1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Handle async block request by crypto hardware engine. 4 * 5 * Copyright (C) 2016 Linaro, Inc. 6 * 7 * Author: Baolin Wang <baolin.wang@linaro.org> 8 */ 9 10 #include <linux/err.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <crypto/engine.h> 14 #include <uapi/linux/sched/types.h> 15 #include "internal.h" 16 17 #define CRYPTO_ENGINE_MAX_QLEN 10 18 19 /** 20 * crypto_finalize_request - finalize one request if the request is done 21 * @engine: the hardware engine 22 * @req: the request need to be finalized 23 * @err: error number 24 */ 25 static void crypto_finalize_request(struct crypto_engine *engine, 26 struct crypto_async_request *req, int err) 27 { 28 unsigned long flags; 29 bool finalize_req = false; 30 int ret; 31 struct crypto_engine_ctx *enginectx; 32 33 /* 34 * If hardware cannot enqueue more requests 35 * and retry mechanism is not supported 36 * make sure we are completing the current request 37 */ 38 if (!engine->retry_support) { 39 spin_lock_irqsave(&engine->queue_lock, flags); 40 if (engine->cur_req == req) { 41 finalize_req = true; 42 engine->cur_req = NULL; 43 } 44 spin_unlock_irqrestore(&engine->queue_lock, flags); 45 } 46 47 if (finalize_req || engine->retry_support) { 48 enginectx = crypto_tfm_ctx(req->tfm); 49 if (enginectx->op.prepare_request && 50 enginectx->op.unprepare_request) { 51 ret = enginectx->op.unprepare_request(engine, req); 52 if (ret) 53 dev_err(engine->dev, "failed to unprepare request\n"); 54 } 55 } 56 req->complete(req, err); 57 58 kthread_queue_work(engine->kworker, &engine->pump_requests); 59 } 60 61 /** 62 * crypto_pump_requests - dequeue one request from engine queue to process 63 * @engine: the hardware engine 64 * @in_kthread: true if we are in the context of the request pump thread 65 * 66 * This function checks if there is any request in the engine queue that 67 * needs processing and if so call out to the driver to initialize hardware 68 * and handle each request. 69 */ 70 static void crypto_pump_requests(struct crypto_engine *engine, 71 bool in_kthread) 72 { 73 struct crypto_async_request *async_req, *backlog; 74 unsigned long flags; 75 bool was_busy = false; 76 int ret; 77 struct crypto_engine_ctx *enginectx; 78 79 spin_lock_irqsave(&engine->queue_lock, flags); 80 81 /* Make sure we are not already running a request */ 82 if (!engine->retry_support && engine->cur_req) 83 goto out; 84 85 /* If another context is idling then defer */ 86 if (engine->idling) { 87 kthread_queue_work(engine->kworker, &engine->pump_requests); 88 goto out; 89 } 90 91 /* Check if the engine queue is idle */ 92 if (!crypto_queue_len(&engine->queue) || !engine->running) { 93 if (!engine->busy) 94 goto out; 95 96 /* Only do teardown in the thread */ 97 if (!in_kthread) { 98 kthread_queue_work(engine->kworker, 99 &engine->pump_requests); 100 goto out; 101 } 102 103 engine->busy = false; 104 engine->idling = true; 105 spin_unlock_irqrestore(&engine->queue_lock, flags); 106 107 if (engine->unprepare_crypt_hardware && 108 engine->unprepare_crypt_hardware(engine)) 109 dev_err(engine->dev, "failed to unprepare crypt hardware\n"); 110 111 spin_lock_irqsave(&engine->queue_lock, flags); 112 engine->idling = false; 113 goto out; 114 } 115 116 start_request: 117 /* Get the fist request from the engine queue to handle */ 118 backlog = crypto_get_backlog(&engine->queue); 119 async_req = crypto_dequeue_request(&engine->queue); 120 if (!async_req) 121 goto out; 122 123 /* 124 * If hardware doesn't support the retry mechanism, 125 * keep track of the request we are processing now. 126 * We'll need it on completion (crypto_finalize_request). 127 */ 128 if (!engine->retry_support) 129 engine->cur_req = async_req; 130 131 if (backlog) 132 backlog->complete(backlog, -EINPROGRESS); 133 134 if (engine->busy) 135 was_busy = true; 136 else 137 engine->busy = true; 138 139 spin_unlock_irqrestore(&engine->queue_lock, flags); 140 141 /* Until here we get the request need to be encrypted successfully */ 142 if (!was_busy && engine->prepare_crypt_hardware) { 143 ret = engine->prepare_crypt_hardware(engine); 144 if (ret) { 145 dev_err(engine->dev, "failed to prepare crypt hardware\n"); 146 goto req_err_2; 147 } 148 } 149 150 enginectx = crypto_tfm_ctx(async_req->tfm); 151 152 if (enginectx->op.prepare_request) { 153 ret = enginectx->op.prepare_request(engine, async_req); 154 if (ret) { 155 dev_err(engine->dev, "failed to prepare request: %d\n", 156 ret); 157 goto req_err_2; 158 } 159 } 160 if (!enginectx->op.do_one_request) { 161 dev_err(engine->dev, "failed to do request\n"); 162 ret = -EINVAL; 163 goto req_err_1; 164 } 165 166 ret = enginectx->op.do_one_request(engine, async_req); 167 168 /* Request unsuccessfully executed by hardware */ 169 if (ret < 0) { 170 /* 171 * If hardware queue is full (-ENOSPC), requeue request 172 * regardless of backlog flag. 173 * Otherwise, unprepare and complete the request. 