xref: /linux/crypto/cryptd.c (revision 520b7aa00d8cd8e411ecc09f63a2acd90feb6d29)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Software async crypto daemon.
4  *
5  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6  *
7  * Added AEAD support to cryptd.
8  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9  *             Adrian Hoban <adrian.hoban@intel.com>
10  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
11  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
12  *    Copyright (c) 2010, Intel Corporation.
13  */
14 
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29 
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33 
34 static struct workqueue_struct *cryptd_wq;
35 
36 struct cryptd_cpu_queue {
37 	struct crypto_queue queue;
38 	struct work_struct work;
39 };
40 
41 struct cryptd_queue {
42 	struct cryptd_cpu_queue __percpu *cpu_queue;
43 };
44 
45 struct cryptd_instance_ctx {
46 	struct crypto_spawn spawn;
47 	struct cryptd_queue *queue;
48 };
49 
50 struct skcipherd_instance_ctx {
51 	struct crypto_skcipher_spawn spawn;
52 	struct cryptd_queue *queue;
53 };
54 
55 struct hashd_instance_ctx {
56 	struct crypto_shash_spawn spawn;
57 	struct cryptd_queue *queue;
58 };
59 
60 struct aead_instance_ctx {
61 	struct crypto_aead_spawn aead_spawn;
62 	struct cryptd_queue *queue;
63 };
64 
65 struct cryptd_skcipher_ctx {
66 	refcount_t refcnt;
67 	struct crypto_sync_skcipher *child;
68 };
69 
70 struct cryptd_skcipher_request_ctx {
71 	crypto_completion_t complete;
72 };
73 
74 struct cryptd_hash_ctx {
75 	refcount_t refcnt;
76 	struct crypto_shash *child;
77 };
78 
79 struct cryptd_hash_request_ctx {
80 	crypto_completion_t complete;
81 	struct shash_desc desc;
82 };
83 
84 struct cryptd_aead_ctx {
85 	refcount_t refcnt;
86 	struct crypto_aead *child;
87 };
88 
89 struct cryptd_aead_request_ctx {
90 	crypto_completion_t complete;
91 };
92 
93 static void cryptd_queue_worker(struct work_struct *work);
94 
95 static int cryptd_init_queue(struct cryptd_queue *queue,
96 			     unsigned int max_cpu_qlen)
97 {
98 	int cpu;
99 	struct cryptd_cpu_queue *cpu_queue;
100 
101 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
102 	if (!queue->cpu_queue)
103 		return -ENOMEM;
104 	for_each_possible_cpu(cpu) {
105 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
106 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
107 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
108 	}
109 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
110 	return 0;
111 }
112 
113 static void cryptd_fini_queue(struct cryptd_queue *queue)
114 {
115 	int cpu;
116 	struct cryptd_cpu_queue *cpu_queue;
117 
118 	for_each_possible_cpu(cpu) {
119 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
120 		BUG_ON(cpu_queue->queue.qlen);
121 	}
122 	free_percpu(queue->cpu_queue);
123 }
124 
125 static int cryptd_enqueue_request(struct cryptd_queue *queue,
126 				  struct crypto_async_request *request)
127 {
128 	int cpu, err;
129 	struct cryptd_cpu_queue *cpu_queue;
130 	refcount_t *refcnt;
131 
132 	cpu = get_cpu();
133 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
134 	err = crypto_enqueue_request(&cpu_queue->queue, request);
135 
136 	refcnt = crypto_tfm_ctx(request->tfm);
137 
138 	if (err == -ENOSPC)
139 		goto out_put_cpu;
140 
141 	queue_work_on(cpu, cryptd_wq, &cpu_queue->work);
142 
143 	if (!refcount_read(refcnt))
144 		goto out_put_cpu;
145 
146 	refcount_inc(refcnt);
147 
148 out_put_cpu:
149 	put_cpu();
150 
151 	return err;
152 }
153 
154 /* Called in workqueue context, do one real cryption work (via
155  * req->complete) and reschedule itself if there are more work to
156  * do. */
157 static void cryptd_queue_worker(struct work_struct *work)
158 {
159 	struct cryptd_cpu_queue *cpu_queue;
160 	struct crypto_async_request *req, *backlog;
161 
162 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
163 	/*
164 	 * Only handle one request at a time to avoid hogging crypto workqueue.
165 	 * preempt_disable/enable is used to prevent being preempted by
166 	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
167 	 * cryptd_enqueue_request() being accessed from software interrupts.
