1665 /***************************************************************
1666  * Kernel crypto API cipher invocations requested by DRBG
1667  ***************************************************************/
1668 
1669 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1670 struct sdesc {
1671 	struct shash_desc shash;
1672 	char ctx[];
1673 };
1674 
1675 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1676 {
1677 	struct sdesc *sdesc;
1678 	struct crypto_shash *tfm;
1679 
1680 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1681 	if (IS_ERR(tfm)) {
1682 		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1683 				drbg->core->backend_cra_name);
1684 		return PTR_ERR(tfm);
1685 	}
1686 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1687 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1688 			GFP_KERNEL);
1689 	if (!sdesc) {
1690 		crypto_free_shash(tfm);
1691 		return -ENOMEM;
1692 	}
1693 
1694 	sdesc->shash.tfm = tfm;
1695 	drbg->priv_data = sdesc;
1696 
1697 	return crypto_shash_alignmask(tfm);
1698 }
1699 
1700 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1701 {
1702 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1703 	if (sdesc) {
1704 		crypto_free_shash(sdesc->shash.tfm);
1705 		kfree_sensitive(sdesc);
1706 	}
1707 	drbg->priv_data = NULL;
1708 	return 0;
1709 }
1710 
1711 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1712 				  const unsigned char *key)
1713 {
1714 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1715 
1716 	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1717 }
1718 
1719 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1720 			   const struct list_head *in)
1721 {
1722 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1723 	struct drbg_string *input = NULL;
1724 
1725 	crypto_shash_init(&sdesc->shash);
1726 	list_for_each_entry(input, in, list)
1727 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1728 	return crypto_shash_final(&sdesc->shash, outval);
1729 }
1730 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1731 
1732 #ifdef CONFIG_CRYPTO_DRBG_CTR
1733 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1734 {
1735 	struct crypto_cipher *tfm =
1736 		(struct crypto_cipher *)drbg->priv_data;
1737 	if (tfm)
1738 		crypto_free_cipher(tfm);
1739 	drbg->priv_data = NULL;
1740 
1741 	if (drbg->ctr_handle)
1742 		crypto_free_skcipher(drbg->ctr_handle);
1743 	drbg->ctr_handle = NULL;
1744 
1745 	if (drbg->ctr_req)
1746 		skcipher_request_free(drbg->ctr_req);
1747 	drbg->ctr_req = NULL;
1748 
1749 	kfree(drbg->outscratchpadbuf);
1750 	drbg->outscratchpadbuf = NULL;
1751 
1752 	return 0;
1753 }
1754 
1755 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1756 {
1757 	struct crypto_cipher *tfm;
1758 	struct crypto_skcipher *sk_tfm;
1759 	struct skcipher_request *req;
1760 	unsigned int alignmask;
1761 	char ctr_name[CRYPTO_MAX_ALG_NAME];
1762 
1763 	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1764 	if (IS_ERR(tfm)) {
1765 		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1766 				drbg->core->backend_cra_name);
1767 		return PTR_ERR(tfm);
1768 	}
1769 	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1770 	drbg->priv_data = tfm;
1771 
1772 	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1773 	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1774 		drbg_fini_sym_kernel(drbg);
1775 		return -EINVAL;
1776 	}
1777 	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1778 	if (IS_ERR(sk_tfm)) {
1779 		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1780 				ctr_name);
1781 		drbg_fini_sym_kernel(drbg);
1782 		return PTR_ERR(sk_tfm);
1783 	}
1784 	drbg->ctr_handle = sk_tfm;
1785 	crypto_init_wait(&drbg->ctr_wait);
1786 
1787 	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1788 	if (!req) {
1789 		pr_info("DRBG: could not allocate request queue\n");
1790 		drbg_fini_sym_kernel(drbg);
1791 		return -ENOMEM;
1792 	}
1793 	drbg->ctr_req = req;
1794 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1795 						CRYPTO_TFM_REQ_MAY_SLEEP,
1796 					crypto_req_done, &drbg->ctr_wait);
1797 
1798 	alignmask = crypto_skcipher_alignmask(sk_tfm);
1799 	drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1800 					 GFP_KERNEL);
