xref: /linux/crypto/drbg.c (revision 4e1746656839ab1e88d76eec4d2fa0b41d585604)
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 #include <crypto/internal/cipher.h>
102 #include <linux/kernel.h>
103 #include <linux/jiffies.h>
104 
105 /***************************************************************
106  * Backend cipher definitions available to DRBG
107  ***************************************************************/
108 
109 /*
110  * The order of the DRBG definitions here matter: every DRBG is registered
111  * as stdrng. Each DRBG receives an increasing cra_priority values the later
112  * they are defined in this array (see drbg_fill_array).
113  *
114  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
115  * the SHA256 / AES 256 over other ciphers. Thus, the favored
116  * DRBGs are the latest entries in this array.
117  */
118 static const struct drbg_core drbg_cores[] = {
119 #ifdef CONFIG_CRYPTO_DRBG_CTR
120 	{
121 		.flags = DRBG_CTR | DRBG_STRENGTH128,
122 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
123 		.blocklen_bytes = 16,
124 		.cra_name = "ctr_aes128",
125 		.backend_cra_name = "aes",
126 	}, {
127 		.flags = DRBG_CTR | DRBG_STRENGTH192,
128 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
129 		.blocklen_bytes = 16,
130 		.cra_name = "ctr_aes192",
131 		.backend_cra_name = "aes",
132 	}, {
133 		.flags = DRBG_CTR | DRBG_STRENGTH256,
134 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
135 		.blocklen_bytes = 16,
136 		.cra_name = "ctr_aes256",
137 		.backend_cra_name = "aes",
138 	},
139 #endif /* CONFIG_CRYPTO_DRBG_CTR */
140 #ifdef CONFIG_CRYPTO_DRBG_HASH
141 	{
142 		.flags = DRBG_HASH | DRBG_STRENGTH128,
143 		.statelen = 55, /* 440 bits */
144 		.blocklen_bytes = 20,
145 		.cra_name = "sha1",
146 		.backend_cra_name = "sha1",
147 	}, {
148 		.flags = DRBG_HASH | DRBG_STRENGTH256,
149 		.statelen = 111, /* 888 bits */
150 		.blocklen_bytes = 48,
151 		.cra_name = "sha384",
152 		.backend_cra_name = "sha384",
153 	}, {
154 		.flags = DRBG_HASH | DRBG_STRENGTH256,
155 		.statelen = 111, /* 888 bits */
156 		.blocklen_bytes = 64,
157 		.cra_name = "sha512",
158 		.backend_cra_name = "sha512",
159 	}, {
160 		.flags = DRBG_HASH | DRBG_STRENGTH256,
161 		.statelen = 55, /* 440 bits */
162 		.blocklen_bytes = 32,
163 		.cra_name = "sha256",
164 		.backend_cra_name = "sha256",
165 	},
166 #endif /* CONFIG_CRYPTO_DRBG_HASH */
167 #ifdef CONFIG_CRYPTO_DRBG_HMAC
168 	{
169 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
170 		.statelen = 20, /* block length of cipher */
171 		.blocklen_bytes = 20,
172 		.cra_name = "hmac_sha1",
173 		.backend_cra_name = "hmac(sha1)",
174 	}, {
175 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
176 		.statelen = 48, /* block length of cipher */
177 		.blocklen_bytes = 48,
178 		.cra_name = "hmac_sha384",
179 		.backend_cra_name = "hmac(sha384)",
180 	}, {
181 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
182 		.statelen = 32, /* block length of cipher */
183 		.blocklen_bytes = 32,
184 		.cra_name = "hmac_sha256",
185 		.backend_cra_name = "hmac(sha256)",
186 	}, {
187 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
188 		.statelen = 64, /* block length of cipher */
189 		.blocklen_bytes = 64,
190 		.cra_name = "hmac_sha512",
191 		.backend_cra_name = "hmac(sha512)",
192 	},
193 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
194 };
195 
196 static int drbg_uninstantiate(struct drbg_state *drbg);
197 
198 /******************************************************************
199  * Generic helper functions
200  ******************************************************************/
201 
202 /*
203  * Return strength of DRBG according to SP800-90A section 8.4
204  *
205  * @flags DRBG flags reference
206  *
207  * Return: normalized strength in *bytes* value or 32 as default
208  *	   to counter programming errors
209  */
210 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
211 {
212 	switch (flags & DRBG_STRENGTH_MASK) {
213 	case DRBG_STRENGTH128:
214 		return 16;
215 	case DRBG_STRENGTH192:
216 		return 24;
217 	case DRBG_STRENGTH256:
218 		return 32;
219 	default:
220 		return 32;
221 	}
222 }
223 
224 /*
225  * FIPS 140-2 continuous self test for the noise source
226  * The test is performed on the noise source input data. Thus, the function
227  * implicitly knows the size of the buffer to be equal to the security
228  * strength.
229  *
230  * Note, this function disregards the nonce trailing the entropy data during
231  * initial seeding.
232  *
233  * drbg->drbg_mutex must have been taken.
234  *
235  * @drbg DRBG handle
236  * @entropy buffer of seed data to be checked
237  *
238  * return:
239  *	0 on success
240  *	-EAGAIN on when the CTRNG is not yet primed
241  *	< 0 on error
242  */
243 static int drbg_fips_continuous_test(struct drbg_state *drbg,
244 				     const unsigned char *entropy)
245 {
246 	unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
247 	int ret = 0;
248 
249 	if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
250 		return 0;
251 
252 	/* skip test if we test the overall system */
253 	if (list_empty(&drbg->test_data.list))
254 		return 0;
255 	/* only perform test in FIPS mode */
256 	if (!fips_enabled)
257 		return 0;
258 
259 	if (!drbg->fips_primed) {
260 		/* Priming of FIPS test */
261 		memcpy(drbg->prev, entropy, entropylen);
262 		drbg->fips_primed = true;
263 		/* priming: another round is needed */
264 		return -EAGAIN;
265 	}
266 	ret = memcmp(drbg->prev, entropy, entropylen);
267 	if (!ret)
268 		panic("DRBG continuous self test failed\n");
269 	memcpy(drbg->prev, entropy, entropylen);
270 
271 	/* the test shall pass when the two values are not equal */
272 	return 0;
273 }
274 
275 /*
276  * Convert an integer into a byte representation of this integer.
277  * The byte representation is big-endian
278  *
279  * @val value to be converted
280  * @buf buffer holding the converted integer -- caller must ensure that
281  *      buffer size is at least 32 bit
282  */
283 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
284 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
285 {
286 	struct s {
287 		__be32 conv;
288 	};
289 	struct s *conversion = (struct s *) buf;
290 
291 	conversion->conv = cpu_to_be32(val);
292 }
293 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
294 
295 /******************************************************************
296  * CTR DRBG callback functions
297  ******************************************************************/
298 
299 #ifdef CONFIG_CRYPTO_DRBG_CTR
300 #define CRYPTO_DRBG_CTR_STRING "CTR "
301 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
302 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
303 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
304 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
305 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
306 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
307 
308 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
309 				 const unsigned char *key);
310 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
311 			  const struct drbg_string *in);
312 static int drbg_init_sym_kernel(struct drbg_state *drbg);
313 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
314 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
315 			      u8 *inbuf, u32 inbuflen,
316 			      u8 *outbuf, u32 outlen);
317 #define DRBG_OUTSCRATCHLEN 256
318 
319 /* BCC function for CTR DRBG as defined in 10.4.3 */
320 static int drbg_ctr_bcc(struct drbg_state *drbg,
321 			unsigned char *out, const unsigned char *key,
322 			struct list_head *in)
323 {
324 	int ret = 0;
325 	struct drbg_string *curr = NULL;
326 	struct drbg_string data;
327 	short cnt = 0;
328 
329 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
330 
331 	/* 10.4.3 step 2 / 4 */
332 	drbg_kcapi_symsetkey(drbg, key);
333 	list_for_each_entry(curr, in, list) {
334 		const unsigned char *pos = curr->buf;
335 		size_t len = curr->len;
336 		/* 10.4.3 step 4.1 */
337 		while (len) {
338 			/* 10.4.3 step 4.2 */
339 			if (drbg_blocklen(drbg) == cnt) {
340 				cnt = 0;
341 				ret = drbg_kcapi_sym(drbg, out, &data);
342 				if (ret)
343 					return ret;
344 			}
345 			out[cnt] ^= *pos;
346 			pos++;
347 			cnt++;
348 			len--;
349 		}
350 	}
351 	/* 10.4.3 step 4.2 for last block */
352 	if (cnt)
353 		ret = drbg_kcapi_sym(drbg, out, &data);
354 
355 	return ret;
356 }
357 
358 /*
359  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
360  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
361  * the scratchpad is used as follows:
362  * drbg_ctr_update:
363  *	temp
364  *		start: drbg->scratchpad
365  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
366  *			note: the cipher writing into this variable works
367  *			blocklen-wise. Now, when the statelen is not a multiple
368  *			of blocklen, the generateion loop below "spills over"
369  *			by at most blocklen. Thus, we need to give sufficient
370  *			memory.
