1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Handle async block request by crypto hardware engine. 4 * 5 * Copyright (C) 2016 Linaro, Inc. 6 * 7 * Author: Baolin Wang <baolin.wang@linaro.org> 8 */ 9 10 #include <crypto/internal/aead.h> 11 #include <crypto/internal/akcipher.h> 12 #include <crypto/internal/engine.h> 13 #include <crypto/internal/hash.h> 14 #include <crypto/internal/kpp.h> 15 #include <crypto/internal/skcipher.h> 16 #include <linux/err.h> 17 #include <linux/delay.h> 18 #include <linux/device.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <uapi/linux/sched/types.h> 22 #include "internal.h" 23 24 #define CRYPTO_ENGINE_MAX_QLEN 10 25 26 struct crypto_engine_alg { 27 struct crypto_alg base; 28 struct crypto_engine_op op; 29 }; 30 31 /** 32 * crypto_finalize_request - finalize one request if the request is done 33 * @engine: the hardware engine 34 * @req: the request need to be finalized 35 * @err: error number 36 */ 37 static void crypto_finalize_request(struct crypto_engine *engine, 38 struct crypto_async_request *req, int err) 39 { 40 unsigned long flags; 41 42 /* 43 * If hardware cannot enqueue more requests 44 * and retry mechanism is not supported 45 * make sure we are completing the current request 46 */ 47 if (!engine->retry_support) { 48 spin_lock_irqsave(&engine->queue_lock, flags); 49 if (engine->cur_req == req) { 50 engine->cur_req = NULL; 51 } 52 spin_unlock_irqrestore(&engine->queue_lock, flags); 53 } 54 55 lockdep_assert_in_softirq(); 56 crypto_request_complete(req, err); 57 58 kthread_queue_work(engine->kworker, &engine->pump_requests); 59 } 60 61 /** 62 * crypto_pump_requests - dequeue one request from engine queue to process 63 * @engine: the hardware engine 64 * @in_kthread: true if we are in the context of the request pump thread 65 * 66 * This function checks if there is any request in the engine queue that 67 * needs processing and if so call out to the driver to initialize hardware 68 * and handle each request. 69 */ 70 static void crypto_pump_requests(struct crypto_engine *engine, 71 bool in_kthread) 72 { 73 struct crypto_async_request *async_req, *backlog; 74 struct crypto_engine_alg *alg; 75 struct crypto_engine_op *op; 76 unsigned long flags; 77 bool was_busy = false; 78 int ret; 79 80 spin_lock_irqsave(&engine->queue_lock, flags); 81 82 /* Make sure we are not already running a request */ 83 if (!engine->retry_support && engine->cur_req) 84 goto out; 85 86 /* If another context is idling then defer */ 87 if (engine->idling) { 88 kthread_queue_work(engine->kworker, &engine->pump_requests); 89 goto out; 90 } 91 92 /* Check if the engine queue is idle */ 93 if (!crypto_queue_len(&engine->queue) || !engine->running) { 94 if (!engine->busy) 95 goto out; 96 97 /* Only do teardown in the thread */ 98 if (!in_kthread) { 99 kthread_queue_work(engine->kworker, 100 &engine->pump_requests); 101 goto out; 102 } 103 104 engine->busy = false; 105 engine->idling = true; 106 spin_unlock_irqrestore(&engine->queue_lock, flags); 107 108 if (engine->unprepare_crypt_hardware && 109 engine->unprepare_crypt_hardware(engine)) 110 dev_err(engine->dev, "failed to unprepare crypt hardware\n"); 111 112 spin_lock_irqsave(&engine->queue_lock, flags); 113 engine->idling = false; 114 goto out; 115 } 116 117 start_request: 118 /* Get the fist request from the engine queue to handle */ 119 backlog = crypto_get_backlog(&engine->queue); 120 async_req = crypto_dequeue_request(&engine->queue); 121 if (!async_req) 122 goto out; 123 124 /* 125 * If hardware doesn't support the retry mechanism, 126 * keep track of the request we are processing now. 127 * We'll need it on completion (crypto_finalize_request). 128 */ 129 if (!engine->retry_support) 130 engine->cur_req = async_req; 131 132 if (engine->busy) 133 was_busy = true; 134 else 135 engine->busy = true; 136 137 spin_unlock_irqrestore(&engine->queue_lock, flags); 138 139 /* Until here we get the request need to be encrypted successfully */ 140 if (!was_busy && engine->prepare_crypt_hardware) { 141 ret = engine->prepare_crypt_hardware(engine); 142 if (ret) { 143 dev_err(engine->dev, "failed to prepare crypt hardware\n"); 144 goto req_err_1; 145 } 146 } 147 148 alg = container_of(async_req->tfm->__crt_alg, 149 struct crypto_engine_alg, base); 150 op = &alg->op; 151 ret = op->do_one_request(engine, async_req); 152 153 /* Request unsuccessfully executed by hardware */ 154 if (ret < 0) { 155 /* 156 * If hardware queue is full (-ENOSPC), requeue request 157 * regardless of backlog flag. 158 * Otherwise, unprepare and complete the request. 