xref: /linux/crypto/crypto_engine.c (revision aec499c75cf8e0b599be4d559e6922b613085f8f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9 
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <crypto/engine.h>
14 #include <uapi/linux/sched/types.h>
15 #include "internal.h"
16 
17 #define CRYPTO_ENGINE_MAX_QLEN 10
18 
19 /**
20  * crypto_finalize_request - finalize one request if the request is done
21  * @engine: the hardware engine
22  * @req: the request need to be finalized
23  * @err: error number
24  */
25 static void crypto_finalize_request(struct crypto_engine *engine,
26 				    struct crypto_async_request *req, int err)
27 {
28 	unsigned long flags;
29 	bool finalize_req = false;
30 	int ret;
31 	struct crypto_engine_ctx *enginectx;
32 
33 	/*
34 	 * If hardware cannot enqueue more requests
35 	 * and retry mechanism is not supported
36 	 * make sure we are completing the current request
37 	 */
38 	if (!engine->retry_support) {
39 		spin_lock_irqsave(&engine->queue_lock, flags);
40 		if (engine->cur_req == req) {
41 			finalize_req = true;
42 			engine->cur_req = NULL;
43 		}
44 		spin_unlock_irqrestore(&engine->queue_lock, flags);
45 	}
46 
47 	if (finalize_req || engine->retry_support) {
48 		enginectx = crypto_tfm_ctx(req->tfm);
49 		if (enginectx->op.prepare_request &&
50 		    enginectx->op.unprepare_request) {
51 			ret = enginectx->op.unprepare_request(engine, req);
52 			if (ret)
53 				dev_err(engine->dev, "failed to unprepare request\n");
54 		}
55 	}
56 	req->complete(req, err);
57 
58 	kthread_queue_work(engine->kworker, &engine->pump_requests);
59 }
60 
61 /**
62  * crypto_pump_requests - dequeue one request from engine queue to process
63  * @engine: the hardware engine
64  * @in_kthread: true if we are in the context of the request pump thread
65  *
66  * This function checks if there is any request in the engine queue that
67  * needs processing and if so call out to the driver to initialize hardware
68  * and handle each request.
69  */
70 static void crypto_pump_requests(struct crypto_engine *engine,
71 				 bool in_kthread)
72 {
73 	struct crypto_async_request *async_req, *backlog;
74 	unsigned long flags;
75 	bool was_busy = false;
76 	int ret;
77 	struct crypto_engine_ctx *enginectx;
78 
79 	spin_lock_irqsave(&engine->queue_lock, flags);
80 
81 	/* Make sure we are not already running a request */
82 	if (!engine->retry_support && engine->cur_req)
83 		goto out;
84 
85 	/* If another context is idling then defer */
86 	if (engine->idling) {
87 		kthread_queue_work(engine->kworker, &engine->pump_requests);
88 		goto out;
89 	}
90 
91 	/* Check if the engine queue is idle */
92 	if (!crypto_queue_len(&engine->queue) || !engine->running) {
93 		if (!engine->busy)
94 			goto out;
95 
96 		/* Only do teardown in the thread */
97 		if (!in_kthread) {
98 			kthread_queue_work(engine->kworker,
99 					   &engine->pump_requests);
100 			goto out;
101 		}
102 
103 		engine->busy = false;
104 		engine->idling = true;
105 		spin_unlock_irqrestore(&engine->queue_lock, flags);
106 
107 		if (engine->unprepare_crypt_hardware &&
108 		    engine->unprepare_crypt_hardware(engine))
109 			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
110 
111 		spin_lock_irqsave(&engine->queue_lock, flags);
112 		engine->idling = false;
113 		goto out;
114 	}
115 
116 start_request:
117 	/* Get the fist request from the engine queue to handle */
118 	backlog = crypto_get_backlog(&engine->queue);
119 	async_req = crypto_dequeue_request(&engine->queue);
120 	if (!async_req)
121 		goto out;
122 
123 	/*
124 	 * If hardware doesn't support the retry mechanism,
125 	 * keep track of the request we are processing now.
126 	 * We'll need it on completion (crypto_finalize_request).
