xref: /linux/crypto/cryptd.c (revision 72bea132f3680ee51e7ed2cee62892b6f5121909)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Software async crypto daemon.
4  *
5  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6  *
7  * Added AEAD support to cryptd.
8  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9  *             Adrian Hoban <adrian.hoban@intel.com>
10  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
11  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
12  *    Copyright (c) 2010, Intel Corporation.
13  */
14 
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29 
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33 
34 static struct workqueue_struct *cryptd_wq;
35 
36 struct cryptd_cpu_queue {
37 	struct crypto_queue queue;
38 	struct work_struct work;
39 };
40 
41 struct cryptd_queue {
42 	/*
43 	 * Protected by disabling BH to allow enqueueing from softinterrupt and
44 	 * dequeuing from kworker (cryptd_queue_worker()).
45 	 */
46 	struct cryptd_cpu_queue __percpu *cpu_queue;
47 };
48 
49 struct cryptd_instance_ctx {
50 	struct crypto_spawn spawn;
51 	struct cryptd_queue *queue;
52 };
53 
54 struct skcipherd_instance_ctx {
55 	struct crypto_skcipher_spawn spawn;
56 	struct cryptd_queue *queue;
57 };
58 
59 struct hashd_instance_ctx {
60 	struct crypto_shash_spawn spawn;
61 	struct cryptd_queue *queue;
62 };
63 
64 struct aead_instance_ctx {
65 	struct crypto_aead_spawn aead_spawn;
66 	struct cryptd_queue *queue;
67 };
68 
69 struct cryptd_skcipher_ctx {
70 	refcount_t refcnt;
71 	struct crypto_skcipher *child;
72 };
73 
74 struct cryptd_skcipher_request_ctx {
75 	struct skcipher_request req;
76 };
77 
78 struct cryptd_hash_ctx {
79 	refcount_t refcnt;
80 	struct crypto_shash *child;
81 };
82 
83 struct cryptd_hash_request_ctx {
84 	crypto_completion_t complete;
85 	void *data;
86 	struct shash_desc desc;
87 };
88 
89 struct cryptd_aead_ctx {
90 	refcount_t refcnt;
91 	struct crypto_aead *child;
92 };
93 
94 struct cryptd_aead_request_ctx {
95 	struct aead_request req;
96 };
97 
98 static void cryptd_queue_worker(struct work_struct *work);
99 
100 static int cryptd_init_queue(struct cryptd_queue *queue,
101 			     unsigned int max_cpu_qlen)
102 {
103 	int cpu;
104 	struct cryptd_cpu_queue *cpu_queue;
105 
106 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
107 	if (!queue->cpu_queue)
108 		return -ENOMEM;
109 	for_each_possible_cpu(cpu) {
110 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
111 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
112 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
113 	}
114 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
115 	return 0;
116 }
117 
118 static void cryptd_fini_queue(struct cryptd_queue *queue)
119 {
120 	int cpu;
121 	struct cryptd_cpu_queue *cpu_queue;
122 
123 	for_each_possible_cpu(cpu) {
124 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
125 		BUG_ON(cpu_queue->queue.qlen);
126 	}
127 	free_percpu(queue->cpu_queue);
128 }
129 
130 static int cryptd_enqueue_request(struct cryptd_queue *queue,
131 				  struct crypto_async_request *request)
132 {
133 	int err;
134 	struct cryptd_cpu_queue *cpu_queue;
135 	refcount_t *refcnt;
136 
137 	local_bh_disable();
138 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
139 	err = crypto_enqueue_request(&cpu_queue->queue, request);
140 
141 	refcnt = crypto_tfm_ctx(request->tfm);
142 
143 	if (err == -ENOSPC)
144 		goto out;
145 
146 	queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work);
147 
148 	if (!refcount_read(refcnt))
149 		goto out;
150 
151 	refcount_inc(refcnt);
152 
153 out:
154 	local_bh_enable();
155 
156 	return err;
157 }
158 
159 /* Called in workqueue context, do one real cryption work (via
160  * req->complete) and reschedule itself if there are more work to
161  * do. */
162 static void cryptd_queue_worker(struct work_struct *work)
163 {
164 	struct cryptd_cpu_queue *cpu_queue;
165 	struct crypto_async_request *req, *backlog;
166 
167 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
168 	/*
169 	 * Only handle one request at a time to avoid hogging crypto workqueue.