159 */ 160 if (!engine->retry_support || 161 (ret != -ENOSPC)) { 162 dev_err(engine->dev, 163 "Failed to do one request from queue: %d\n", 164 ret); 165 goto req_err_1; 166 } 167 spin_lock_irqsave(&engine->queue_lock, flags); 168 /* 169 * If hardware was unable to execute request, enqueue it 170 * back in front of crypto-engine queue, to keep the order 171 * of requests. 172 */ 173 crypto_enqueue_request_head(&engine->queue, async_req); 174 175 kthread_queue_work(engine->kworker, &engine->pump_requests); 176 goto out; 177 } 178 179 goto retry; 180 181 req_err_1: 182 crypto_request_complete(async_req, ret); 183 184 retry: 185 if (backlog) 186 crypto_request_complete(backlog, -EINPROGRESS); 187 188 /* If retry mechanism is supported, send new requests to engine */ 189 if (engine->retry_support) { 190 spin_lock_irqsave(&engine->queue_lock, flags); 191 goto start_request; 192 } 193 return; 194 195 out: 196 spin_unlock_irqrestore(&engine->queue_lock, flags); 197 198 /* 199 * Batch requests is possible only if 200 * hardware can enqueue multiple requests 201 */ 202 if (engine->do_batch_requests) { 203 ret = engine->do_batch_requests(engine); 204 if (ret) 205 dev_err(engine->dev, "failed to do batch requests: %d\n", 206 ret); 207 } 208 209 return; 210 } 211 212 static void crypto_pump_work(struct kthread_work *work) 213 { 214 struct crypto_engine *engine = 215 container_of(work, struct crypto_engine, pump_requests); 216 217 crypto_pump_requests(engine, true); 218 } 219 220 /** 221 * crypto_transfer_request - transfer the new request into the engine queue 222 * @engine: the hardware engine 223 * @req: the request need to be listed into the engine queue 224 * @need_pump: indicates whether queue the pump of request to kthread_work 225 */ 226 static int crypto_transfer_request(struct crypto_engine *engine, 227 struct crypto_async_request *req, 228 bool need_pump) 229 { 230 unsigned long flags; 231 int ret; 232 233 spin_lock_irqsave(&engine->queue_lock, flags); 234 235 if (!engine->running) { 236 spin_unlock_irqrestore(&engine->queue_lock, flags); 237 return -ESHUTDOWN; 238 } 239 240 ret = crypto_enqueue_request(&engine->queue, req); 241 242 if (!engine->busy && need_pump) 243 kthread_queue_work(engine->kworker, &engine->pump_requests); 244 245 spin_unlock_irqrestore(&engine->queue_lock, flags); 246 return ret; 247 } 248 249 /** 250 * crypto_transfer_request_to_engine - transfer one request to list 251 * into the engine queue 252 * @engine: the hardware engine 253 * @req: the request need to be listed into the engine queue 254 */ 255 static int crypto_transfer_request_to_engine(struct crypto_engine *engine, 256 struct crypto_async_request *req) 257 { 258 return crypto_transfer_request(engine, req, true); 259 } 260 261 /** 262 * crypto_transfer_aead_request_to_engine - transfer one aead_request 263 * to list into the engine queue 264 * @engine: the hardware engine 265 * @req: the request need to be listed into the engine queue 266 */ 267 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine, 268 struct aead_request *req) 269 { 270 return crypto_transfer_request_to_engine(engine, &req->base); 271 } 272 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine); 273 274 /** 275 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request 276 * to list into the engine queue 277 * @engine: the hardware engine 278 * @req: the request need to be listed into the engine queue 279 */ 280 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine, 281 struct akcipher_request *req) 282 { 283 return crypto_transfer_request_to_engine(engine, &req->base); 284 } 285 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine); 286 287 /** 288 * crypto_transfer_hash_request_to_engine - transfer one ahash_request 289 * to list into the engine queue 290 * @engine: the hardware engine 291 * @req: the request need to be listed into the engine queue 292 */ 293 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, 294 struct ahash_request *req) 295 { 296 return crypto_transfer_request_to_engine(engine, &req->base); 297 } 298 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); 299 300 /** 301 * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list 302 * into the engine queue 303 * @engine: the hardware engine 304 * @req: the request need to be listed into the engine queue 305 */ 306 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine, 307 struct kpp_request *req) 308 { 309 return crypto_transfer_request_to_engine(engine, &req->base); 310 } 311 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine); 312 313 /** 314 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request 315 * to list into the engine queue 316 * @engine: the hardware engine 317 * @req: the request need to be listed into the engine queue 318 */ 319 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine, 320 struct skcipher_request *req) 321 { 322 return crypto_transfer_request_to_engine(engine, &req->base); 323 } 324 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine); 325 326 /** 327 * crypto_finalize_aead_request - finalize one aead_request if 328 * the request is done 329 * @engine: the hardware engine 330 * @req: the request need to be finalized 331 * @err: error number 332 */ 333 void crypto_finalize_aead_request(struct crypto_engine *engine, 334 struct aead_request *req, int err) 335 { 336 return crypto_finalize_request(engine, &req->base, err); 337 } 338 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request); 339 340 /** 341 * crypto_finalize_akcipher_request - finalize one akcipher_request if 342 * the request is done 343 * @engine: the hardware engine 344 * @req: the request need to be finalized 345 * @err: error number 346 */ 347 void crypto_finalize_akcipher_request(struct crypto_engine *engine, 348 struct akcipher_request *req, int err) 349 { 350 return crypto_finalize_request(engine, &req->base, err); 351 } 352 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request); 353 354 /** 355 * crypto_finalize_hash_request - finalize one ahash_request if 356 * the request is done 357 * @engine: the hardware engine 358 * @req: the request need to be finalized 359 * @err: error number 360 */ 361 void crypto_finalize_hash_request(struct crypto_engine *engine, 362 struct ahash_request *req, int err) 363 { 364 return crypto_finalize_request(engine, &req->base, err); 365 } 366 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); 367 368 /** 369 * crypto_finalize_kpp_request - finalize one kpp_request if the request is done 370 * @engine: the hardware engine 371 * @req: the request need to be finalized 372 * @err: error number 373 */ 374 void crypto_finalize_kpp_request(struct crypto_engine *engine, 375 struct kpp_request *req, int err) 376 { 377 return crypto_finalize_request(engine, &req->base, err); 378 } 379 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request); 380 381 /** 382 * crypto_finalize_skcipher_request - finalize one skcipher_request if 383 * the request is done 384 * @engine: the hardware engine 385 * @req: the request need to be finalized 386 * @err: error number 387 */ 388 void crypto_finalize_skcipher_request(struct crypto_engine *engine, 389 struct skcipher_request *req, int err) 390 { 391 return crypto_finalize_request(engine, &req->base, err); 392 } 393 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request); 394 395 /** 396 * crypto_engine_start - start the hardware engine 397 * @engine: the hardware engine need to be started 398 * 399 * Return 0 on success, else on fail. 400 */ 401 int crypto_engine_start(struct crypto_engine *engine) 402 { 403 unsigned long flags; 404 405 spin_lock_irqsave(&engine->queue_lock, flags); 406 407 if (engine->running || engine->busy) { 408 spin_unlock_irqrestore(&engine->queue_lock, flags); 409 return -EBUSY; 410 } 411 412 engine->running = true; 413 spin_unlock_irqrestore(&engine->queue_lock, flags); 414 415 kthread_queue_work(engine->kworker, &engine->pump_requests); 416 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(crypto_engine_start); 420 421 /** 422 * crypto_engine_stop - stop the hardware engine 423 * @engine: the hardware engine need to be stopped 424 * 425 * Return 0 on success, else on fail. 426 */ 427 int crypto_engine_stop(struct crypto_engine *engine) 428 { 429 unsigned long flags; 430 unsigned int limit = 500; 431 int ret = 0; 432 433 spin_lock_irqsave(&engine->queue_lock, flags); 434 435 /* 436 * If the engine queue is not empty or the engine is on busy state, 437 * we need to wait for a while to pump the requests of engine queue. 