371  *	df_data
372  *		start: drbg->scratchpad +
373  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
374  *		length: drbg_statelen(drbg)
375  *
376  * drbg_ctr_df:
377  *	pad
378  *		start: df_data + drbg_statelen(drbg)
379  *		length: drbg_blocklen(drbg)
380  *	iv
381  *		start: pad + drbg_blocklen(drbg)
382  *		length: drbg_blocklen(drbg)
383  *	temp
384  *		start: iv + drbg_blocklen(drbg)
385  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
386  *			note: temp is the buffer that the BCC function operates
387  *			on. BCC operates blockwise. drbg_statelen(drbg)
388  *			is sufficient when the DRBG state length is a multiple
389  *			of the block size. For AES192 (and maybe other ciphers)
390  *			this is not correct and the length for temp is
391  *			insufficient (yes, that also means for such ciphers,
392  *			the final output of all BCC rounds are truncated).
393  *			Therefore, add drbg_blocklen(drbg) to cover all
394  *			possibilities.
395  */
396 
397 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
398 static int drbg_ctr_df(struct drbg_state *drbg,
399 		       unsigned char *df_data, size_t bytes_to_return,
400 		       struct list_head *seedlist)
401 {
402 	int ret = -EFAULT;
403 	unsigned char L_N[8];
404 	/* S3 is input */
405 	struct drbg_string S1, S2, S4, cipherin;
406 	LIST_HEAD(bcc_list);
407 	unsigned char *pad = df_data + drbg_statelen(drbg);
408 	unsigned char *iv = pad + drbg_blocklen(drbg);
409 	unsigned char *temp = iv + drbg_blocklen(drbg);
410 	size_t padlen = 0;
411 	unsigned int templen = 0;
412 	/* 10.4.2 step 7 */
413 	unsigned int i = 0;
414 	/* 10.4.2 step 8 */
415 	const unsigned char *K = (unsigned char *)
416 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
417 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
418 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
419 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
420 	unsigned char *X;
421 	size_t generated_len = 0;
422 	size_t inputlen = 0;
423 	struct drbg_string *seed = NULL;
424 
425 	memset(pad, 0, drbg_blocklen(drbg));
426 	memset(iv, 0, drbg_blocklen(drbg));
427 
428 	/* 10.4.2 step 1 is implicit as we work byte-wise */
429 
430 	/* 10.4.2 step 2 */
431 	if ((512/8) < bytes_to_return)
432 		return -EINVAL;
433 
434 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
435 	list_for_each_entry(seed, seedlist, list)
436 		inputlen += seed->len;
437 	drbg_cpu_to_be32(inputlen, &L_N[0]);
438 
439 	/* 10.4.2 step 3 */
440 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
441 
442 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
443 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
444 	/* wrap the padlen appropriately */
445 	if (padlen)
446 		padlen = drbg_blocklen(drbg) - padlen;
447 	/*
448 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
449 	 * As the calculated padlen value only covers the number of zero
450 	 * bytes, this value has to be incremented by one for the 0x80 byte.
451 	 */
452 	padlen++;
453 	pad[0] = 0x80;
454 
455 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
456 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
457 	list_add_tail(&S1.list, &bcc_list);
458 	drbg_string_fill(&S2, L_N, sizeof(L_N));
459 	list_add_tail(&S2.list, &bcc_list);
460 	list_splice_tail(seedlist, &bcc_list);
461 	drbg_string_fill(&S4, pad, padlen);
462 	list_add_tail(&S4.list, &bcc_list);
463 
464 	/* 10.4.2 step 9 */
465 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
466 		/*
467 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
468 		 * holds zeros after allocation -- even the increment of i
469 		 * is irrelevant as the increment remains within length of i
470 		 */
471 		drbg_cpu_to_be32(i, iv);
472 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
473 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
474 		if (ret)
475 			goto out;
476 		/* 10.4.2 step 9.3 */
477 		i++;
478 		templen += drbg_blocklen(drbg);
479 	}
480 
481 	/* 10.4.2 step 11 */
482 	X = temp + (drbg_keylen(drbg));
483 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
484 
485 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
486 
487 	/* 10.4.2 step 13 */
488 	drbg_kcapi_symsetkey(drbg, temp);
489 	while (generated_len < bytes_to_return) {
490 		short blocklen = 0;
491 		/*
492 		 * 10.4.2 step 13.1: the truncation of the key length is
493 		 * implicit as the key is only drbg_blocklen in size based on
494 		 * the implementation of the cipher function callback
495 		 */
496 		ret = drbg_kcapi_sym(drbg, X, &cipherin);
497 		if (ret)
498 			goto out;
499 		blocklen = (drbg_blocklen(drbg) <
500 				(bytes_to_return - generated_len)) ?
501 			    drbg_blocklen(drbg) :
502 				(bytes_to_return - generated_len);
503 		/* 10.4.2 step 13.2 and 14 */
504 		memcpy(df_data + generated_len, X, blocklen);
505 		generated_len += blocklen;
506 	}
507 
508 	ret = 0;
509 
510 out:
511 	memset(iv, 0, drbg_blocklen(drbg));
512 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
513 	memset(pad, 0, drbg_blocklen(drbg));
514 	return ret;
515 }
516 
517 /*
518  * update function of CTR DRBG as defined in 10.2.1.2
519  *
520  * The reseed variable has an enhanced meaning compared to the update
521  * functions of the other DRBGs as follows:
522  * 0 => initial seed from initialization
523  * 1 => reseed via drbg_seed
524  * 2 => first invocation from drbg_ctr_update when addtl is present. In
525  *      this case, the df_data scratchpad is not deleted so that it is
526  *      available for another calls to prevent calling the DF function
527  *      again.
528  * 3 => second invocation from drbg_ctr_update. When the update function
529  *      was called with addtl, the df_data memory already contains the
530  *      DFed addtl information and we do not need to call DF again.
531  */
532 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
533 			   int reseed)
534 {
535 	int ret = -EFAULT;
536 	/* 10.2.1.2 step 1 */
537 	unsigned char *temp = drbg->scratchpad;
538 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
539 				 drbg_blocklen(drbg);
540 
541 	if (3 > reseed)
542 		memset(df_data, 0, drbg_statelen(drbg));
543 
544 	if (!reseed) {
545 		/*
546 		 * The DRBG uses the CTR mode of the underlying AES cipher. The
547 		 * CTR mode increments the counter value after the AES operation
548 		 * but SP800-90A requires that the counter is incremented before
549 		 * the AES operation. Hence, we increment it at the time we set
550 		 * it by one.