170 	 */
171 	local_bh_disable();
172 	backlog = crypto_get_backlog(&cpu_queue->queue);
173 	req = crypto_dequeue_request(&cpu_queue->queue);
174 	local_bh_enable();
175 
176 	if (!req)
177 		return;
178 
179 	if (backlog)
180 		crypto_request_complete(backlog, -EINPROGRESS);
181 	crypto_request_complete(req, 0);
182 
183 	if (cpu_queue->queue.qlen)
184 		queue_work(cryptd_wq, &cpu_queue->work);
185 }
186 
187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 	return ictx->queue;
192 }
193 
194 static void cryptd_type_and_mask(struct crypto_attr_type *algt,
195 				 u32 *type, u32 *mask)
196 {
197 	/*
198 	 * cryptd is allowed to wrap internal algorithms, but in that case the
199 	 * resulting cryptd instance will be marked as internal as well.
200 	 */
201 	*type = algt->type & CRYPTO_ALG_INTERNAL;
202 	*mask = algt->mask & CRYPTO_ALG_INTERNAL;
203 
204 	/* No point in cryptd wrapping an algorithm that's already async. */
205 	*mask |= CRYPTO_ALG_ASYNC;
206 
207 	*mask |= crypto_algt_inherited_mask(algt);
208 }
209 
210 static int cryptd_init_instance(struct crypto_instance *inst,
211 				struct crypto_alg *alg)
212 {
213 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
214 		     "cryptd(%s)",
215 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
216 		return -ENAMETOOLONG;
217 
218 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
219 
220 	inst->alg.cra_priority = alg->cra_priority + 50;
221 	inst->alg.cra_blocksize = alg->cra_blocksize;
222 	inst->alg.cra_alignmask = alg->cra_alignmask;
223 
224 	return 0;
225 }
226 
227 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
228 				  const u8 *key, unsigned int keylen)
229 {
230 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
231 	struct crypto_skcipher *child = ctx->child;
232 
233 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
234 	crypto_skcipher_set_flags(child,
235 				  crypto_skcipher_get_flags(parent) &
236 				  CRYPTO_TFM_REQ_MASK);
237 	return crypto_skcipher_setkey(child, key, keylen);
238 }
239 
240 static struct skcipher_request *cryptd_skcipher_prepare(
241 	struct skcipher_request *req, int err)
242 {
243 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
244 	struct skcipher_request *subreq = &rctx->req;
245 	struct cryptd_skcipher_ctx *ctx;
246 	struct crypto_skcipher *child;
247 
248 	req->base.complete = subreq->base.complete;
249 	req->base.data = subreq->base.data;
250 
251 	if (unlikely(err == -EINPROGRESS))
252 		return NULL;
253 
254 	ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
255 	child = ctx->child;
256 
257 	skcipher_request_set_tfm(subreq, child);
258 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
259 				      NULL, NULL);
260 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
261 				   req->iv);
262 
263 	return subreq;
264 }
265 
266 static void cryptd_skcipher_complete(struct skcipher_request *req, int err,
267 				     crypto_completion_t complete)
268 {
269 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
270 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
271 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
272 	struct skcipher_request *subreq = &rctx->req;
273 	int refcnt = refcount_read(&ctx->refcnt);
274 
275 	local_bh_disable();
276 	skcipher_request_complete(req, err);
277 	local_bh_enable();
278 
279 	if (unlikely(err == -EINPROGRESS)) {
280 		subreq->base.complete = req->base.complete;
281 		subreq->base.data = req->base.data;
282 		req->base.complete = complete;
283 		req->base.data = req;
284 	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
285 		crypto_free_skcipher(tfm);
286 }
287 
288 static void cryptd_skcipher_encrypt(void *data, int err)
289 {
290 	struct skcipher_request *req = data;
291 	struct skcipher_request *subreq;
292 
293 	subreq = cryptd_skcipher_prepare(req, err);
294 	if (likely(subreq))
295 		err = crypto_skcipher_encrypt(subreq);
296 
297 	cryptd_skcipher_complete(req, err, cryptd_skcipher_encrypt);
298 }
299 
300 static void cryptd_skcipher_decrypt(void *data, int err)
301 {
302 	struct skcipher_request *req = data;
303 	struct skcipher_request *subreq;
304 
305 	subreq = cryptd_skcipher_prepare(req, err);