438 */ 439 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) { 440 spin_unlock_irqrestore(&engine->queue_lock, flags); 441 msleep(20); 442 spin_lock_irqsave(&engine->queue_lock, flags); 443 } 444 445 if (crypto_queue_len(&engine->queue) || engine->busy) 446 ret = -EBUSY; 447 else 448 engine->running = false; 449 450 spin_unlock_irqrestore(&engine->queue_lock, flags); 451 452 if (ret) 453 dev_warn(engine->dev, "could not stop engine\n"); 454 455 return ret; 456 } 457 EXPORT_SYMBOL_GPL(crypto_engine_stop); 458 459 /** 460 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure 461 * and initialize it by setting the maximum number of entries in the software 462 * crypto-engine queue. 463 * @dev: the device attached with one hardware engine 464 * @retry_support: whether hardware has support for retry mechanism 465 * @cbk_do_batch: pointer to a callback function to be invoked when executing 466 * a batch of requests. 467 * This has the form: 468 * callback(struct crypto_engine *engine) 469 * where: 470 * engine: the crypto engine structure. 471 * @rt: whether this queue is set to run as a realtime task 472 * @qlen: maximum size of the crypto-engine queue 473 * 474 * This must be called from context that can sleep. 475 * Return: the crypto engine structure on success, else NULL. 476 */ 477 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, 478 bool retry_support, 479 int (*cbk_do_batch)(struct crypto_engine *engine), 480 bool rt, int qlen) 481 { 482 struct crypto_engine *engine; 483 484 if (!dev) 485 return NULL; 486 487 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); 488 if (!engine) 489 return NULL; 490 491 engine->dev = dev; 492 engine->rt = rt; 493 engine->running = false; 494 engine->busy = false; 495 engine->idling = false; 496 engine->retry_support = retry_support; 497 engine->priv_data = dev; 498 /* 499 * Batch requests is possible only if 500 * hardware has support for retry mechanism. 501 */ 502 engine->do_batch_requests = retry_support ? cbk_do_batch : NULL; 503 504 snprintf(engine->name, sizeof(engine->name), 505 "%s-engine", dev_name(dev)); 506 507 crypto_init_queue(&engine->queue, qlen); 508 spin_lock_init(&engine->queue_lock); 509 510 engine->kworker = kthread_run_worker(0, "%s", engine->name); 511 if (IS_ERR(engine->kworker)) { 512 dev_err(dev, "failed to create crypto request pump task\n"); 513 return NULL; 514 } 515 kthread_init_work(&engine->pump_requests, crypto_pump_work); 516 517 if (engine->rt) { 518 dev_info(dev, "will run requests pump with realtime priority\n"); 519 sched_set_fifo(engine->kworker->task); 520 } 521 522 return engine; 523 } 524 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); 525 526 /** 527 * crypto_engine_alloc_init - allocate crypto hardware engine structure and 528 * initialize it. 529 * @dev: the device attached with one hardware engine 530 * @rt: whether this queue is set to run as a realtime task 531 * 532 * This must be called from context that can sleep. 533 * Return: the crypto engine structure on success, else NULL. 534 */ 535 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) 536 { 537 return crypto_engine_alloc_init_and_set(dev, false, NULL, rt, 538 CRYPTO_ENGINE_MAX_QLEN); 539 } 540 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); 541 542 /** 543 * crypto_engine_exit - free the resources of hardware engine when exit 544 * @engine: the hardware engine need to be freed 545 */ 546 void crypto_engine_exit(struct crypto_engine *engine) 547 { 548 int ret; 549 550 ret = crypto_engine_stop(engine); 551 if (ret) 552 return; 553 554 kthread_destroy_worker(engine->kworker); 555 } 556 EXPORT_SYMBOL_GPL(crypto_engine_exit); 557 558 int crypto_engine_register_aead(struct