168 	 */
169 	local_bh_disable();
170 	preempt_disable();
171 	backlog = crypto_get_backlog(&cpu_queue->queue);
172 	req = crypto_dequeue_request(&cpu_queue->queue);
173 	preempt_enable();
174 	local_bh_enable();
175 
176 	if (!req)
177 		return;
178 
179 	if (backlog)
180 		backlog->complete(backlog, -EINPROGRESS);
181 	req->complete(req, 0);
182 
183 	if (cpu_queue->queue.qlen)
184 		queue_work(cryptd_wq, &cpu_queue->work);
185 }
186 
187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 	return ictx->queue;
192 }
193 
194 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
195 					 u32 *mask)
196 {
197 	struct crypto_attr_type *algt;
198 
199 	algt = crypto_get_attr_type(tb);
200 	if (IS_ERR(algt))
201 		return;
202 
203 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
204 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
205 }
206 
207 static int cryptd_init_instance(struct crypto_instance *inst,
208 				struct crypto_alg *alg)
209 {
210 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
211 		     "cryptd(%s)",
212 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
213 		return -ENAMETOOLONG;
214 
215 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
216 
217 	inst->alg.cra_priority = alg->cra_priority + 50;
218 	inst->alg.cra_blocksize = alg->cra_blocksize;
219 	inst->alg.cra_alignmask = alg->cra_alignmask;
220 
221 	return 0;
222 }
223 
224 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
225 				  const u8 *key, unsigned int keylen)
226 {
227 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
228 	struct crypto_sync_skcipher *child = ctx->child;
229 
230 	crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
231 	crypto_sync_skcipher_set_flags(child,
232 				       crypto_skcipher_get_flags(parent) &
233 					 CRYPTO_TFM_REQ_MASK);
234 	return crypto_sync_skcipher_setkey(child, key, keylen);
235 }
236 
237 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
238 {
239 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
240 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
241 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
242 	int refcnt = refcount_read(&ctx->refcnt);
243 
244 	local_bh_disable();
245 	rctx->complete(&req->base, err);
246 	local_bh_enable();
247 
248 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
249 		crypto_free_skcipher(tfm);
250 }
251 
252 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
253 				    int err)
254 {
255 	struct skcipher_request *req = skcipher_request_cast(base);
256 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
257 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
258 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
259 	struct crypto_sync_skcipher *child = ctx->child;
260 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
261 
262 	if (unlikely(err == -EINPROGRESS))
263 		goto out;
264 
265 	skcipher_request_set_sync_tfm(subreq, child);
266 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
267 				      NULL, NULL);
268 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
269 				   req->iv);
270 
271 	err = crypto_skcipher_encrypt(subreq);
272 	skcipher_request_zero(subreq);
273 
274 	req->base.complete = rctx->complete;
275 
276 out:
277 	cryptd_skcipher_complete(req, err);
278 }
279 
280 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
281 				    int err)
282 {
283 	struct skcipher_request *req = skcipher_request_cast(base);
284 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
285 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
286 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
287 	struct crypto_sync_skcipher *child = ctx->child;
288 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
289 
290 	if (unlikely(err == -EINPROGRESS))
291 		goto out;
292 
293 	skcipher_request_set_sync_tfm(subreq, child);
294 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
295 				      NULL, NULL);
296 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
297 				   req->iv);
298 
299 	err = crypto_skcipher_decrypt(subreq);
300 	skcipher_request_zero(subreq);
301 
302 	req->base.complete = rctx->complete;
303 
304 out:
305 	cryptd_skcipher_complete(req, err);
306 }
307 
308 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
309 				   crypto_completion_t compl)
310 {
311 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
312 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
313 	struct cryptd_queue *queue;
314 
315 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
316 	rctx->complete = req->base.complete;
317 	req->base.complete = compl;
318 
319 	return cryptd_enqueue_request(queue, &req->base);
320 }
321 
322 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
323 {
324 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
325 }
326 
327 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
328 {
329 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
330 }
331 
332 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
333 {
334 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
335 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
336 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
337 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
338 	struct crypto_skcipher *cipher;
339 
340 	cipher = crypto_spawn_skcipher(spawn);
341 	if (IS_ERR(cipher))
342 		return PTR_ERR(cipher);
343 
344 	ctx->child = (struct crypto_sync_skcipher *)cipher;
345 	crypto_skcipher_set_reqsize(
346 		tfm, sizeof(struct cryptd_skcipher_request_ctx));
347 	return 0;