551 		 */
552 		crypto_inc(drbg->V, drbg_blocklen(drbg));
553 
554 		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
555 					     drbg_keylen(drbg));
556 		if (ret)
557 			goto out;
558 	}
559 
560 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
561 	if (seed) {
562 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
563 		if (ret)
564 			goto out;
565 	}
566 
567 	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
568 				 temp, drbg_statelen(drbg));
569 	if (ret)
570 		return ret;
571 
572 	/* 10.2.1.2 step 5 */
573 	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
574 				     drbg_keylen(drbg));
575 	if (ret)
576 		goto out;
577 	/* 10.2.1.2 step 6 */
578 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
579 	/* See above: increment counter by one to compensate timing of CTR op */
580 	crypto_inc(drbg->V, drbg_blocklen(drbg));
581 	ret = 0;
582 
583 out:
584 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
585 	if (2 != reseed)
586 		memset(df_data, 0, drbg_statelen(drbg));
587 	return ret;
588 }
589 
590 /*
591  * scratchpad use: drbg_ctr_update is called independently from
592  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
593  */
594 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
595 static int drbg_ctr_generate(struct drbg_state *drbg,
596 			     unsigned char *buf, unsigned int buflen,
597 			     struct list_head *addtl)
598 {
599 	int ret;
600 	int len = min_t(int, buflen, INT_MAX);
601 
602 	/* 10.2.1.5.2 step 2 */
603 	if (addtl && !list_empty(addtl)) {
604 		ret = drbg_ctr_update(drbg, addtl, 2);
605 		if (ret)
606 			return 0;
607 	}
608 
609 	/* 10.2.1.5.2 step 4.1 */
610 	ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
611 	if (ret)
612 		return ret;
613 
614 	/* 10.2.1.5.2 step 6 */
615 	ret = drbg_ctr_update(drbg, NULL, 3);
616 	if (ret)
617 		len = ret;
618 
619 	return len;
620 }
621 
622 static const struct drbg_state_ops drbg_ctr_ops = {
623 	.update		= drbg_ctr_update,
624 	.generate	= drbg_ctr_generate,
625 	.crypto_init	= drbg_init_sym_kernel,
626 	.crypto_fini	= drbg_fini_sym_kernel,
627 };
628 #endif /* CONFIG_CRYPTO_DRBG_CTR */
629 
630 /******************************************************************
631  * HMAC DRBG callback functions
632  ******************************************************************/
633 
634 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
635 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
636 			   const struct list_head *in);
637 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
638 				  const unsigned char *key);
639 static int drbg_init_hash_kernel(struct drbg_state *drbg);
640 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
641 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
642 
643 #ifdef CONFIG_CRYPTO_DRBG_HMAC
644 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
645 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
646 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
647 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
648 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
649 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
650 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
651 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
652 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
653 
654 /* update function of HMAC DRBG as defined in 10.1.2.2 */
655 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
656 			    int reseed)
657 {
658 	int ret = -EFAULT;
659 	int i = 0;
660 	struct drbg_string seed1, seed2, vdata;
661 	LIST_HEAD(seedlist);
662 	LIST_HEAD(vdatalist);
663 
664 	if (!reseed) {
665 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
666 		memset(drbg->V, 1, drbg_statelen(drbg));
667 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
668 	}
669 
670 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
671 	list_add_tail(&seed1.list, &seedlist);
672 	/* buffer of seed2 will be filled in for loop below with one byte */
673 	drbg_string_fill(&seed2, NULL, 1);
674 	list_add_tail(&seed2.list, &seedlist);
675 	/* input data of seed is allowed to be NULL at this point */
676 	if (seed)
677 		list_splice_tail(seed, &seedlist);
678 
679 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
680 	list_add_tail(&vdata.list, &vdatalist);
681 	for (i = 2; 0 < i; i--) {
682 		/* first round uses 0x0, second 0x1 */
683 		unsigned char prefix = DRBG_PREFIX0;
684 		if (1 == i)
685 			prefix = DRBG_PREFIX1;
686 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
687 		seed2.buf = &prefix;
688 		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
689 		if (ret)
690 			return ret;
691 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
692 
693 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
694 		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
695 		if (ret)
696 			return ret;
697 
698 		/* 10.1.2.2 step 3 */
699 		if (!seed)
700 			return ret;
701 	}
702 
703 	return 0;
704 }
705 
706 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
707 static int drbg_hmac_generate(struct drbg_state *drbg,
708 			      unsigned char *buf,
709 			      unsigned int buflen,
710 			      struct list_head *addtl)
711 {
712 	int len = 0;
713 	int ret = 0;
714 	struct drbg_string data;
715 	LIST_HEAD(datalist);
716 
717 	/* 10.1.2.5 step 2 */
718 	if (addtl && !list_empty(addtl)) {
719 		ret = drbg_hmac_update(drbg, addtl, 1);
720 		if (ret)
721 			return ret;
722 	}
723 
724 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
725 	list_add_tail(&data.list, &datalist);
726 	while (len < buflen) {
727 		unsigned int outlen = 0;
728 		/* 10.1.2.5 step 4.1 */
729 		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
730 		if (ret)
731 			return ret;
732 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
733 			  drbg_blocklen(drbg) : (buflen - len);
734 
735 		/* 10.1.2.5 step 4.2 */
736 		memcpy(buf + len, drbg->V, outlen);
737 		len += outlen;
738 	}
739 
740 	/* 10.1.2.5 step 6 */
741 	if (addtl && !list_empty(addtl))
742 		ret = drbg_hmac_update(drbg, addtl, 1);
743 	else
744 		ret = drbg_hmac_update(drbg, NULL, 1);
745 	if (ret)
746 		return ret;
747 
748 	return len;
749 }
750 
751 static const struct drbg_state_ops drbg_hmac_ops = {
752 	.update		= drbg_hmac_update,
753 	.generate	= drbg_hmac_generate,
754 	.crypto_init	= drbg_init_hash_kernel,
755 	.crypto_fini	= drbg_fini_hash_kernel,
756 };
757 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
758 
759 /******************************************************************
760  * Hash DRBG callback functions
761  ******************************************************************/
762 
763 #ifdef CONFIG_CRYPTO_DRBG_HASH
764 #define CRYPTO_DRBG_HASH_STRING "HASH "
765 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
766 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
767 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
768 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
769 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
770 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
771 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
772 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
773 
774 /*
775  * Increment buffer
776  *
777  * @dst buffer to increment
778  * @add value to add
779  */
780 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
781 				const unsigned char *add, size_t addlen)
782 {
783 	/* implied: dstlen > addlen */
784 	unsigned char *dstptr;
785 	const unsigned char *addptr;
786 	unsigned int remainder = 0;
787 	size_t len = addlen;
788 
789 	dstptr = dst + (dstlen-1);
790 	addptr = add + (addlen-1);
791 	while (len) {
792 		remainder += *dstptr + *addptr;
793 		*dstptr = remainder & 0xff;
794 		remainder >>= 8;
795 		len--; dstptr--; addptr--;
796 	}
797 	len = dstlen - addlen;
798 	while (len && remainder > 0) {
799 		remainder = *dstptr + 1;
800 		*dstptr = remainder & 0xff;
801 		remainder >>= 8;
802 		len--; dstptr--;
803 	}
804 }
805 
806 /*
807  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
808  * interlinked, the scratchpad is used as follows:
809  * drbg_hash_update
810  *	start: drbg->scratchpad
811  *	length: drbg_statelen(drbg)
812  * drbg_hash_df:
813  *	start: drbg->scratchpad + drbg_statelen(drbg)
814  *	length: drbg_blocklen(drbg)
815  *
816  * drbg_hash_process_addtl uses the scratchpad, but fully completes
817  * before either of the functions mentioned before are invoked. Therefore,
818  * drbg_hash_process_addtl does not need to be specifically considered.