127 	 */
128 	if (!engine->retry_support)
129 		engine->cur_req = async_req;
130 
131 	if (backlog)
132 		backlog->complete(backlog, -EINPROGRESS);
133 
134 	if (engine->busy)
135 		was_busy = true;
136 	else
137 		engine->busy = true;
138 
139 	spin_unlock_irqrestore(&engine->queue_lock, flags);
140 
141 	/* Until here we get the request need to be encrypted successfully */
142 	if (!was_busy && engine->prepare_crypt_hardware) {
143 		ret = engine->prepare_crypt_hardware(engine);
144 		if (ret) {
145 			dev_err(engine->dev, "failed to prepare crypt hardware\n");
146 			goto req_err_2;
147 		}
148 	}
149 
150 	enginectx = crypto_tfm_ctx(async_req->tfm);
151 
152 	if (enginectx->op.prepare_request) {
153 		ret = enginectx->op.prepare_request(engine, async_req);
154 		if (ret) {
155 			dev_err(engine->dev, "failed to prepare request: %d\n",
156 				ret);
157 			goto req_err_2;
158 		}
159 	}
160 	if (!enginectx->op.do_one_request) {
161 		dev_err(engine->dev, "failed to do request\n");
162 		ret = -EINVAL;
163 		goto req_err_1;
164 	}
165 
166 	ret = enginectx->op.do_one_request(engine, async_req);
167 
168 	/* Request unsuccessfully executed by hardware */
169 	if (ret < 0) {
170 		/*
171 		 * If hardware queue is full (-ENOSPC), requeue request
172 		 * regardless of backlog flag.
173 		 * Otherwise, unprepare and complete the request.
174 		 */
175 		if (!engine->retry_support ||
176 		    (ret != -ENOSPC)) {
177 			dev_err(engine->dev,
178 				"Failed to do one request from queue: %d\n",
179 				ret);
180 			goto req_err_1;
181 		}
182 		/*
183 		 * If retry mechanism is supported,
184 		 * unprepare current request and
185 		 * enqueue it back into crypto-engine queue.
186 		 */
187 		if (enginectx->op.unprepare_request) {
188 			ret = enginectx->op.unprepare_request(engine,
189 							      async_req);
190 			if (ret)
191 				dev_err(engine->dev,
192 					"failed to unprepare request\n");
193 		}
194 		spin_lock_irqsave(&engine->queue_lock, flags);
195 		/*
196 		 * If hardware was unable to execute request, enqueue it
197 		 * back in front of crypto-engine queue, to keep the order
198 		 * of requests.
199 		 */
200 		crypto_enqueue_request_head(&engine->queue, async_req);
201 
202 		kthread_queue_work(engine->kworker, &engine->pump_requests);
203 		goto out;
204 	}
205 
206 	goto retry;
207 
208 req_err_1:
209 	if (enginectx->op.unprepare_request) {
210 		ret = enginectx->op.unprepare_request(engine, async_req);
211 		if (ret)
212 			dev_err(engine->dev, "failed to unprepare request\n");
213 	}
214 
215 req_err_2:
216 	async_req->complete(async_req, ret);
217 
218 retry:
219 	/* If retry mechanism is supported, send new requests to engine */
220 	if (engine->retry_support) {
221 		spin_lock_irqsave(&engine->queue_lock, flags);
222 		goto start_request;
223 	}
224 	return;
225 
226 out:
227 	spin_unlock_irqrestore(&engine->queue_lock, flags);
228 
229 	/*
230 	 * Batch requests is possible only if
231 	 * hardware can enqueue multiple requests
232 	 */
233 	if (engine->do_batch_requests) {
234 		ret = engine->do_batch_requests(engine);
235 		if (ret)
236 			dev_err(engine->dev, "failed to do batch requests: %d\n",
237 				ret);
238 	}
239 
240 	return;
241 }
242 
243 static void crypto_pump_work(struct kthread_work *work)
244 {
245 	struct crypto_engine *engine =
246 		container_of(work, struct crypto_engine, pump_requests);
247 
248 	crypto_pump_requests(engine, true);
249 }
250 
251 /**
252  * crypto_transfer_request - transfer the new request into the engine queue
253  * @engine: the hardware engine
254  * @req: the request need to be listed into the engine queue
255  */
256 static int crypto_transfer_request(struct crypto_engine *engine,
257 				   struct crypto_async_request *req,
258 				   bool need_pump)
259 {
260 	unsigned long flags;
261 	int ret;
262 
263 	spin_lock_irqsave(&engine->queue_lock, flags);
264 
265 	if (!engine->running) {
266 		spin_unlock_irqrestore(&engine->queue_lock, flags);
267 		return -ESHUTDOWN;
268 	}
269 
270 	ret = crypto_enqueue_request(&engine->queue, req);
271 
272 	if (!engine->busy && need_pump)
273 		kthread_queue_work(engine->kworker, &engine->pump_requests);
274 
275 	spin_unlock_irqrestore(&engine->queue_lock, flags);
276 	return ret;
277 }
278 
279 /**
280  * crypto_transfer_request_to_engine - transfer one request to list
281  * into the engine queue
282  * @engine: the hardware engine
283  * @req: the request need to be listed into the engine queue
284  */
285 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
286 					     struct crypto_async_request *req)
287 {
288 	return crypto_transfer_request(engine, req, true);
289 }
290 
291 /**
292  * crypto_transfer_aead_request_to_engine - transfer one aead_request
293  * to list into the engine queue
294  * @engine: the hardware engine
295  * @req: the request need to be listed into the engine queue
296  */
297 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
298 					   struct aead_request *req)
299 {
300 	return crypto_transfer_request_to_engine(engine, &req->base);
301 }