306 	if (likely(subreq))
307 		err = crypto_skcipher_decrypt(subreq);
308 
309 	cryptd_skcipher_complete(req, err, cryptd_skcipher_decrypt);
310 }
311 
312 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
313 				   crypto_completion_t compl)
314 {
315 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
316 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
317 	struct skcipher_request *subreq = &rctx->req;
318 	struct cryptd_queue *queue;
319 
320 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
321 	subreq->base.complete = req->base.complete;
322 	subreq->base.data = req->base.data;
323 	req->base.complete = compl;
324 	req->base.data = req;
325 
326 	return cryptd_enqueue_request(queue, &req->base);
327 }
328 
329 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
330 {
331 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
332 }
333 
334 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
335 {
336 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
337 }
338 
339 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
340 {
341 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
342 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
343 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
344 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
345 	struct crypto_skcipher *cipher;
346 
347 	cipher = crypto_spawn_skcipher(spawn);
348 	if (IS_ERR(cipher))
349 		return PTR_ERR(cipher);
350 
351 	ctx->child = cipher;
352 	crypto_skcipher_set_reqsize(
353 		tfm, sizeof(struct cryptd_skcipher_request_ctx) +
354 		     crypto_skcipher_reqsize(cipher));
355 	return 0;
356 }
357 
358 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
359 {
360 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
361 
362 	crypto_free_skcipher(ctx->child);
363 }
364 
365 static void cryptd_skcipher_free(struct skcipher_instance *inst)
366 {
367 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
368 
369 	crypto_drop_skcipher(&ctx->spawn);
370 	kfree(inst);
371 }
372 
373 static int cryptd_create_skcipher(struct crypto_template *tmpl,
374 				  struct rtattr **tb,
375 				  struct crypto_attr_type *algt,
376 				  struct cryptd_queue *queue)
377 {
378 	struct skcipherd_instance_ctx *ctx;
379 	struct skcipher_instance *inst;
380 	struct skcipher_alg_common *alg;
381 	u32 type;
382 	u32 mask;
383 	int err;
384 
385 	cryptd_type_and_mask(algt, &type, &mask);
386 
387 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
388 	if (!inst)
389 		return -ENOMEM;
390 
391 	ctx = skcipher_instance_ctx(inst);
392 	ctx->queue = queue;
393 
394 	err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
395 				   crypto_attr_alg_name(tb[1]), type, mask);
396 	if (err)
397 		goto err_free_inst;
398 
399 	alg = crypto_spawn_skcipher_alg_common(&ctx->spawn);
400 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
401 	if (err)
402 		goto err_free_inst;
403 
404 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
405 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
406 	inst->alg.ivsize = alg->ivsize;
407 	inst->alg.chunksize = alg->chunksize;
408 	inst->alg.min_keysize = alg->min_keysize;
409 	inst->alg.max_keysize = alg->max_keysize;
410 
411 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
412 
413 	inst->alg.init = cryptd_skcipher_init_tfm;
414 	inst->alg.exit = cryptd_skcipher_exit_tfm;
415 
416 	inst->alg.setkey = cryptd_skcipher_setkey;
417 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
418 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
419 
420 	inst->free = cryptd_skcipher_free;
421 
422 	err = skcipher_register_instance(tmpl, inst);
423 	if (err) {
424 err_free_inst:
425 		cryptd_skcipher_free(inst);
426 	}
427 	return err;
428 }
429 
430 static int cryptd_hash_init_tfm(struct crypto_ahash *tfm)
431 {
432 	struct ahash_instance *inst = ahash_alg_instance(tfm);
433 	struct hashd_instance_ctx *ictx = ahash_instance_ctx(inst);
434 	struct crypto_shash_spawn *spawn = &ictx->spawn;
435 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
436 	struct crypto_shash *hash;
437 
438 	hash = crypto_spawn_shash(spawn);
439 	if (IS_ERR(hash))
440 		return PTR_ERR(hash);