819  */
820 
821 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
822 static int drbg_hash_df(struct drbg_state *drbg,
823 			unsigned char *outval, size_t outlen,
824 			struct list_head *entropylist)
825 {
826 	int ret = 0;
827 	size_t len = 0;
828 	unsigned char input[5];
829 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
830 	struct drbg_string data;
831 
832 	/* 10.4.1 step 3 */
833 	input[0] = 1;
834 	drbg_cpu_to_be32((outlen * 8), &input[1]);
835 
836 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
837 	drbg_string_fill(&data, input, 5);
838 	list_add(&data.list, entropylist);
839 
840 	/* 10.4.1 step 4 */
841 	while (len < outlen) {
842 		short blocklen = 0;
843 		/* 10.4.1 step 4.1 */
844 		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
845 		if (ret)
846 			goto out;
847 		/* 10.4.1 step 4.2 */
848 		input[0]++;
849 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
850 			    drbg_blocklen(drbg) : (outlen - len);
851 		memcpy(outval + len, tmp, blocklen);
852 		len += blocklen;
853 	}
854 
855 out:
856 	memset(tmp, 0, drbg_blocklen(drbg));
857 	return ret;
858 }
859 
860 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
861 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
862 			    int reseed)
863 {
864 	int ret = 0;
865 	struct drbg_string data1, data2;
866 	LIST_HEAD(datalist);
867 	LIST_HEAD(datalist2);
868 	unsigned char *V = drbg->scratchpad;
869 	unsigned char prefix = DRBG_PREFIX1;
870 
871 	if (!seed)
872 		return -EINVAL;
873 
874 	if (reseed) {
875 		/* 10.1.1.3 step 1 */
876 		memcpy(V, drbg->V, drbg_statelen(drbg));
877 		drbg_string_fill(&data1, &prefix, 1);
878 		list_add_tail(&data1.list, &datalist);
879 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
880 		list_add_tail(&data2.list, &datalist);
881 	}
882 	list_splice_tail(seed, &datalist);
883 
884 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
885 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
886 	if (ret)
887 		goto out;
888 
889 	/* 10.1.1.2 / 10.1.1.3 step 4  */
890 	prefix = DRBG_PREFIX0;
891 	drbg_string_fill(&data1, &prefix, 1);
892 	list_add_tail(&data1.list, &datalist2);
893 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
894 	list_add_tail(&data2.list, &datalist2);
895 	/* 10.1.1.2 / 10.1.1.3 step 4 */
896 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
897 
898 out:
899 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
900 	return ret;
901 }
902 
903 /* processing of additional information string for Hash DRBG */
904 static int drbg_hash_process_addtl(struct drbg_state *drbg,
905 				   struct list_head *addtl)
906 {
907 	int ret = 0;
908 	struct drbg_string data1, data2;
909 	LIST_HEAD(datalist);
910 	unsigned char prefix = DRBG_PREFIX2;
911 
912 	/* 10.1.1.4 step 2 */
913 	if (!addtl || list_empty(addtl))
914 		return 0;
915 
916 	/* 10.1.1.4 step 2a */
917 	drbg_string_fill(&data1, &prefix, 1);
918 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
919 	list_add_tail(&data1.list, &datalist);
920 	list_add_tail(&data2.list, &datalist);
921 	list_splice_tail(addtl, &datalist);
922 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
923 	if (ret)
924 		goto out;
925 
926 	/* 10.1.1.4 step 2b */
927 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
928 		     drbg->scratchpad, drbg_blocklen(drbg));
929 
930 out:
931 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
932 	return ret;
933 }
934 
935 /* Hashgen defined in 10.1.1.4 */
936 static int drbg_hash_hashgen(struct drbg_state *drbg,
937 			     unsigned char *buf,
938 			     unsigned int buflen)
939 {
940 	int len = 0;
941 	int ret = 0;
942 	unsigned char *src = drbg->scratchpad;
943 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
944 	struct drbg_string data;
945 	LIST_HEAD(datalist);
946 
947 	/* 10.1.1.4 step hashgen 2 */
948 	memcpy(src, drbg->V, drbg_statelen(drbg));
949 
950 	drbg_string_fill(&data, src, drbg_statelen(drbg));
951 	list_add_tail(&data.list, &datalist);
952 	while (len < buflen) {
953 		unsigned int outlen = 0;
954 		/* 10.1.1.4 step hashgen 4.1 */
955 		ret = drbg_kcapi_hash(drbg, dst, &datalist);
956 		if (ret) {
957 			len = ret;
958 			goto out;
959 		}
960 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
961 			  drbg_blocklen(drbg) : (buflen - len);
962 		/* 10.1.1.4 step hashgen 4.2 */
963 		memcpy(buf + len, dst, outlen);
964 		len += outlen;
965 		/* 10.1.1.4 hashgen step 4.3 */
966 		if (len < buflen)
967 			crypto_inc(src, drbg_statelen(drbg));
968 	}
969 
970 out:
971 	memset(drbg->scratchpad, 0,
972 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
973 	return len;
974 }
975 
976 /* generate function for Hash DRBG as defined in  10.1.1.4 */
977 static int drbg_hash_generate(struct drbg_state *drbg,
978 			      unsigned char *buf, unsigned int buflen,
979 			      struct list_head *addtl)
980 {
981 	int len = 0;
982 	int ret = 0;
983 	union {
984 		unsigned char req[8];
985 		__be64 req_int;
986 	} u;
987 	unsigned char prefix = DRBG_PREFIX3;
988 	struct drbg_string data1, data2;
989 	LIST_HEAD(datalist);
990 
991 	/* 10.1.1.4 step 2 */
992 	ret = drbg_hash_process_addtl(drbg, addtl);
993 	if (ret)
994 		return ret;
995 	/* 10.1.1.4 step 3 */
996 	len = drbg_hash_hashgen(drbg, buf, buflen);
997 
998 	/* this is the value H as documented in 10.1.1.4 */
999 	/* 10.1.1.4 step 4 */
1000 	drbg_string_fill(&data1, &prefix, 1);
1001 	list_add_tail(&data1.list, &datalist);
1002 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1003 	list_add_tail(&data2.list, &datalist);
1004 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
1005 	if (ret) {
1006 		len = ret;
1007 		goto out;
1008 	}
1009 
1010 	/* 10.1.1.4 step 5 */
1011 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1012 		     drbg->scratchpad, drbg_blocklen(drbg));
1013 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1014 		     drbg->C, drbg_statelen(drbg));
1015 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1016 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1017 
1018 out:
1019 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1020 	return len;
1021 }
1022 
1023 /*
1024  * scratchpad usage: as update and generate are used isolated, both
1025  * can use the scratchpad
1026  */
1027 static const struct drbg_state_ops drbg_hash_ops = {
1028 	.update		= drbg_hash_update,
1029 	.generate	= drbg_hash_generate,
1030 	.crypto_init	= drbg_init_hash_kernel,
1031 	.crypto_fini	= drbg_fini_hash_kernel,
1032 };
1033 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1034 
1035 /******************************************************************
1036  * Functions common for DRBG implementations
1037  ******************************************************************/
1038 
1039 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1040 			      int reseed, enum drbg_seed_state new_seed_state)
1041 {
1042 	int ret = drbg->d_ops->update(drbg, seed, reseed);
1043 
1044 	if (ret)
1045 		return ret;
1046 
1047 	drbg->seeded = new_seed_state;
1048 	drbg->last_seed_time = jiffies;
1049 	/* 10.1.1.2 / 10.1.1.3 step 5 */
1050 	drbg->reseed_ctr = 1;
1051 
1052 	switch (drbg->seeded) {
1053 	case DRBG_SEED_STATE_UNSEEDED:
1054 		/* Impossible, but handle it to silence compiler warnings. */
1055 		fallthrough;
1056 	case DRBG_SEED_STATE_PARTIAL:
1057 		/*
1058 		 * Require frequent reseeds until the seed source is
1059 		 * fully initialized.
1060 		 */
1061 		drbg->reseed_threshold = 50;
1062 		break;
1063 
1064 	case DRBG_SEED_STATE_FULL:
1065 		/*
1066 		 * Seed source has become fully initialized, frequent
1067 		 * reseeds no longer required.
1068 		 */
1069 		drbg->reseed_threshold = drbg_max_requests(drbg);
1070 		break;
1071 	}
1072 
1073 	return ret;
1074 }
1075 
1076 static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1077 					unsigned char *entropy,
1078 					unsigned int entropylen)
1079 {
1080 	int ret;
1081 
1082 	do {
1083 		get_random_bytes(entropy, entropylen);
1084 		ret = drbg_fips_continuous_test(drbg, entropy);
1085 		if (ret && ret != -EAGAIN)
1086 			return ret;
1087 	} while (ret);
1088 
1089 	return 0;
1090 }
1091 
1092 static int drbg_seed_from_random(struct drbg_state *drbg)
1093 {
1094 	struct drbg_string data;
1095 	LIST_HEAD(seedlist);
1096 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1097 	unsigned char entropy[32];
1098 	int ret;
1099 
1100 	BUG_ON(!entropylen);
1101 	BUG_ON(entropylen > sizeof(entropy));
1102 
1103 	drbg_string_fill(&data, entropy, entropylen);
1104 	list_add_tail(&data.list, &seedlist);
1105 
1106 	ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1107 	if (ret)
1108 		goto out;
1109 
1110 	ret = __drbg_seed(drbg, &seedlist, true, DRBG_SEED_STATE_FULL);
1111 
1112 out:
1113 	memzero_explicit(entropy, entropylen);
1114 	return ret;
1115 }
1116 
1117 static bool drbg_nopr_reseed_interval_elapsed(struct drbg_state *drbg)
1118 {
1119 	unsigned long next_reseed;
1120 
1121 	/* Don't ever reseed from get_random_bytes() in test mode. */
1122 	if (list_empty(&drbg->test_data.list))
1123 		return false;
1124 
1125 	/*
1126 	 * Obtain fresh entropy for the nopr DRBGs after 300s have
1127 	 * elapsed in order to still achieve sort of partial
1128 	 * prediction resistance over the time domain at least. Note
1129 	 * that the period of 300s has been chosen to match the
1130 	 * CRNG_RESEED_INTERVAL of the get_random_bytes()' chacha
1131 	 * rngs.