302 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
303 
304 /**
305  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
306  * to list into the engine queue
307  * @engine: the hardware engine
308  * @req: the request need to be listed into the engine queue
309  */
310 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
311 					       struct akcipher_request *req)
312 {
313 	return crypto_transfer_request_to_engine(engine, &req->base);
314 }
315 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
316 
317 /**
318  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
319  * to list into the engine queue
320  * @engine: the hardware engine
321  * @req: the request need to be listed into the engine queue
322  */
323 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
324 					   struct ahash_request *req)
325 {
326 	return crypto_transfer_request_to_engine(engine, &req->base);
327 }
328 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
329 
330 /**
331  * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list
332  * into the engine queue
333  * @engine: the hardware engine
334  * @req: the request need to be listed into the engine queue
335  */
336 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
337 					  struct kpp_request *req)
338 {
339 	return crypto_transfer_request_to_engine(engine, &req->base);
340 }
341 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine);
342 
343 /**
344  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
345  * to list into the engine queue
346  * @engine: the hardware engine
347  * @req: the request need to be listed into the engine queue
348  */
349 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
350 					       struct skcipher_request *req)
351 {
352 	return crypto_transfer_request_to_engine(engine, &req->base);
353 }
354 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
355 
356 /**
357  * crypto_finalize_aead_request - finalize one aead_request if
358  * the request is done
359  * @engine: the hardware engine
360  * @req: the request need to be finalized
361  * @err: error number
362  */
363 void crypto_finalize_aead_request(struct crypto_engine *engine,
364 				  struct aead_request *req, int err)
365 {
366 	return crypto_finalize_request(engine, &req->base, err);
367 }
368 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
369 
370 /**
371  * crypto_finalize_akcipher_request - finalize one akcipher_request if
372  * the request is done
373  * @engine: the hardware engine
374  * @req: the request need to be finalized
375  * @err: error number
376  */
377 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
378 				      struct akcipher_request *req, int err)
379 {
380 	return crypto_finalize_request(engine, &req->base, err);
381 }
382 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
383 
384 /**
385  * crypto_finalize_hash_request - finalize one ahash_request if
386  * the request is done
387  * @engine: the hardware engine
388  * @req: the request need to be finalized
389  * @err: error number
390  */
391 void crypto_finalize_hash_request(struct crypto_engine *engine,
392 				  struct ahash_request *req, int err)
393 {
394 	return crypto_finalize_request(engine, &req->base, err);
395 }
396 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
397 
398 /**
399  * crypto_finalize_kpp_request - finalize one kpp_request if the request is done
400  * @engine: the hardware engine
401  * @req: the request need to be finalized
402  * @err: error number
403  */
404 void crypto_finalize_kpp_request(struct crypto_engine *engine,
405 				 struct kpp_request *req, int err)
406 {
407 	return crypto_finalize_request(engine, &req->base, err);
408 }
409 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request);
410 
411 /**
412  * crypto_finalize_skcipher_request - finalize one skcipher_request if
413  * the request is done
414  * @engine: the hardware engine
415  * @req: the request need to be finalized
416  * @err: error number
417  */
418 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
419 				      struct skcipher_request *req, int err)
420 {
421 	return crypto_finalize_request(engine, &req->base, err);
422 }
423 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
424 
425 /**
426  * crypto_engine_start - start the hardware engine
427  * @engine: the hardware engine need to be started
428  *
429  * Return 0 on success, else on fail.
430  */
431 int crypto_engine_start(struct crypto_engine *engine)
432 {
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(&engine->queue_lock, flags);
436 
437 	if (engine->running || engine->busy) {
438 		spin_unlock_irqrestore(&engine->queue_lock, flags);
439 		return -EBUSY;
440 	}
441 
442 	engine->running = true;
443 	spin_unlock_irqrestore(&engine->queue_lock, flags);
444 
445 	kthread_queue_work(engine->kworker, &engine->pump_requests);
446 
447 	return 0;
448 }
449 EXPORT_SYMBOL_GPL(crypto_engine_start);
450 
451 /**
452  * crypto_engine_stop - stop the hardware engine
453  * @engine: the hardware engine need to be stopped
454  *
455  * Return 0 on success, else on fail.