1801 	if (!drbg->outscratchpadbuf) {
1802 		drbg_fini_sym_kernel(drbg);
1803 		return -ENOMEM;
1804 	}
1805 	drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1806 					      alignmask + 1);
1807 
1808 	sg_init_table(&drbg->sg_in, 1);
1809 	sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1810 
1811 	return alignmask;
1812 }
1813 
1814 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1815 				 const unsigned char *key)
1816 {
1817 	struct crypto_cipher *tfm =
1818 		(struct crypto_cipher *)drbg->priv_data;
1819 
1820 	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1821 }
1822 
1823 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1824 			  const struct drbg_string *in)
1825 {
1826 	struct crypto_cipher *tfm =
1827 		(struct crypto_cipher *)drbg->priv_data;
1828 
1829 	/* there is only component in *in */
1830 	BUG_ON(in->len < drbg_blocklen(drbg));
1831 	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1832 	return 0;
1833 }
1834 
1835 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1836 			      u8 *inbuf, u32 inlen,
1837 			      u8 *outbuf, u32 outlen)
1838 {
1839 	struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1840 	u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1841 	int ret;
1842 
1843 	if (inbuf) {
1844 		/* Use caller-provided input buffer */
1845 		sg_set_buf(sg_in, inbuf, inlen);
1846 	} else {
1847 		/* Use scratchpad for in-place operation */
1848 		inlen = scratchpad_use;
1849 		memset(drbg->outscratchpad, 0, scratchpad_use);
1850 		sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1851 	}
1852 
1853 	while (outlen) {
1854 		u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1855 
1856 		/* Output buffer may not be valid for SGL, use scratchpad */
1857 		skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1858 					   cryptlen, drbg->V);
1859 		ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1860 					&drbg->ctr_wait);
1861 		if (ret)
1862 			goto out;
1863 
1864 		crypto_init_wait(&drbg->ctr_wait);
1865 
1866 		memcpy(outbuf, drbg->outscratchpad, cryptlen);
1867 		memzero_explicit(drbg->outscratchpad, cryptlen);
1868 
1869 		outlen -= cryptlen;
1870 		outbuf += cryptlen;
1871 	}
1872 	ret = 0;
1873 
1874 out:
1875 	return ret;
1876 }
1877 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1878 
1879 /***************************************************************
1880  * Kernel crypto API interface to register DRBG
1881  ***************************************************************/
1882 
1883 /*
1884  * Look up the DRBG flags by given kernel crypto API cra_name
1885  * The code uses the drbg_cores definition to do this
1886  *
1887  * @cra_name kernel crypto API cra_name
1888  * @coreref reference to integer which is filled with the pointer to
1889  *  the applicable core
1890  * @pr reference for setting prediction resistance
1891  *
1892  * return: flags
1893  */
1894 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1895 					 int *coreref, bool *pr)
1896 {
1897 	int i = 0;
1898 	size_t start = 0;
1899 	int len = 0;
1900 
1901 	*pr = true;
1902 	/* disassemble the names */
1903 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1904 		start = 10;
1905 		*pr = false;
1906 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1907 		start = 8;
1908 	} else {
1909 		return;
1910 	}
1911 
1912 	/* remove the first part */
1913 	len = strlen(cra_driver_name) - start;
1914 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1915 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1916 			    len)) {
1917 			*coreref = i;
1918 			return;
1919 		}
1920 	}
1921 }
1922 
1923 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1924 {
1925 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1926 
1927 	mutex_init(&drbg->drbg_mutex);
1928 
1929 	return 0;
1930 }
1931 
1932 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1933 {
1934 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1935 }
1936 
1937 /*
1938  * Generate random numbers invoked by the kernel crypto API:
1939  * The API of the kernel crypto API is extended as follows:
1940  *
1941  * src is additional input supplied to the RNG.