1132 	 */
1133 	next_reseed = drbg->last_seed_time + 300 * HZ;
1134 	return time_after(jiffies, next_reseed);
1135 }
1136 
1137 /*
1138  * Seeding or reseeding of the DRBG
1139  *
1140  * @drbg: DRBG state struct
1141  * @pers: personalization / additional information buffer
1142  * @reseed: 0 for initial seed process, 1 for reseeding
1143  *
1144  * return:
1145  *	0 on success
1146  *	error value otherwise
1147  */
1148 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1149 		     bool reseed)
1150 {
1151 	int ret;
1152 	unsigned char entropy[((32 + 16) * 2)];
1153 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1154 	struct drbg_string data1;
1155 	LIST_HEAD(seedlist);
1156 	enum drbg_seed_state new_seed_state = DRBG_SEED_STATE_FULL;
1157 
1158 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1159 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1160 		pr_devel("DRBG: personalization string too long %zu\n",
1161 			 pers->len);
1162 		return -EINVAL;
1163 	}
1164 
1165 	if (list_empty(&drbg->test_data.list)) {
1166 		drbg_string_fill(&data1, drbg->test_data.buf,
1167 				 drbg->test_data.len);
1168 		pr_devel("DRBG: using test entropy\n");
1169 	} else {
1170 		/*
1171 		 * Gather entropy equal to the security strength of the DRBG.
1172 		 * With a derivation function, a nonce is required in addition
1173 		 * to the entropy. A nonce must be at least 1/2 of the security
1174 		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1175 		 * of the strength. The consideration of a nonce is only
1176 		 * applicable during initial seeding.
1177 		 */
1178 		BUG_ON(!entropylen);
1179 		if (!reseed)
1180 			entropylen = ((entropylen + 1) / 2) * 3;
1181 		BUG_ON((entropylen * 2) > sizeof(entropy));
1182 
1183 		/* Get seed from in-kernel /dev/urandom */
1184 		if (!rng_is_initialized())
1185 			new_seed_state = DRBG_SEED_STATE_PARTIAL;
1186 
1187 		ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1188 		if (ret)
1189 			goto out;
1190 
1191 		if (!drbg->jent) {
1192 			drbg_string_fill(&data1, entropy, entropylen);
1193 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1194 				 entropylen);
1195 		} else {
1196 			/*
1197 			 * Get seed from Jitter RNG, failures are
1198 			 * fatal only in FIPS mode.
1199 			 */
1200 			ret = crypto_rng_get_bytes(drbg->jent,
1201 						   entropy + entropylen,
1202 						   entropylen);
1203 			if (fips_enabled && ret) {
1204 				pr_devel("DRBG: jent failed with %d\n", ret);
1205 
1206 				/*
1207 				 * Do not treat the transient failure of the
1208 				 * Jitter RNG as an error that needs to be
1209 				 * reported. The combined number of the
1210 				 * maximum reseed threshold times the maximum
1211 				 * number of Jitter RNG transient errors is
1212 				 * less than the reseed threshold required by
1213 				 * SP800-90A allowing us to treat the
1214 				 * transient errors as such.
1215 				 *
1216 				 * However, we mandate that at least the first
1217 				 * seeding operation must succeed with the
1218 				 * Jitter RNG.
1219 				 */
1220 				if (!reseed || ret != -EAGAIN)
1221 					goto out;
1222 			}
1223 
1224 			drbg_string_fill(&data1, entropy, entropylen * 2);
1225 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1226 				 entropylen * 2);
1227 		}
1228 	}
1229 	list_add_tail(&data1.list, &seedlist);
1230 
1231 	/*
1232 	 * concatenation of entropy with personalization str / addtl input)
1233 	 * the variable pers is directly handed in by the caller, so check its
1234 	 * contents whether it is appropriate
1235 	 */
1236 	if (pers && pers->buf && 0 < pers->len) {
1237 		list_add_tail(&pers->list, &seedlist);
1238 		pr_devel("DRBG: using personalization string\n");
1239 	}
1240 
1241 	if (!reseed) {
1242 		memset(drbg->V, 0, drbg_statelen(drbg));
1243 		memset(drbg->C, 0, drbg_statelen(drbg));
1244 	}
1245 
1246 	ret = __drbg_seed(drbg, &seedlist, reseed, new_seed_state);
1247 
1248 out:
1249 	memzero_explicit(entropy, entropylen * 2);
1250 
1251 	return ret;
1252 }
1253 
1254 /* Free all substructures in a DRBG state without the DRBG state structure */
1255 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1256 {
1257 	if (!drbg)
1258 		return;
1259 	kfree_sensitive(drbg->Vbuf);
1260 	drbg->Vbuf = NULL;
1261 	drbg->V = NULL;
1262 	kfree_sensitive(drbg->Cbuf);
1263 	drbg->Cbuf = NULL;
1264 	drbg->C = NULL;
1265 	kfree_sensitive(drbg->scratchpadbuf);
1266 	drbg->scratchpadbuf = NULL;
1267 	drbg->reseed_ctr = 0;
1268 	drbg->d_ops = NULL;
1269 	drbg->core = NULL;
1270 	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1271 		kfree_sensitive(drbg->prev);
1272 		drbg->prev = NULL;
1273 		drbg->fips_primed = false;
1274 	}
1275 }
1276 
1277 /*
1278  * Allocate all sub-structures for a DRBG state.
1279  * The DRBG state structure must already be allocated.
1280  */
1281 static inline int drbg_alloc_state(struct drbg_state *drbg)
1282 {
1283 	int ret = -ENOMEM;
1284 	unsigned int sb_size = 0;
1285 
1286 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1287 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1288 	case DRBG_HMAC:
1289 		drbg->d_ops = &drbg_hmac_ops;
1290 		break;
1291 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1292 #ifdef CONFIG_CRYPTO_DRBG_HASH
1293 	case DRBG_HASH:
1294 		drbg->d_ops = &drbg_hash_ops;
1295 		break;
1296 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1297 #ifdef CONFIG_CRYPTO_DRBG_CTR
1298 	case DRBG_CTR:
1299 		drbg->d_ops = &drbg_ctr_ops;
1300 		break;
1301 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1302 	default:
1303 		ret = -EOPNOTSUPP;
1304 		goto err;
1305 	}
1306 
1307 	ret = drbg->d_ops->crypto_init(drbg);
1308 	if (ret < 0)
1309 		goto err;
1310 
1311 	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1312 	if (!drbg->Vbuf) {
1313 		ret = -ENOMEM;
1314 		goto fini;
1315 	}
1316 	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1317 	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1318 	if (!drbg->Cbuf) {
1319 		ret = -ENOMEM;
1320 		goto fini;
1321 	}
1322 	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1323 	/* scratchpad is only generated for CTR and Hash */
1324 	if (drbg->core->flags & DRBG_HMAC)
1325 		sb_size = 0;
1326 	else if (drbg->core->flags & DRBG_CTR)
1327 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1328 			  drbg_statelen(drbg) +	/* df_data */
1329 			  drbg_blocklen(drbg) +	/* pad */
1330 			  drbg_blocklen(drbg) +	/* iv */
1331 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1332 	else
1333 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1334 
1335 	if (0 < sb_size) {
1336 		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1337 		if (!drbg->scratchpadbuf) {
1338 			ret = -ENOMEM;
1339 			goto fini;
1340 		}
1341 		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1342 	}
1343 
1344 	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1345 		drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1346 				     GFP_KERNEL);
1347 		if (!drbg->prev) {
1348 			ret = -ENOMEM;
1349 			goto fini;
1350 		}
1351 		drbg->fips_primed = false;
1352 	}
1353 
1354 	return 0;
1355 
1356 fini:
1357 	drbg->d_ops->crypto_fini(drbg);
1358 err:
1359 	drbg_dealloc_state(drbg);
1360 	return ret;
1361 }
1362 
1363 /*************************************************************************
1364  * DRBG interface functions
1365  *************************************************************************/
1366 
1367 /*
1368  * DRBG generate function as required by SP800-90A - this function
1369  * generates random numbers
1370  *
1371  * @drbg DRBG state handle
1372  * @buf Buffer where to store the random numbers -- the buffer must already
1373  *      be pre-allocated by caller
1374  * @buflen Length of output buffer - this value defines the number of random
1375  *	   bytes pulled from DRBG
1376  * @addtl Additional input that is mixed into state, may be NULL -- note
1377  *	  the entropy is pulled by the DRBG internally unconditionally
1378  *	  as defined in SP800-90A. The additional input is mixed into
1379  *	  the state in addition to the pulled entropy.