441 
442 	ctx->child = hash;
443 	crypto_ahash_set_reqsize(tfm,
444 				 sizeof(struct cryptd_hash_request_ctx) +
445 				 crypto_shash_descsize(hash));
446 	return 0;
447 }
448 
449 static int cryptd_hash_clone_tfm(struct crypto_ahash *ntfm,
450 				 struct crypto_ahash *tfm)
451 {
452 	struct cryptd_hash_ctx *nctx = crypto_ahash_ctx(ntfm);
453 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
454 	struct crypto_shash *hash;
455 
456 	hash = crypto_clone_shash(ctx->child);
457 	if (IS_ERR(hash))
458 		return PTR_ERR(hash);
459 
460 	nctx->child = hash;
461 	return 0;
462 }
463 
464 static void cryptd_hash_exit_tfm(struct crypto_ahash *tfm)
465 {
466 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
467 
468 	crypto_free_shash(ctx->child);
469 }
470 
471 static int cryptd_hash_setkey(struct crypto_ahash *parent,
472 				   const u8 *key, unsigned int keylen)
473 {
474 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
475 	struct crypto_shash *child = ctx->child;
476 
477 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
478 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
479 				      CRYPTO_TFM_REQ_MASK);
480 	return crypto_shash_setkey(child, key, keylen);
481 }
482 
483 static int cryptd_hash_enqueue(struct ahash_request *req,
484 				crypto_completion_t compl)
485 {
486 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
487 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
488 	struct cryptd_queue *queue =
489 		cryptd_get_queue(crypto_ahash_tfm(tfm));
490 
491 	rctx->complete = req->base.complete;
492 	rctx->data = req->base.data;
493 	req->base.complete = compl;
494 	req->base.data = req;
495 
496 	return cryptd_enqueue_request(queue, &req->base);
497 }
498 
499 static struct shash_desc *cryptd_hash_prepare(struct ahash_request *req,
500 					      int err)
501 {
502 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
503 
504 	req->base.complete = rctx->complete;
505 	req->base.data = rctx->data;
506 
507 	if (unlikely(err == -EINPROGRESS))
508 		return NULL;
509 
510 	return &rctx->desc;
511 }
512 
513 static void cryptd_hash_complete(struct ahash_request *req, int err,
514 				 crypto_completion_t complete)
515 {
516 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
517 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
518 	int refcnt = refcount_read(&ctx->refcnt);
519 
520 	local_bh_disable();
521 	ahash_request_complete(req, err);
522 	local_bh_enable();
523 
524 	if (err == -EINPROGRESS) {
525 		req->base.complete = complete;
526 		req->base.data = req;
527 	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
528 		crypto_free_ahash(tfm);
529 }
530 
531 static void cryptd_hash_init(void *data, int err)
532 {
533 	struct ahash_request *req = data;
534 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
535 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
536 	struct crypto_shash *child = ctx->child;
537 	struct shash_desc *desc;
538 
539 	desc = cryptd_hash_prepare(req, err);
540 	if (unlikely(!desc))
541 		goto out;
542 
543 	desc->tfm = child;
544 
545 	err = crypto_shash_init(desc);
546 
547 out:
548 	cryptd_hash_complete(req, err, cryptd_hash_init);
549 }
550 
551 static int cryptd_hash_init_enqueue(struct ahash_request *req)
552 {
553 	return cryptd_hash_enqueue(req, cryptd_hash_init);
554 }
555 
556 static void cryptd_hash_update(void *data, int err)
557 {
558 	struct ahash_request *req = data;
559 	struct shash_desc *desc;
560 
561 	desc = cryptd_hash_prepare(req, err);
562 	if (likely(desc))
563 		err = shash_ahash_update(req, desc);
564 
565 	cryptd_hash_complete(req, err, cryptd_hash_update);
566 }
567 
568 static int cryptd_hash_update_enqueue(struct ahash_request *req)
569 {
570 	return cryptd_hash_enqueue(req, cryptd_hash_update);
571 }
572 
573 static void cryptd_hash_final(void *data, int err)
574 {
575 	struct ahash_request *req = data;
576 	struct shash_desc *desc;
577 
578 	desc = cryptd_hash_prepare(req, err);
579 	if (likely(desc))
580 		err = crypto_shash_final(desc, req->result);
581 
582 	cryptd_hash_complete(req, err, cryptd_hash_final);
583 }
584 
585 static int cryptd_hash_final_enqueue(struct ahash_request *req)