174 */ 175 if (!engine->retry_support || 176 (ret != -ENOSPC)) { 177 dev_err(engine->dev, 178 "Failed to do one request from queue: %d\n", 179 ret); 180 goto req_err_1; 181 } 182 /* 183 * If retry mechanism is supported, 184 * unprepare current request and 185 * enqueue it back into crypto-engine queue. 186 */ 187 if (enginectx->op.unprepare_request) { 188 ret = enginectx->op.unprepare_request(engine, 189 async_req); 190 if (ret) 191 dev_err(engine->dev, 192 "failed to unprepare request\n"); 193 } 194 spin_lock_irqsave(&engine->queue_lock, flags); 195 /* 196 * If hardware was unable to execute request, enqueue it 197 * back in front of crypto-engine queue, to keep the order 198 * of requests. 199 */ 200 crypto_enqueue_request_head(&engine->queue, async_req); 201 202 kthread_queue_work(engine->kworker, &engine->pump_requests); 203 goto out; 204 } 205 206 goto retry; 207 208 req_err_1: 209 if (enginectx->op.unprepare_request) { 210 ret = enginectx->op.unprepare_request(engine, async_req); 211 if (ret) 212 dev_err(engine->dev, "failed to unprepare request\n"); 213 } 214 215 req_err_2: 216 async_req->complete(async_req, ret); 217 218 retry: 219 /* If retry mechanism is supported, send new requests to engine */ 220 if (engine->retry_support) { 221 spin_lock_irqsave(&engine->queue_lock, flags); 222 goto start_request; 223 } 224 return; 225 226 out: 227 spin_unlock_irqrestore(&engine->queue_lock, flags); 228 229 /* 230 * Batch requests is possible only if 231 * hardware can enqueue multiple requests 232 */ 233 if (engine->do_batch_requests) { 234 ret = engine->do_batch_requests(engine); 235 if (ret) 236 dev_err(engine->dev, "failed to do batch requests: %d\n", 237 ret); 238 } 239 240 return; 241 } 242 243 static void crypto_pump_work(struct kthread_work *work) 244 { 245 struct crypto_engine *engine = 246 container_of(work, struct crypto_engine, pump_requests); 247 248 crypto_pump_requests(engine, true); 249 } 250 251 /** 252 * crypto_transfer_request - transfer the new request into the engine queue 253 * @engine: the hardware engine 254 * @req: the request need to be listed into the engine queue 255 */ 256 static int crypto_transfer_request(struct crypto_engine *engine, 257 struct crypto_async_request *req, 258 bool need_pump) 259 { 260 unsigned long flags; 261 int ret; 262 263 spin_lock_irqsave(&engine->queue_lock, flags); 264 265 if (!engine->running) { 266 spin_unlock_irqrestore(&engine->queue_lock, flags); 267 return -ESHUTDOWN; 268 } 269 270 ret = crypto_enqueue_request(&engine->queue, req); 271 272 if (!engine->busy && need_pump) 273 kthread_queue_work(engine->kworker, &engine->pump_requests); 274 275 spin_unlock_irqrestore(&engine->queue_lock, flags); 276 return ret; 277 } 278 279 /** 280 * crypto_transfer_request_to_engine - transfer one request to list 281 * into the engine queue 282 * @engine: the hardware engine 283 * @req: the request need to be listed into the engine queue 284 */ 285 static int crypto_transfer_request_to_engine(struct crypto_engine *engine, 286 struct crypto_async_request *req) 287 { 288 return crypto_transfer_request(engine, req, true); 289 } 290 291 /** 292 * crypto_transfer_aead_request_to_engine - transfer one aead_request 293 * to list into the engine queue 294 * @engine: the hardware engine 295 * @req: the request need to be listed into the engine queue 296 */ 297 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine, 298 struct aead_request *req) 299 { 300 return crypto_transfer_request_to_engine(engine, &req->base); 301 } 302 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine); 303 304 /** 305 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request 306 * to list into the engine queue 307 * @engine: the hardware engine 308 * @req: the request need to be listed into the engine queue 309 */ 310 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine, 311 struct akcipher_request *req) 312 { 313 return crypto_transfer_request_to_engine(engine, &req->base); 314 } 315 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine); 316 317 /** 318 * crypto_transfer_hash_request_to_engine - transfer one ahash_request 319 * to list into the engine queue 320 * @engine: the hardware engine 321 * @req: the request need to be listed into the engine queue 322 */ 323 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, 324 struct ahash_request *req) 325 { 326 return crypto_transfer_request_to_engine(engine, &req->base); 327 } 328 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); 329 330 /** 331 * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list 332 * into the engine queue 333 * @engine: the hardware engine 334 * @req: the request need to be listed into the engine queue 335 */ 336 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine, 337 struct kpp_request *req) 338 { 339 return crypto_transfer_request_to_engine(engine, &req->base); 340 } 341 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine); 342 343 /** 344 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request 345 * to list into the engine queue 346 * @engine: the hardware engine 347 * @req: the request need to be listed into the engine queue 348 */ 349 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine, 350 struct skcipher_request *req) 351 { 352 return crypto_transfer_request_to_engine(engine, &req->base); 353 } 354 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine); 355 356 /** 357 * crypto_finalize_aead_request - finalize one aead_request if 358 * the request is done 359 * @engine: the hardware engine 360 * @req: the request need to be finalized 361 * @err: error number 362 */ 363 void crypto_finalize_aead_request(struct crypto_engine *engine, 364 struct aead_request *req, int err) 365 { 366 return crypto_finalize_request(engine, &req->base, err); 367 } 368 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request); 369 370 /** 371 * crypto_finalize_akcipher_request - finalize one akcipher_request if 372 * the request is done 373 * @engine: the hardware engine 374 * @req: the request need to be finalized 375 * @err: error number 376 */ 377 void crypto_finalize_akcipher_request(struct crypto_engine *engine, 378 struct akcipher_request *req, int err) 379 { 380 return crypto_finalize_request(engine, &req->base, err); 381 } 382 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request); 383 384 /** 385 * crypto_finalize_hash_request - finalize one ahash_request if 386 * the request is done 387 * @engine: the hardware engine 388 * @req: the request need to be finalized 389 * @err: error number 390 */ 391 void crypto_finalize_hash_request(struct crypto_engine *engine, 392 struct ahash_request *req, int err) 393 { 394 return crypto_finalize_request(engine, &req->base, err); 395 } 396 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); 397 398 /** 399 * crypto_finalize_kpp_request - finalize one kpp_request if the request is done 400 * @engine: the hardware engine 401 * @req: the request need to be finalized 402 * @err: error number 403 */ 404 void crypto_finalize_kpp_request(struct crypto_engine *engine, 405 struct kpp_request *req, int err) 406 { 407 return crypto_finalize_request(engine, &req->base, err); 408 } 409 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request); 410 411 /** 412 * crypto_finalize_skcipher_request - finalize one skcipher_request if 413 * the request is done 414 * @engine: the hardware engine 415 * @req: the request need to be finalized 416 * @err: error number 417 */ 418 void crypto_finalize_skcipher_request(struct crypto_engine *engine, 419 struct skcipher_request *req, int err) 420 { 421 return crypto_finalize_request(engine, &req->base, err); 422 } 423 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request); 424 425 /** 426 * crypto_engine_start - start the hardware engine 427 * @engine: the hardware engine need to be started 428 * 429 * Return 0 on success, else on fail. 430 */ 431 int crypto_engine_start(struct crypto_engine *engine) 432 { 433 unsigned long flags; 434 435 spin_lock_irqsave(&engine->queue_lock, flags); 436 437 if (engine->running || engine->busy) { 438 spin_unlock_irqrestore(&engine->queue_lock, flags); 439 return -EBUSY; 440 } 441 442 engine->running = true; 443 spin_unlock_irqrestore(&engine->queue_lock, flags); 444 445 kthread_queue_work(engine->kworker, &engine->pump_requests); 446 447 return 0; 448 } 449 EXPORT_SYMBOL_GPL(crypto_engine_start); 450 451 /** 452 * crypto_engine_stop - stop the hardware engine 453 * @engine: the hardware engine need to be stopped 454 * 455 * Return 0 on success, else on fail. 456 */ 457 int crypto_engine_stop(struct crypto_engine *engine) 458 { 459 unsigned long flags; 460 unsigned int limit = 500; 461 int ret = 0; 462 463 spin_lock_irqsave(&engine->queue_lock, flags); 464 465 /* 466 * If the engine queue is not empty or the engine is on busy state, 467 * we need to wait for a while to pump the requests of engine queue. 