1380  *
1381  * return: 0 when all bytes are generated; < 0 in case of an error
1382  */
1383 static int drbg_generate(struct drbg_state *drbg,
1384 			 unsigned char *buf, unsigned int buflen,
1385 			 struct drbg_string *addtl)
1386 {
1387 	int len = 0;
1388 	LIST_HEAD(addtllist);
1389 
1390 	if (!drbg->core) {
1391 		pr_devel("DRBG: not yet seeded\n");
1392 		return -EINVAL;
1393 	}
1394 	if (0 == buflen || !buf) {
1395 		pr_devel("DRBG: no output buffer provided\n");
1396 		return -EINVAL;
1397 	}
1398 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1399 		pr_devel("DRBG: wrong format of additional information\n");
1400 		return -EINVAL;
1401 	}
1402 
1403 	/* 9.3.1 step 2 */
1404 	len = -EINVAL;
1405 	if (buflen > (drbg_max_request_bytes(drbg))) {
1406 		pr_devel("DRBG: requested random numbers too large %u\n",
1407 			 buflen);
1408 		goto err;
1409 	}
1410 
1411 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1412 
1413 	/* 9.3.1 step 4 */
1414 	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1415 		pr_devel("DRBG: additional information string too long %zu\n",
1416 			 addtl->len);
1417 		goto err;
1418 	}
1419 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1420 
1421 	/*
1422 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1423 	 * here. The spec is a bit convoluted here, we make it simpler.
1424 	 */
1425 	if (drbg->reseed_threshold < drbg->reseed_ctr)
1426 		drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1427 
1428 	if (drbg->pr || drbg->seeded == DRBG_SEED_STATE_UNSEEDED) {
1429 		pr_devel("DRBG: reseeding before generation (prediction "
1430 			 "resistance: %s, state %s)\n",
1431 			 drbg->pr ? "true" : "false",
1432 			 (drbg->seeded ==  DRBG_SEED_STATE_FULL ?
1433 			  "seeded" : "unseeded"));
1434 		/* 9.3.1 steps 7.1 through 7.3 */
1435 		len = drbg_seed(drbg, addtl, true);
1436 		if (len)
1437 			goto err;
1438 		/* 9.3.1 step 7.4 */
1439 		addtl = NULL;
1440 	} else if (rng_is_initialized() &&
1441 		   (drbg->seeded == DRBG_SEED_STATE_PARTIAL ||
1442 		    drbg_nopr_reseed_interval_elapsed(drbg))) {
1443 		len = drbg_seed_from_random(drbg);
1444 		if (len)
1445 			goto err;
1446 	}
1447 
1448 	if (addtl && 0 < addtl->len)
1449 		list_add_tail(&addtl->list, &addtllist);
1450 	/* 9.3.1 step 8 and 10 */
1451 	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1452 
1453 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1454 	drbg->reseed_ctr++;
1455 	if (0 >= len)
1456 		goto err;
1457 
1458 	/*
1459 	 * Section 11.3.3 requires to re-perform self tests after some
1460 	 * generated random numbers. The chosen value after which self
1461 	 * test is performed is arbitrary, but it should be reasonable.
1462 	 * However, we do not perform the self tests because of the following
1463 	 * reasons: it is mathematically impossible that the initial self tests
1464 	 * were successfully and the following are not. If the initial would
1465 	 * pass and the following would not, the kernel integrity is violated.
1466 	 * In this case, the entire kernel operation is questionable and it
1467 	 * is unlikely that the integrity violation only affects the
1468 	 * correct operation of the DRBG.
1469 	 *
1470 	 * Albeit the following code is commented out, it is provided in
1471 	 * case somebody has a need to implement the test of 11.3.3.
1472 	 */
1473 #if 0
1474 	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1475 		int err = 0;
1476 		pr_devel("DRBG: start to perform self test\n");
1477 		if (drbg->core->flags & DRBG_HMAC)
1478 			err = alg_test("drbg_pr_hmac_sha256",
1479 				       "drbg_pr_hmac_sha256", 0, 0);
1480 		else if (drbg->core->flags & DRBG_CTR)
1481 			err = alg_test("drbg_pr_ctr_aes128",
1482 				       "drbg_pr_ctr_aes128", 0, 0);
1483 		else
1484 			err = alg_test("drbg_pr_sha256",
1485 				       "drbg_pr_sha256", 0, 0);
1486 		if (err) {
1487 			pr_err("DRBG: periodical self test failed\n");
1488 			/*
1489 			 * uninstantiate implies that from now on, only errors
1490 			 * are returned when reusing this DRBG cipher handle
1491 			 */
1492 			drbg_uninstantiate(drbg);
1493 			return 0;
1494 		} else {
1495 			pr_devel("DRBG: self test successful\n");
1496 		}
1497 	}
1498 #endif
1499 
1500 	/*
1501 	 * All operations were successful, return 0 as mandated by
1502 	 * the kernel crypto API interface.
1503 	 */
1504 	len = 0;
1505 err:
1506 	return len;
1507 }
1508 
1509 /*
1510  * Wrapper around drbg_generate which can pull arbitrary long strings
1511  * from the DRBG without hitting the maximum request limitation.
1512  *
1513  * Parameters: see drbg_generate
1514  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1515  *		 the entire drbg_generate_long request fails
1516  */
1517 static int drbg_generate_long(struct drbg_state *drbg,
1518 			      unsigned char *buf, unsigned int buflen,
1519 			      struct drbg_string *addtl)
1520 {
1521 	unsigned int len = 0;
1522 	unsigned int slice = 0;
1523 	do {
1524 		int err = 0;
1525 		unsigned int chunk = 0;
1526 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1527 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1528 		mutex_lock(&drbg->drbg_mutex);
1529 		err = drbg_generate(drbg, buf + len, chunk, addtl);
1530 		mutex_unlock(&drbg->drbg_mutex);
1531 		if (0 > err)
1532 			return err;
1533 		len += chunk;
1534 	} while (slice > 0 && (len < buflen));
1535 	return 0;
1536 }
1537 
1538 static int drbg_prepare_hrng(struct drbg_state *drbg)
1539 {
1540 	/* We do not need an HRNG in test mode. */
1541 	if (list_empty(&drbg->test_data.list))
1542 		return 0;
1543 
1544 	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1545 	if (IS_ERR(drbg->jent)) {
1546 		const int err = PTR_ERR(drbg->jent);
1547 
1548 		drbg->jent = NULL;
1549 		if (fips_enabled || err != -ENOENT)
1550 			return err;
1551 		pr_info("DRBG: Continuing without Jitter RNG\n");
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 /*
1558  * DRBG instantiation function as required by SP800-90A - this function
1559  * sets up the DRBG handle, performs the initial seeding and all sanity
1560  * checks required by SP800-90A
1561  *
1562  * @drbg memory of state -- if NULL, new memory is allocated
1563  * @pers Personalization string that is mixed into state, may be NULL -- note
1564  *	 the entropy is pulled by the DRBG internally unconditionally
1565  *	 as defined in SP800-90A. The additional input is mixed into
1566  *	 the state in addition to the pulled entropy.