456  */
457 int crypto_engine_stop(struct crypto_engine *engine)
458 {
459 	unsigned long flags;
460 	unsigned int limit = 500;
461 	int ret = 0;
462 
463 	spin_lock_irqsave(&engine->queue_lock, flags);
464 
465 	/*
466 	 * If the engine queue is not empty or the engine is on busy state,
467 	 * we need to wait for a while to pump the requests of engine queue.
468 	 */
469 	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
470 		spin_unlock_irqrestore(&engine->queue_lock, flags);
471 		msleep(20);
472 		spin_lock_irqsave(&engine->queue_lock, flags);
473 	}
474 
475 	if (crypto_queue_len(&engine->queue) || engine->busy)
476 		ret = -EBUSY;
477 	else
478 		engine->running = false;
479 
480 	spin_unlock_irqrestore(&engine->queue_lock, flags);
481 
482 	if (ret)
483 		dev_warn(engine->dev, "could not stop engine\n");
484 
485 	return ret;
486 }
487 EXPORT_SYMBOL_GPL(crypto_engine_stop);
488 
489 /**
490  * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
491  * and initialize it by setting the maximum number of entries in the software
492  * crypto-engine queue.
493  * @dev: the device attached with one hardware engine
494  * @retry_support: whether hardware has support for retry mechanism
495  * @cbk_do_batch: pointer to a callback function to be invoked when executing
496  *                a batch of requests.
497  *                This has the form:
498  *                callback(struct crypto_engine *engine)
499  *                where:
500  *                @engine: the crypto engine structure.
501  * @rt: whether this queue is set to run as a realtime task
502  * @qlen: maximum size of the crypto-engine queue
503  *
504  * This must be called from context that can sleep.
505  * Return: the crypto engine structure on success, else NULL.
506  */
507 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
508 						       bool retry_support,
509 						       int (*cbk_do_batch)(struct crypto_engine *engine),
510 						       bool rt, int qlen)
511 {
512 	struct crypto_engine *engine;
513 
514 	if (!dev)
515 		return NULL;
516 
517 	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
518 	if (!engine)
519 		return NULL;
520 
521 	engine->dev = dev;
522 	engine->rt = rt;
523 	engine->running = false;
524 	engine->busy = false;
525 	engine->idling = false;
526 	engine->retry_support = retry_support;
527 	engine->priv_data = dev;
528 	/*
529 	 * Batch requests is possible only if
530 	 * hardware has support for retry mechanism.
531 	 */
532 	engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
533 
534 	snprintf(engine->name, sizeof(engine->name),
535 		 "%s-engine", dev_name(dev));
536 
537 	crypto_init_queue(&engine->queue, qlen);
538 	spin_lock_init(&engine->queue_lock);
539 
540 	engine->kworker = kthread_create_worker(0, "%s", engine->name);
541 	if (IS_ERR(engine->kworker)) {
542 		dev_err(dev, "failed to create crypto request pump task\n");
543 		return NULL;
544 	}
545 	kthread_init_work(&engine->pump_requests, crypto_pump_work);
546 
547 	if (engine->rt) {
548 		dev_info(dev, "will run requests pump with realtime priority\n");
549 		sched_set_fifo(engine->kworker->task);
550 	}
551 
552 	return engine;
553 }
554 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
555 
556 /**
557  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
558  * initialize it.
559  * @dev: the device attached with one hardware engine
560  * @rt: whether this queue is set to run as a realtime task
561  *
562  * This must be called from context that can sleep.
563  * Return: the crypto engine structure on success, else NULL.
564  */
565 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
566 {
567 	return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
568 						CRYPTO_ENGINE_MAX_QLEN);
569 }
570 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
571 
572 /**
573  * crypto_engine_exit - free the resources of hardware engine when exit
574  * @engine: the hardware engine need to be freed
575  *
576  * Return 0 for success.
577  */
578 int crypto_engine_exit(struct crypto_engine *engine)
579 {
580 	int ret;
581 
582 	ret = crypto_engine_stop(engine);
583 	if (ret)
584 		return ret;
585 
586 	kthread_destroy_worker(engine->kworker);
587 
588 	return 0;
589 }
590 EXPORT_SYMBOL_GPL(crypto_engine_exit);
591 
592 MODULE_LICENSE("GPL");
593 MODULE_DESCRIPTION("Crypto hardware engine framework");
594