586 {
587 	return cryptd_hash_enqueue(req, cryptd_hash_final);
588 }
589 
590 static void cryptd_hash_finup(void *data, int err)
591 {
592 	struct ahash_request *req = data;
593 	struct shash_desc *desc;
594 
595 	desc = cryptd_hash_prepare(req, err);
596 	if (likely(desc))
597 		err = shash_ahash_finup(req, desc);
598 
599 	cryptd_hash_complete(req, err, cryptd_hash_finup);
600 }
601 
602 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
603 {
604 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
605 }
606 
607 static void cryptd_hash_digest(void *data, int err)
608 {
609 	struct ahash_request *req = data;
610 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
611 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
612 	struct crypto_shash *child = ctx->child;
613 	struct shash_desc *desc;
614 
615 	desc = cryptd_hash_prepare(req, err);
616 	if (unlikely(!desc))
617 		goto out;
618 
619 	desc->tfm = child;
620 
621 	err = shash_ahash_digest(req, desc);
622 
623 out:
624 	cryptd_hash_complete(req, err, cryptd_hash_digest);
625 }
626 
627 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
628 {
629 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
630 }
631 
632 static int cryptd_hash_export(struct ahash_request *req, void *out)
633 {
634 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
635 
636 	return crypto_shash_export(&rctx->desc, out);
637 }
638 
639 static int cryptd_hash_import(struct ahash_request *req, const void *in)
640 {
641 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
642 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
643 	struct shash_desc *desc = cryptd_shash_desc(req);
644 
645 	desc->tfm = ctx->child;
646 
647 	return crypto_shash_import(desc, in);
648 }
649 
650 static void cryptd_hash_free(struct ahash_instance *inst)
651 {
652 	struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
653 
654 	crypto_drop_shash(&ctx->spawn);
655 	kfree(inst);
656 }
657 
658 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
659 			      struct crypto_attr_type *algt,
660 			      struct cryptd_queue *queue)
661 {
662 	struct hashd_instance_ctx *ctx;
663 	struct ahash_instance *inst;
664 	struct shash_alg *alg;
665 	u32 type;
666 	u32 mask;
667 	int err;
668 
669 	cryptd_type_and_mask(algt, &type, &mask);
670 
671 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
672 	if (!inst)
673 		return -ENOMEM;
674 
675 	ctx = ahash_instance_ctx(inst);
676 	ctx->queue = queue;
677 
678 	err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
679 				crypto_attr_alg_name(tb[1]), type, mask);
680 	if (err)
681 		goto err_free_inst;
682 	alg = crypto_spawn_shash_alg(&ctx->spawn);
683 
684 	err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
685 	if (err)
686 		goto err_free_inst;
687 
688 	inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC |
689 		(alg->base.cra_flags & (CRYPTO_ALG_INTERNAL|
690 					CRYPTO_ALG_OPTIONAL_KEY));
691 	inst->alg.halg.digestsize = alg->digestsize;
692 	inst->alg.halg.statesize = alg->statesize;
693 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
694 
695 	inst->alg.init_tfm = cryptd_hash_init_tfm;
696 	inst->alg.clone_tfm = cryptd_hash_clone_tfm;
697 	inst->alg.exit_tfm = cryptd_hash_exit_tfm;
698 
699 	inst->alg.init   = cryptd_hash_init_enqueue;
700 	inst->alg.update = cryptd_hash_update_enqueue;
701 	inst->alg.final  = cryptd_hash_final_enqueue;
702 	inst->alg.finup  = cryptd_hash_finup_enqueue;
703 	inst->alg.export = cryptd_hash_export;
704 	inst->alg.import = cryptd_hash_import;
705 	if (crypto_shash_alg_has_setkey(alg))
706 		inst->alg.setkey = cryptd_hash_setkey;
707 	inst->alg.digest = cryptd_hash_digest_enqueue;
708 
709 	inst->free = cryptd_hash_free;
710 
711 	err = ahash_register_instance(tmpl, inst);
712 	if (err) {
713 err_free_inst:
714 		cryptd_hash_free(inst);
715 	}
716 	return err;
717 }
718 
719 static int cryptd_aead_setkey(struct crypto_aead *parent,
720 			      const u8 *key, unsigned int keylen)
721 {
722 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
723 	struct crypto_aead *child = ctx->child;
724 
725 	return crypto_aead_setkey(child, key, keylen);
726 }