1567  * @coreref reference to core
1568  * @pr prediction resistance enabled
1569  *
1570  * return
1571  *	0 on success
1572  *	error value otherwise
1573  */
1574 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1575 			    int coreref, bool pr)
1576 {
1577 	int ret;
1578 	bool reseed = true;
1579 
1580 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1581 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1582 	mutex_lock(&drbg->drbg_mutex);
1583 
1584 	/* 9.1 step 1 is implicit with the selected DRBG type */
1585 
1586 	/*
1587 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1588 	 * and the flag is copied into drbg->flags --
1589 	 * all DRBG types support prediction resistance
1590 	 */
1591 
1592 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1593 
1594 	if (!drbg->core) {
1595 		drbg->core = &drbg_cores[coreref];
1596 		drbg->pr = pr;
1597 		drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1598 		drbg->last_seed_time = 0;
1599 		drbg->reseed_threshold = drbg_max_requests(drbg);
1600 
1601 		ret = drbg_alloc_state(drbg);
1602 		if (ret)
1603 			goto unlock;
1604 
1605 		ret = drbg_prepare_hrng(drbg);
1606 		if (ret)
1607 			goto free_everything;
1608 
1609 		reseed = false;
1610 	}
1611 
1612 	ret = drbg_seed(drbg, pers, reseed);
1613 
1614 	if (ret && !reseed)
1615 		goto free_everything;
1616 
1617 	mutex_unlock(&drbg->drbg_mutex);
1618 	return ret;
1619 
1620 unlock:
1621 	mutex_unlock(&drbg->drbg_mutex);
1622 	return ret;
1623 
1624 free_everything:
1625 	mutex_unlock(&drbg->drbg_mutex);
1626 	drbg_uninstantiate(drbg);
1627 	return ret;
1628 }
1629 
1630 /*
1631  * DRBG uninstantiate function as required by SP800-90A - this function
1632  * frees all buffers and the DRBG handle
1633  *
1634  * @drbg DRBG state handle
1635  *
1636  * return
1637  *	0 on success
1638  */
1639 static int drbg_uninstantiate(struct drbg_state *drbg)
1640 {
1641 	if (!IS_ERR_OR_NULL(drbg->jent))
1642 		crypto_free_rng(drbg->jent);
1643 	drbg->jent = NULL;
1644 
1645 	if (drbg->d_ops)
1646 		drbg->d_ops->crypto_fini(drbg);
1647 	drbg_dealloc_state(drbg);
1648 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1649 	return 0;
1650 }
1651 
1652 /*
1653  * Helper function for setting the test data in the DRBG
1654  *
1655  * @drbg DRBG state handle
1656  * @data test data
1657  * @len test data length
1658  */
1659 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1660 				   const u8 *data, unsigned int len)
1661 {
1662 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1663 
1664 	mutex_lock(&drbg->drbg_mutex);
1665 	drbg_string_fill(&drbg->test_data, data, len);
1666 	mutex_unlock(&drbg->drbg_mutex);
1667 }
1668 
1669 /***************************************************************
1670  * Kernel crypto API cipher invocations requested by DRBG
1671  ***************************************************************/
1672 
1673 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1674 struct sdesc {
1675 	struct shash_desc shash;
1676 	char ctx[];
1677 };
1678 
1679 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1680 {
1681 	struct sdesc *sdesc;
1682 	struct crypto_shash *tfm;
1683 
1684 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1685 	if (IS_ERR(tfm)) {
1686 		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1687 				drbg->core->backend_cra_name);
1688 		return PTR_ERR(tfm);
1689 	}
1690 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1691 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1692 			GFP_KERNEL);
1693 	if (!sdesc) {
1694 		crypto_free_shash(tfm);
1695 		return -ENOMEM;
1696 	}
1697 
1698 	sdesc->shash.tfm = tfm;
1699 	drbg->priv_data = sdesc;
1700 
1701 	return crypto_shash_alignmask(tfm);
1702 }
1703 
1704 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1705 {
1706 	struct sdesc *sdesc = drbg->priv_data;
1707 	if (sdesc) {
1708 		crypto_free_shash(sdesc->shash.tfm);
1709 		kfree_sensitive(sdesc);
1710 	}
1711 	drbg->priv_data = NULL;
1712 	return 0;
1713 }
1714 
1715 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1716 				  const unsigned char *key)
1717 {
1718 	struct sdesc *sdesc = drbg->priv_data;
1719 
1720 	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1721 }
1722 
1723 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1724 			   const struct list_head *in)
1725 {
1726 	struct sdesc *sdesc = drbg->priv_data;
1727 	struct drbg_string *input = NULL;
1728 
1729 	crypto_shash_init(&sdesc->shash);
1730 	list_for_each_entry(input, in, list)
1731 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1732 	return crypto_shash_final(&sdesc->shash, outval);
1733 }
1734 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1735 
1736 #ifdef CONFIG_CRYPTO_DRBG_CTR
1737 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1738 {
1739 	struct crypto_cipher *tfm =
1740 		(struct crypto_cipher *)drbg->priv_data;
1741 	if (tfm)
1742 		crypto_free_cipher(tfm);
1743 	drbg->priv_data = NULL;
1744 
1745 	if (drbg->ctr_handle)
1746 		crypto_free_skcipher(drbg->ctr_handle);
1747 	drbg->ctr_handle = NULL;
1748 
1749 	if (drbg->ctr_req)
1750 		skcipher_request_free(drbg->ctr_req);
1751 	drbg->ctr_req = NULL;
1752 
1753 	kfree(drbg->outscratchpadbuf);
1754 	drbg->outscratchpadbuf = NULL;
1755 
1756 	return 0;
1757 }
1758 
1759 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1760 {
1761 	struct crypto_cipher *tfm;
1762 	struct crypto_skcipher *sk_tfm;
1763 	struct skcipher_request *req;
1764 	unsigned int alignmask;
1765 	char ctr_name[CRYPTO_MAX_ALG_NAME];
1766 
1767 	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1768 	if (IS_ERR(tfm)) {
1769 		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1770 				drbg->core->backend_cra_name);
1771 		return PTR_ERR(tfm);
1772 	}
1773 	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1774 	drbg->priv_data = tfm;
1775 
1776 	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1777 	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1778 		drbg_fini_sym_kernel(drbg);
1779 		return -EINVAL;
1780 	}
1781 	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1782 	if (IS_ERR(sk_tfm)) {
1783 		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1784 				ctr_name);
1785 		drbg_fini_sym_kernel(drbg);
1786 		return PTR_ERR(sk_tfm);
1787 	}
1788 	drbg->ctr_handle = sk_tfm;
1789 	crypto_init_wait(&drbg->ctr_wait);
1790 
1791 	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1792 	if (!req) {
1793 		pr_info("DRBG: could not allocate request queue\n");
1794 		drbg_fini_sym_kernel(drbg);
1795 		return -ENOMEM;
1796 	}
1797 	drbg->ctr_req = req;
1798 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1799 						CRYPTO_TFM_REQ_MAY_SLEEP,
1800 					crypto_req_done, &drbg->ctr_wait);
1801 
1802 	alignmask = crypto_skcipher_alignmask(sk_tfm);
1803 	drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1804 					 GFP_KERNEL);
1805 	if (!drbg->outscratchpadbuf) {
1806 		drbg_fini_sym_kernel(drbg);
1807 		return -ENOMEM;
1808 	}
1809 	drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1810 					      alignmask + 1);
1811 
1812 	sg_init_table(&drbg->sg_in, 1);
1813 	sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1814 
1815 	return alignmask;
1816 }
1817 
1818 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1819 				 const unsigned char *key)
1820 {
1821 	struct crypto_cipher *tfm = drbg->priv_data;
1822 
1823 	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1824 }
1825 
1826 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1827 			  const struct drbg_string *in)
1828 {
1829 	struct crypto_cipher *tfm = drbg->priv_data;
1830 
1831 	/* there is only component in *in */
1832 	BUG_ON(in->len < drbg_blocklen(drbg));
1833 	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1834 	return 0;
1835 }
1836 
1837 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1838 			      u8 *inbuf, u32 inlen,
1839 			      u8 *outbuf, u32 outlen)
1840 {
1841 	struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1842 	u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1843 	int ret;
1844 
1845 	if (inbuf) {
1846 		/* Use caller-provided input buffer */
1847 		sg_set_buf(sg_in, inbuf, inlen);
1848 	} else {
1849 		/* Use scratchpad for in-place operation */
1850 		inlen = scratchpad_use;
1851 		memset(drbg->outscratchpad, 0, scratchpad_use);
1852 		sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1853 	}
1854 
1855 	while (outlen) {
1856 		u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1857 
1858 		/* Output buffer may not be valid for SGL, use scratchpad */
1859 		skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1860 					   cryptlen, drbg->V);
1861 		ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1862 					&drbg->ctr_wait);
1863 		if (ret)
1864 			goto out;
1865 
1866 		crypto_init_wait(&drbg->ctr_wait);
1867 
1868 		memcpy(outbuf, drbg->outscratchpad, cryptlen);
1869 		memzero_explicit(drbg->outscratchpad, cryptlen);
1870 
1871 		outlen -= cryptlen;
1872 		outbuf += cryptlen;
1873 	}
1874 	ret = 0;
1875 
1876 out:
1877 	return ret;
1878 }
1879 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1880 
1881 /***************************************************************
1882  * Kernel crypto API interface to register DRBG
1883  ***************************************************************/
1884 
1885 /*
1886  * Look up the DRBG flags by given kernel crypto API cra_name
1887  * The code uses the drbg_cores definition to do this
1888  *
1889  * @cra_name kernel crypto API cra_name
1890  * @coreref reference to integer which is filled with the pointer to
1891  *  the applicable core
1892  * @pr reference for setting prediction resistance
1893  *
1894  * return: flags
1895  */
1896 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1897 					 int *coreref, bool *pr)
1898 {
1899 	int i = 0;
1900 	size_t start = 0;
1901 	int len = 0;
1902 
1903 	*pr = true;
1904 	/* disassemble the names */
1905 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1906 		start = 10;
1907 		*pr = false;
1908 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1909 		start = 8;
1910 	} else {
1911 		return;
1912 	}
1913 
1914 	/* remove the first part */
1915 	len = strlen(cra_driver_name) - start;
1916 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1917 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1918 			    len)) {
1919 			*coreref = i;
1920 			return;
1921 		}
1922 	}
1923 }
1924 
1925 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1926 {
1927 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1928 
1929 	mutex_init(&drbg->drbg_mutex);
1930 
1931 	return 0;
1932 }
1933 
1934 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1935 {
1936 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1937 }
1938 
1939 /*
1940  * Generate random numbers invoked by the kernel crypto API:
1941  * The API of the kernel crypto API is extended as follows:
1942  *
1943  * src is additional input supplied to the RNG.