1942  * slen is the length of src.
1943  * dst is the output buffer where random data is to be stored.
1944  * dlen is the length of dst.
1945  */
1946 static int drbg_kcapi_random(struct crypto_rng *tfm,
1947 			     const u8 *src, unsigned int slen,
1948 			     u8 *dst, unsigned int dlen)
1949 {
1950 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1951 	struct drbg_string *addtl = NULL;
1952 	struct drbg_string string;
1953 
1954 	if (slen) {
1955 		/* linked list variable is now local to allow modification */
1956 		drbg_string_fill(&string, src, slen);
1957 		addtl = &string;
1958 	}
1959 
1960 	return drbg_generate_long(drbg, dst, dlen, addtl);
1961 }
1962 
1963 /*
1964  * Seed the DRBG invoked by the kernel crypto API
1965  */
1966 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1967 			   const u8 *seed, unsigned int slen)
1968 {
1969 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1970 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1971 	bool pr = false;
1972 	struct drbg_string string;
1973 	struct drbg_string *seed_string = NULL;
1974 	int coreref = 0;
1975 
1976 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1977 			      &pr);
1978 	if (0 < slen) {
1979 		drbg_string_fill(&string, seed, slen);
1980 		seed_string = &string;
1981 	}
1982 
1983 	return drbg_instantiate(drbg, seed_string, coreref, pr);
1984 }
1985 
1986 /***************************************************************
1987  * Kernel module: code to load the module
1988  ***************************************************************/
1989 
1990 /*
1991  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1992  * of the error handling.
1993  *
1994  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1995  * as seed source of get_random_bytes does not fail.
1996  *
1997  * Note 2: There is no sensible way of testing the reseed counter
1998  * enforcement, so skip it.
1999  */
2000 static inline int __init drbg_healthcheck_sanity(void)
2001 {
2002 	int len = 0;
2003 #define OUTBUFLEN 16
2004 	unsigned char buf[OUTBUFLEN];
2005 	struct drbg_state *drbg = NULL;
2006 	int ret = -EFAULT;
2007 	int rc = -EFAULT;
2008 	bool pr = false;
2009 	int coreref = 0;
2010 	struct drbg_string addtl;
2011 	size_t max_addtllen, max_request_bytes;
2012 
2013 	/* only perform test in FIPS mode */
2014 	if (!fips_enabled)
2015 		return 0;
2016 
2017 #ifdef CONFIG_CRYPTO_DRBG_CTR
2018 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
2019 #elif defined CONFIG_CRYPTO_DRBG_HASH
2020 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2021 #else
2022 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
2023 #endif
2024 
2025 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2026 	if (!drbg)
2027 		return -ENOMEM;
2028 
2029 	mutex_init(&drbg->drbg_mutex);
2030 	drbg->core = &drbg_cores[coreref];
2031 	drbg->reseed_threshold = drbg_max_requests(drbg);
2032 
2033 	/*
2034 	 * if the following tests fail, it is likely that there is a buffer
2035 	 * overflow as buf is much smaller than the requested or provided
2036 	 * string lengths -- in case the error handling does not succeed
2037 	 * we may get an OOPS. And we want to get an OOPS as this is a
2038 	 * grave bug.
2039 	 */
2040 
2041 	max_addtllen = drbg_max_addtl(drbg);
2042 	max_request_bytes = drbg_max_request_bytes(drbg);
2043 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
2044 	/* overflow addtllen with additonal info string */
2045 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2046 	BUG_ON(0 < len);
2047 	/* overflow max_bits */
2048 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2049 	BUG_ON(0 < len);
2050 
2051 	/* overflow max addtllen with personalization string */
2052 	ret = drbg_seed(drbg, &addtl, false);
2053 	BUG_ON(0 == ret);
2054 	/* all tests passed */
2055 	rc = 0;
2056 
2057 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
2058 		 "completed\n");
2059 
2060 	kfree(drbg);
2061 	return rc;
2062 }
2063 
2064 static struct rng_alg drbg_algs[22];
2065 
2066 /*
2067  * Fill the array drbg_algs used to register the different DRBGs
2068  * with the kernel crypto API. To fill the array, the information
2069  * from drbg_cores[] is used.