727 
728 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
729 				   unsigned int authsize)
730 {
731 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
732 	struct crypto_aead *child = ctx->child;
733 
734 	return crypto_aead_setauthsize(child, authsize);
735 }
736 
737 static void cryptd_aead_crypt(struct aead_request *req,
738 			      struct crypto_aead *child, int err,
739 			      int (*crypt)(struct aead_request *req),
740 			      crypto_completion_t compl)
741 {
742 	struct cryptd_aead_request_ctx *rctx;
743 	struct aead_request *subreq;
744 	struct cryptd_aead_ctx *ctx;
745 	struct crypto_aead *tfm;
746 	int refcnt;
747 
748 	rctx = aead_request_ctx(req);
749 	subreq = &rctx->req;
750 	req->base.complete = subreq->base.complete;
751 	req->base.data = subreq->base.data;
752 
753 	tfm = crypto_aead_reqtfm(req);
754 
755 	if (unlikely(err == -EINPROGRESS))
756 		goto out;
757 
758 	aead_request_set_tfm(subreq, child);
759 	aead_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
760 				  NULL, NULL);
761 	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
762 			       req->iv);
763 	aead_request_set_ad(subreq, req->assoclen);
764 
765 	err = crypt(subreq);
766 
767 out:
768 	ctx = crypto_aead_ctx(tfm);
769 	refcnt = refcount_read(&ctx->refcnt);
770 
771 	local_bh_disable();
772 	aead_request_complete(req, err);
773 	local_bh_enable();
774 
775 	if (err == -EINPROGRESS) {
776 		subreq->base.complete = req->base.complete;
777 		subreq->base.data = req->base.data;
778 		req->base.complete = compl;
779 		req->base.data = req;
780 	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
781 		crypto_free_aead(tfm);
782 }
783 
784 static void cryptd_aead_encrypt(void *data, int err)
785 {
786 	struct aead_request *req = data;
787 	struct cryptd_aead_ctx *ctx;
788 	struct crypto_aead *child;
789 
790 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
791 	child = ctx->child;
792 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt,
793 			  cryptd_aead_encrypt);
794 }
795 
796 static void cryptd_aead_decrypt(void *data, int err)
797 {
798 	struct aead_request *req = data;
799 	struct cryptd_aead_ctx *ctx;
800 	struct crypto_aead *child;
801 
802 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
803 	child = ctx->child;
804 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt,
805 			  cryptd_aead_decrypt);
806 }
807 
808 static int cryptd_aead_enqueue(struct aead_request *req,
809 				    crypto_completion_t compl)
810 {
811 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
812 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
813 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
814 	struct aead_request *subreq = &rctx->req;
815 
816 	subreq->base.complete = req->base.complete;
817 	subreq->base.data = req->base.data;
818 	req->base.complete = compl;
819 	req->base.data = req;
820 	return cryptd_enqueue_request(queue, &req->base);
821 }
822 
823 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
824 {
825 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
826 }
827 
828 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
829 {
830 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
831 }
832 
833 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
834 {
835 	struct aead_instance *inst = aead_alg_instance(tfm);
836 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
837 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
838 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
839 	struct crypto_aead *cipher;
840 
841 	cipher = crypto_spawn_aead(spawn);
842 	if (IS_ERR(cipher))
843 		return PTR_ERR(cipher);
844 
845 	ctx->child = cipher;
846 	crypto_aead_set_reqsize(
847 		tfm, sizeof(struct cryptd_aead_request_ctx) +
848 		     crypto_aead_reqsize(cipher));
849 	return 0;
850 }
851 
852 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
853 {
854 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
855 	crypto_free_aead(ctx->child);
856 }
857 
858 static void cryptd_aead_free(struct aead_instance *inst)
859 {
860 	struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
861 
862 	crypto_drop_aead(&ctx->aead_spawn);
863 	kfree(inst);