1944  * slen is the length of src.
1945  * dst is the output buffer where random data is to be stored.
1946  * dlen is the length of dst.
1947  */
1948 static int drbg_kcapi_random(struct crypto_rng *tfm,
1949 			     const u8 *src, unsigned int slen,
1950 			     u8 *dst, unsigned int dlen)
1951 {
1952 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1953 	struct drbg_string *addtl = NULL;
1954 	struct drbg_string string;
1955 
1956 	if (slen) {
1957 		/* linked list variable is now local to allow modification */
1958 		drbg_string_fill(&string, src, slen);
1959 		addtl = &string;
1960 	}
1961 
1962 	return drbg_generate_long(drbg, dst, dlen, addtl);
1963 }
1964 
1965 /*
1966  * Seed the DRBG invoked by the kernel crypto API
1967  */
1968 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1969 			   const u8 *seed, unsigned int slen)
1970 {
1971 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1972 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1973 	bool pr = false;
1974 	struct drbg_string string;
1975 	struct drbg_string *seed_string = NULL;
1976 	int coreref = 0;
1977 
1978 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1979 			      &pr);
1980 	if (0 < slen) {
1981 		drbg_string_fill(&string, seed, slen);
1982 		seed_string = &string;
1983 	}
1984 
1985 	return drbg_instantiate(drbg, seed_string, coreref, pr);
1986 }
1987 
1988 /***************************************************************
1989  * Kernel module: code to load the module
1990  ***************************************************************/
1991 
1992 /*
1993  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1994  * of the error handling.
1995  *
1996  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1997  * as seed source of get_random_bytes does not fail.
1998  *
1999  * Note 2: There is no sensible way of testing the reseed counter
2000  * enforcement, so skip it.
2001  */
2002 static inline int __init drbg_healthcheck_sanity(void)
2003 {
2004 	int len = 0;
2005 #define OUTBUFLEN 16
2006 	unsigned char buf[OUTBUFLEN];
2007 	struct drbg_state *drbg = NULL;
2008 	int ret;
2009 	int rc = -EFAULT;
2010 	bool pr = false;
2011 	int coreref = 0;
2012 	struct drbg_string addtl;
2013 	size_t max_addtllen, max_request_bytes;
2014 
2015 	/* only perform test in FIPS mode */
2016 	if (!fips_enabled)
2017 		return 0;
2018 
2019 #ifdef CONFIG_CRYPTO_DRBG_CTR
2020 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
2021 #elif defined CONFIG_CRYPTO_DRBG_HASH
2022 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2023 #else
2024 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
2025 #endif
2026 
2027 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2028 	if (!drbg)
2029 		return -ENOMEM;
2030 
2031 	mutex_init(&drbg->drbg_mutex);
2032 	drbg->core = &drbg_cores[coreref];
2033 	drbg->reseed_threshold = drbg_max_requests(drbg);
2034 
2035 	/*
2036 	 * if the following tests fail, it is likely that there is a buffer
2037 	 * overflow as buf is much smaller than the requested or provided
2038 	 * string lengths -- in case the error handling does not succeed
2039 	 * we may get an OOPS. And we want to get an OOPS as this is a
2040 	 * grave bug.
2041 	 */
2042 
2043 	max_addtllen = drbg_max_addtl(drbg);
2044 	max_request_bytes = drbg_max_request_bytes(drbg);
2045 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
2046 	/* overflow addtllen with additonal info string */
2047 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2048 	BUG_ON(0 < len);
2049 	/* overflow max_bits */
2050 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2051 	BUG_ON(0 < len);
2052 
2053 	/* overflow max addtllen with personalization string */
2054 	ret = drbg_seed(drbg, &addtl, false);
2055 	BUG_ON(0 == ret);
2056 	/* all tests passed */
2057 	rc = 0;
2058 
2059 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
2060 		 "completed\n");
2061 
2062 	kfree(drbg);
2063 	return rc;
2064 }
2065 
2066 static struct rng_alg drbg_algs[22];
2067 
2068 /*
2069  * Fill the array drbg_algs used to register the different DRBGs
2070  * with the kernel crypto API. To fill the array, the information
2071  * from drbg_cores[] is used.
2072  */
2073 static inline void __init drbg_fill_array(struct rng_alg *alg,
2074 					  const struct drbg_core *core, int pr)
2075 {
2076 	int pos = 0;
2077 	static int priority = 200;
2078 
2079 	memcpy(alg->base.cra_name, "stdrng", 6);
2080 	if (pr) {
2081 		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2082 		pos = 8;
2083 	} else {
2084 		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2085 		pos = 10;
2086 	}
2087 	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2088 	       strlen(core->cra_name));
2089 
2090 	alg->base.cra_priority = priority;
2091 	priority++;
2092 	/*
2093 	 * If FIPS mode enabled, the selected DRBG shall have the
2094 	 * highest cra_priority over other stdrng instances to ensure
2095 	 * it is selected.
2096 	 */
2097 	if (fips_enabled)
2098 		alg->base.cra_priority += 200;
2099 
2100 	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
2101 	alg->base.cra_module	= THIS_MODULE;
2102 	alg->base.cra_init	= drbg_kcapi_init;
2103 	alg->base.cra_exit	= drbg_kcapi_cleanup;
2104 	alg->generate		= drbg_kcapi_random;
2105 	alg->seed		= drbg_kcapi_seed;
2106 	alg->set_ent		= drbg_kcapi_set_entropy;
2107 	alg->seedsize		= 0;
2108 }
2109 
2110 static int __init drbg_init(void)
2111 {
2112 	unsigned int i = 0; /* pointer to drbg_algs */
2113 	unsigned int j = 0; /* pointer to drbg_cores */
2114 	int ret;
2115 
2116 	ret = drbg_healthcheck_sanity();
2117 	if (ret)
2118 		return ret;
2119 
2120 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2121 		pr_info("DRBG: Cannot register all DRBG types"
2122 			"(slots needed: %zu, slots available: %zu)\n",
2123 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2124 		return -EFAULT;
2125 	}
2126 
2127 	/*
2128 	 * each DRBG definition can be used with PR and without PR, thus
2129 	 * we instantiate each DRBG in drbg_cores[] twice.
2130 	 *
2131 	 * As the order of placing them into the drbg_algs array matters
2132 	 * (the later DRBGs receive a higher cra_priority) we register the
2133 	 * prediction resistance DRBGs first as the should not be too
2134 	 * interesting.
2135 	 */
2136 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2137 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2138 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2139 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2140 	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2141 }
2142 
2143 static void __exit drbg_exit(void)
2144 {
2145 	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2146 }
2147 
2148 subsys_initcall(drbg_init);
2149 module_exit(drbg_exit);
2150 #ifndef CRYPTO_DRBG_HASH_STRING
2151 #define CRYPTO_DRBG_HASH_STRING ""
2152 #endif
2153 #ifndef CRYPTO_DRBG_HMAC_STRING
2154 #define CRYPTO_DRBG_HMAC_STRING ""
2155 #endif
2156 #ifndef CRYPTO_DRBG_CTR_STRING
2157 #define CRYPTO_DRBG_CTR_STRING ""
2158 #endif
2159 MODULE_LICENSE("GPL");
2160 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2161 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2162 		   "using following cores: "
2163 		   CRYPTO_DRBG_HASH_STRING
2164 		   CRYPTO_DRBG_HMAC_STRING
2165 		   CRYPTO_DRBG_CTR_STRING);
2166 MODULE_ALIAS_CRYPTO("stdrng");
2167 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
2168