2070  */
2071 static inline void __init drbg_fill_array(struct rng_alg *alg,
2072 					  const struct drbg_core *core, int pr)
2073 {
2074 	int pos = 0;
2075 	static int priority = 200;
2076 
2077 	memcpy(alg->base.cra_name, "stdrng", 6);
2078 	if (pr) {
2079 		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2080 		pos = 8;
2081 	} else {
2082 		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2083 		pos = 10;
2084 	}
2085 	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2086 	       strlen(core->cra_name));
2087 
2088 	alg->base.cra_priority = priority;
2089 	priority++;
2090 	/*
2091 	 * If FIPS mode enabled, the selected DRBG shall have the
2092 	 * highest cra_priority over other stdrng instances to ensure
2093 	 * it is selected.
2094 	 */
2095 	if (fips_enabled)
2096 		alg->base.cra_priority += 200;
2097 
2098 	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
2099 	alg->base.cra_module	= THIS_MODULE;
2100 	alg->base.cra_init	= drbg_kcapi_init;
2101 	alg->base.cra_exit	= drbg_kcapi_cleanup;
2102 	alg->generate		= drbg_kcapi_random;
2103 	alg->seed		= drbg_kcapi_seed;
2104 	alg->set_ent		= drbg_kcapi_set_entropy;
2105 	alg->seedsize		= 0;
2106 }
2107 
2108 static int __init drbg_init(void)
2109 {
2110 	unsigned int i = 0; /* pointer to drbg_algs */
2111 	unsigned int j = 0; /* pointer to drbg_cores */
2112 	int ret;
2113 
2114 	ret = drbg_healthcheck_sanity();
2115 	if (ret)
2116 		return ret;
2117 
2118 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2119 		pr_info("DRBG: Cannot register all DRBG types"
2120 			"(slots needed: %zu, slots available: %zu)\n",
2121 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2122 		return -EFAULT;
2123 	}
2124 
2125 	/*
2126 	 * each DRBG definition can be used with PR and without PR, thus
2127 	 * we instantiate each DRBG in drbg_cores[] twice.
2128 	 *
2129 	 * As the order of placing them into the drbg_algs array matters
2130 	 * (the later DRBGs receive a higher cra_priority) we register the
2131 	 * prediction resistance DRBGs first as the should not be too
2132 	 * interesting.
2133 	 */
2134 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2135 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2136 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2137 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2138 	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2139 }
2140 
2141 static void __exit drbg_exit(void)
2142 {
2143 	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2144 }
2145 
2146 subsys_initcall(drbg_init);
2147 module_exit(drbg_exit);
2148 #ifndef CRYPTO_DRBG_HASH_STRING
2149 #define CRYPTO_DRBG_HASH_STRING ""
2150 #endif
2151 #ifndef CRYPTO_DRBG_HMAC_STRING
2152 #define CRYPTO_DRBG_HMAC_STRING ""
2153 #endif
2154 #ifndef CRYPTO_DRBG_CTR_STRING
2155 #define CRYPTO_DRBG_CTR_STRING ""
2156 #endif
2157 MODULE_LICENSE("GPL");
2158 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2159 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2160 		   "using following cores: "
2161 		   CRYPTO_DRBG_HASH_STRING
2162 		   CRYPTO_DRBG_HMAC_STRING
2163 		   CRYPTO_DRBG_CTR_STRING);
2164 MODULE_ALIAS_CRYPTO("stdrng");
2165 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
2166