864 }
865 
866 static int cryptd_create_aead(struct crypto_template *tmpl,
867 		              struct rtattr **tb,
868 			      struct crypto_attr_type *algt,
869 			      struct cryptd_queue *queue)
870 {
871 	struct aead_instance_ctx *ctx;
872 	struct aead_instance *inst;
873 	struct aead_alg *alg;
874 	u32 type;
875 	u32 mask;
876 	int err;
877 
878 	cryptd_type_and_mask(algt, &type, &mask);
879 
880 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
881 	if (!inst)
882 		return -ENOMEM;
883 
884 	ctx = aead_instance_ctx(inst);
885 	ctx->queue = queue;
886 
887 	err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
888 			       crypto_attr_alg_name(tb[1]), type, mask);
889 	if (err)
890 		goto err_free_inst;
891 
892 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
893 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
894 	if (err)
895 		goto err_free_inst;
896 
897 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
898 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
899 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
900 
901 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
902 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
903 
904 	inst->alg.init = cryptd_aead_init_tfm;
905 	inst->alg.exit = cryptd_aead_exit_tfm;
906 	inst->alg.setkey = cryptd_aead_setkey;
907 	inst->alg.setauthsize = cryptd_aead_setauthsize;
908 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
909 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
910 
911 	inst->free = cryptd_aead_free;
912 
913 	err = aead_register_instance(tmpl, inst);
914 	if (err) {
915 err_free_inst:
916 		cryptd_aead_free(inst);
917 	}
918 	return err;
919 }
920 
921 static struct cryptd_queue queue;
922 
923 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
924 {
925 	struct crypto_attr_type *algt;
926 
927 	algt = crypto_get_attr_type(tb);
928 	if (IS_ERR(algt))
929 		return PTR_ERR(algt);
930 
931 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
932 	case CRYPTO_ALG_TYPE_LSKCIPHER:
933 		return cryptd_create_skcipher(tmpl, tb, algt, &queue);
934 	case CRYPTO_ALG_TYPE_HASH:
935 		return cryptd_create_hash(tmpl, tb, algt, &queue);
936 	case CRYPTO_ALG_TYPE_AEAD:
937 		return cryptd_create_aead(tmpl, tb, algt, &queue);
938 	}
939 
940 	return -EINVAL;
941 }
942 
943 static struct crypto_template cryptd_tmpl = {
944 	.name = "cryptd",
945 	.create = cryptd_create,
946 	.module = THIS_MODULE,
947 };
948 
949 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
950 					      u32 type, u32 mask)
951 {
952 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
953 	struct cryptd_skcipher_ctx *ctx;
954 	struct crypto_skcipher *tfm;
955 
956 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
957 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
958 		return ERR_PTR(-EINVAL);
959 
960 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
961 	if (IS_ERR(tfm))
962 		return ERR_CAST(tfm);
963 
964 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
965 		crypto_free_skcipher(tfm);
966 		return ERR_PTR(-EINVAL);
967 	}
968 
969 	ctx = crypto_skcipher_ctx(tfm);
970 	refcount_set(&ctx->refcnt, 1);
971 
972 	return container_of(tfm, struct cryptd_skcipher, base);
973 }
974 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
975 
976 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
977 {
978 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
979 
980 	return ctx->child;
981 }
982 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
983 
984 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
985 {
986 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
987 
988 	return refcount_read(&ctx->refcnt) - 1;
989 }
990 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
991 
992 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
993 {
994 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
995 
996 	if (refcount_dec_and_test(&ctx->refcnt))
997 		crypto_free_skcipher(&tfm->base);
998 }
999 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1000 
1001 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1002 					u32 type, u32 mask)
1003 {