aead_engine_alg *alg) 559 { 560 if (!alg->op.do_one_request) 561 return -EINVAL; 562 return crypto_register_aead(&alg->base); 563 } 564 EXPORT_SYMBOL_GPL(crypto_engine_register_aead); 565 566 void crypto_engine_unregister_aead(struct aead_engine_alg *alg) 567 { 568 crypto_unregister_aead(&alg->base); 569 } 570 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aead); 571 572 int crypto_engine_register_aeads(struct aead_engine_alg *algs, int count) 573 { 574 int i, ret; 575 576 for (i = 0; i < count; i++) { 577 ret = crypto_engine_register_aead(&algs[i]); 578 if (ret) 579 goto err; 580 } 581 582 return 0; 583 584 err: 585 crypto_engine_unregister_aeads(algs, i); 586 587 return ret; 588 } 589 EXPORT_SYMBOL_GPL(crypto_engine_register_aeads); 590 591 void crypto_engine_unregister_aeads(struct aead_engine_alg *algs, int count) 592 { 593 int i; 594 595 for (i = count - 1; i >= 0; --i) 596 crypto_engine_unregister_aead(&algs[i]); 597 } 598 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aeads); 599 600 int crypto_engine_register_ahash(struct ahash_engine_alg *alg) 601 { 602 if (!alg->op.do_one_request) 603 return -EINVAL; 604 return crypto_register_ahash(&alg->base); 605 } 606 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash); 607 608 void crypto_engine_unregister_ahash(struct ahash_engine_alg *alg) 609 { 610 crypto_unregister_ahash(&alg->base); 611 } 612 EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahash); 613 614 int crypto_engine_register_ahashes(struct ahash_engine_alg *algs, int count) 615 { 616 int i, ret; 617 618 for (i = 0; i < count; i++) { 619 ret = crypto_engine_register_ahash(&algs[i]); 620 if (ret) 621 goto err; 622 } 623 624 return 0; 625 626 err: 627 crypto_engine_unregister_ahashes(algs, i); 628 629 return ret; 630 } 631 EXPORT_SYMBOL_GPL(crypto_engine_register_ahashes); 632 633 void crypto_engine_unregister_ahashes(struct ahash_engine_alg *algs, 634 int count) 635 { 636 int i; 637 638 for (i = count - 1; i >= 0; --i) 639 crypto_engine_unregister_ahash(&algs[i]); 640 } 641 EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahashes); 642 643 int crypto_engine_register_akcipher(struct akcipher_engine_alg *alg) 644 { 645 if (!alg->op.do_one_request) 646 return -EINVAL; 647 return crypto_register_akcipher(&alg->base); 648 } 649 EXPORT_SYMBOL_GPL(crypto_engine_register_akcipher); 650 651 void crypto_engine_unregister_akcipher(struct akcipher_engine_alg *alg) 652 { 653 crypto_unregister_akcipher(&alg->base); 654 } 655 EXPORT_SYMBOL_GPL(crypto_engine_unregister_akcipher); 656 657 int crypto_engine_register_kpp(struct kpp_engine_alg *alg) 658 { 659 if (!alg->op.do_one_request) 660 return -EINVAL; 661 return crypto_register_kpp(&alg->base); 662 } 663 EXPORT_SYMBOL_GPL(crypto_engine_register_kpp); 664 665 void crypto_engine_unregister_kpp(struct kpp_engine_alg *alg) 666 { 667 crypto_unregister_kpp(&alg->base); 668 } 669 EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp); 670 671 int crypto_engine_register_skcipher(struct skcipher_engine_alg *alg) 672 { 673 if (!alg->op.do_one_request) 674 return -EINVAL; 675 return crypto_register_skcipher(&alg->base); 676 } 677 EXPORT_SYMBOL_GPL(crypto_engine_register_skcipher); 678 679 void crypto_engine_unregister_skcipher(struct skcipher_engine_alg *alg) 680 { 681 return crypto_unregister_skcipher(&alg->base); 682 } 683 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skcipher); 684 685 int crypto_engine_register_skciphers(struct skcipher_engine_alg *algs, 686 int count) 687 { 688 int i, ret; 689 690 for (i = 0; i < count; i++) { 691 ret = crypto_engine_register_skcipher(&algs[i]); 692 if (ret) 693 goto err; 694 } 695 696 return 0; 697 698 err: 699 crypto_engine_unregister_skciphers(algs, i); 700 701 return ret; 702 } 703 EXPORT_SYMBOL_GPL(crypto_engine_register_skciphers); 704 705 void crypto_engine_unregister_skciphers(struct skcipher_engine_alg *algs, 706 int count) 707 { 708 int i; 709 710 for (i = count - 1; i >= 0; --i) 711 crypto_engine_unregister_skcipher(&algs[i]); 712 } 713 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skciphers); 714 715 MODULE_LICENSE("GPL"); 716 MODULE_DESCRIPTION("Crypto hardware engine framework"); 717