468 */ 469 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) { 470 spin_unlock_irqrestore(&engine->queue_lock, flags); 471 msleep(20); 472 spin_lock_irqsave(&engine->queue_lock, flags); 473 } 474 475 if (crypto_queue_len(&engine->queue) || engine->busy) 476 ret = -EBUSY; 477 else 478 engine->running = false; 479 480 spin_unlock_irqrestore(&engine->queue_lock, flags); 481 482 if (ret) 483 dev_warn(engine->dev, "could not stop engine\n"); 484 485 return ret; 486 } 487 EXPORT_SYMBOL_GPL(crypto_engine_stop); 488 489 /** 490 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure 491 * and initialize it by setting the maximum number of entries in the software 492 * crypto-engine queue. 493 * @dev: the device attached with one hardware engine 494 * @retry_support: whether hardware has support for retry mechanism 495 * @cbk_do_batch: pointer to a callback function to be invoked when executing 496 * a batch of requests. 497 * This has the form: 498 * callback(struct crypto_engine *engine) 499 * where: 500 * @engine: the crypto engine structure. 501 * @rt: whether this queue is set to run as a realtime task 502 * @qlen: maximum size of the crypto-engine queue 503 * 504 * This must be called from context that can sleep. 505 * Return: the crypto engine structure on success, else NULL. 506 */ 507 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, 508 bool retry_support, 509 int (*cbk_do_batch)(struct crypto_engine *engine), 510 bool rt, int qlen) 511 { 512 struct crypto_engine *engine; 513 514 if (!dev) 515 return NULL; 516 517 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); 518 if (!engine) 519 return NULL; 520 521 engine->dev = dev; 522 engine->rt = rt; 523 engine->running = false; 524 engine->busy = false; 525 engine->idling = false; 526 engine->retry_support = retry_support; 527 engine->priv_data = dev; 528 /* 529 * Batch requests is possible only if 530 * hardware has support for retry mechanism. 531 */ 532 engine->do_batch_requests = retry_support ? cbk_do_batch : NULL; 533 534 snprintf(engine->name, sizeof(engine->name), 535 "%s-engine", dev_name(dev)); 536 537 crypto_init_queue(&engine->queue, qlen); 538 spin_lock_init(&engine->queue_lock); 539 540 engine->kworker = kthread_create_worker(0, "%s", engine->name); 541 if (IS_ERR(engine->kworker)) { 542 dev_err(dev, "failed to create crypto request pump task\n"); 543 return NULL; 544 } 545 kthread_init_work(&engine->pump_requests, crypto_pump_work); 546 547 if (engine->rt) { 548 dev_info(dev, "will run requests pump with realtime priority\n"); 549 sched_set_fifo(engine->kworker->task); 550 } 551 552 return engine; 553 } 554 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); 555 556 /** 557 * crypto_engine_alloc_init - allocate crypto hardware engine structure and 558 * initialize it. 559 * @dev: the device attached with one hardware engine 560 * @rt: whether this queue is set to run as a realtime task 561 * 562 * This must be called from context that can sleep. 563 * Return: the crypto engine structure on success, else NULL. 564 */ 565 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) 566 { 567 return crypto_engine_alloc_init_and_set(dev, false, NULL, rt, 568 CRYPTO_ENGINE_MAX_QLEN); 569 } 570 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 571 572 /** 573 * crypto_engine_exit - free the resources of hardware engine when exit 574 * @engine: the hardware engine need to be freed 575 * 576 * Return 0 for success. 577 */ 578 int crypto_engine_exit(struct crypto_engine *engine) 579 { 580 int ret; 581 582 ret = crypto_engine_stop(engine); 583 if (ret) 584 return ret; 585 586 kthread_destroy_worker(engine->kworker); 587 588 return 0; 589 } 590 EXPORT_SYMBOL_GPL(crypto_engine_exit); 591 592 MODULE_LICENSE("GPL"); 593 MODULE_DESCRIPTION("Crypto hardware engine framework"); 594