1004 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1005 	struct cryptd_hash_ctx *ctx;
1006 	struct crypto_ahash *tfm;
1007 
1008 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1009 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1010 		return ERR_PTR(-EINVAL);
1011 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1012 	if (IS_ERR(tfm))
1013 		return ERR_CAST(tfm);
1014 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1015 		crypto_free_ahash(tfm);
1016 		return ERR_PTR(-EINVAL);
1017 	}
1018 
1019 	ctx = crypto_ahash_ctx(tfm);
1020 	refcount_set(&ctx->refcnt, 1);
1021 
1022 	return __cryptd_ahash_cast(tfm);
1023 }
1024 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1025 
1026 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1027 {
1028 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1029 
1030 	return ctx->child;
1031 }
1032 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1033 
1034 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1035 {
1036 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1037 	return &rctx->desc;
1038 }
1039 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1040 
1041 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1042 {
1043 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1044 
1045 	return refcount_read(&ctx->refcnt) - 1;
1046 }
1047 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1048 
1049 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1050 {
1051 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1052 
1053 	if (refcount_dec_and_test(&ctx->refcnt))
1054 		crypto_free_ahash(&tfm->base);
1055 }
1056 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1057 
1058 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1059 						  u32 type, u32 mask)
1060 {
1061 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1062 	struct cryptd_aead_ctx *ctx;
1063 	struct crypto_aead *tfm;
1064 
1065 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1066 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1067 		return ERR_PTR(-EINVAL);
1068 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1069 	if (IS_ERR(tfm))
1070 		return ERR_CAST(tfm);
1071 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1072 		crypto_free_aead(tfm);
1073 		return ERR_PTR(-EINVAL);
1074 	}
1075 
1076 	ctx = crypto_aead_ctx(tfm);
1077 	refcount_set(&ctx->refcnt, 1);
1078 
1079 	return __cryptd_aead_cast(tfm);
1080 }
1081 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1082 
1083 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1084 {
1085 	struct cryptd_aead_ctx *ctx;
1086 	ctx = crypto_aead_ctx(&tfm->base);
1087 	return ctx->child;
1088 }
1089 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1090 
1091 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1092 {
1093 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1094 
1095 	return refcount_read(&ctx->refcnt) - 1;
1096 }
1097 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1098 
1099 void cryptd_free_aead(struct cryptd_aead *tfm)
1100 {
1101 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1102 
1103 	if (refcount_dec_and_test(&ctx->refcnt))
1104 		crypto_free_aead(&tfm->base);
1105 }
1106 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1107 
1108 static int __init cryptd_init(void)
1109 {
1110 	int err;
1111 
1112 	cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1113 				    1);
1114 	if (!cryptd_wq)
1115 		return -ENOMEM;
1116 
1117 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1118 	if (err)
1119 		goto err_destroy_wq;
1120 
1121 	err = crypto_register_template(&cryptd_tmpl);
1122 	if (err)
1123 		goto err_fini_queue;
1124 
1125 	return 0;
1126 
1127 err_fini_queue:
1128 	cryptd_fini_queue(&queue);
1129 err_destroy_wq:
1130 	destroy_workqueue(cryptd_wq);
1131 	return err;
1132 }
1133 
1134 static void __exit cryptd_exit(void)
1135 {
1136 	destroy_workqueue(cryptd_wq);
1137 	cryptd_fini_queue(&queue);
1138 	crypto_unregister_template(&cryptd_tmpl);
1139 }
1140 
1141 subsys_initcall(cryptd_init);
1142 module_exit(cryptd_exit);
1143 
1144 MODULE_LICENSE("GPL");
1145 MODULE_DESCRIPTION("Software async crypto daemon");
1146 MODULE_ALIAS_CRYPTO("cryptd");
1147