348 }
349 
350 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
351 {
352 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
353 
354 	crypto_free_sync_skcipher(ctx->child);
355 }
356 
357 static void cryptd_skcipher_free(struct skcipher_instance *inst)
358 {
359 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
360 
361 	crypto_drop_skcipher(&ctx->spawn);
362 	kfree(inst);
363 }
364 
365 static int cryptd_create_skcipher(struct crypto_template *tmpl,
366 				  struct rtattr **tb,
367 				  struct cryptd_queue *queue)
368 {
369 	struct skcipherd_instance_ctx *ctx;
370 	struct skcipher_instance *inst;
371 	struct skcipher_alg *alg;
372 	const char *name;
373 	u32 type;
374 	u32 mask;
375 	int err;
376 
377 	type = 0;
378 	mask = CRYPTO_ALG_ASYNC;
379 
380 	cryptd_check_internal(tb, &type, &mask);
381 
382 	name = crypto_attr_alg_name(tb[1]);
383 	if (IS_ERR(name))
384 		return PTR_ERR(name);
385 
386 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
387 	if (!inst)
388 		return -ENOMEM;
389 
390 	ctx = skcipher_instance_ctx(inst);
391 	ctx->queue = queue;
392 
393 	err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
394 				   name, type, mask);
395 	if (err)
396 		goto out_free_inst;
397 
398 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
399 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
400 	if (err)
401 		goto out_drop_skcipher;
402 
403 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
404 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
405 
406 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
407 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
408 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
409 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
410 
411 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
412 
413 	inst->alg.init = cryptd_skcipher_init_tfm;
414 	inst->alg.exit = cryptd_skcipher_exit_tfm;
415 
416 	inst->alg.setkey = cryptd_skcipher_setkey;
417 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
418 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
419 
420 	inst->free = cryptd_skcipher_free;
421 
422 	err = skcipher_register_instance(tmpl, inst);
423 	if (err) {
424 out_drop_skcipher:
425 		crypto_drop_skcipher(&ctx->spawn);
426 out_free_inst:
427 		kfree(inst);
428 	}
429 	return err;
430 }
431 
432 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
433 {
434 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
435 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
436 	struct crypto_shash_spawn *spawn = &ictx->spawn;
437 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
438 	struct crypto_shash *hash;
439 
440 	hash = crypto_spawn_shash(spawn);
441 	if (IS_ERR(hash))
442 		return PTR_ERR(hash);
443 
444 	ctx->child = hash;
445 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
446 				 sizeof(struct cryptd_hash_request_ctx) +
447 				 crypto_shash_descsize(hash));
448 	return 0;
449 }
450 
451 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
452 {
453 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
454 
455 	crypto_free_shash(ctx->child);
456 }
457 
458 static int cryptd_hash_setkey(struct crypto_ahash *parent,
459 				   const u8 *key, unsigned int keylen)
460 {
461 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
462 	struct crypto_shash *child = ctx->child;
463 
464 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
465 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
466 				      CRYPTO_TFM_REQ_MASK);
467 	return crypto_shash_setkey(child, key, keylen);
468 }
469 
470 static int cryptd_hash_enqueue(struct ahash_request *req,
471 				crypto_completion_t compl)
472 {
473 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
474 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
475 	struct cryptd_queue *queue =
476 		cryptd_get_queue(crypto_ahash_tfm(tfm));
477 
478 	rctx->complete = req->base.complete;
479 	req->base.complete = compl;
480 
481 	return cryptd_enqueue_request(queue, &req->base);
482 }
483 
484 static void cryptd_hash_complete(struct ahash_request *req, int err)
485 {
486 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
487 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
488 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
489 	int refcnt = refcount_read(&ctx->refcnt);
490 
491 	local_bh_disable();
492 	rctx->complete(&req->base, err);
493 	local_bh_enable();
494 
495 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
496 		crypto_free_ahash(tfm);
497 }
498 
499 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
500 {
501 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
502 	struct crypto_shash *child = ctx->child;
503 	struct ahash_request *req = ahash_request_cast(req_async);
504 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
505 	struct shash_desc *desc = &rctx->desc;
506 
507 	if (unlikely(err == -EINPROGRESS))
508 		goto out;
509 
510 	desc->tfm = child;
511 
512 	err = crypto_shash_init(desc);
513 
514 	req->base.complete = rctx->complete;
515 
516 out:
517 	cryptd_hash_complete(req, err);
518 }
519 
520 static int cryptd_hash_init_enqueue(struct ahash_request *req)
521 {
522 	return cryptd_hash_enqueue(req, cryptd_hash_init);
523 }
524 
525 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
526 {
527 	struct ahash_request *req = ahash_request_cast(req_async);
528 	struct cryptd_hash_request_ctx *rctx;
529 
530 	rctx = ahash_request_ctx(req);
531 
532 	if (unlikely(err == -EINPROGRESS))
533 		goto out;
534 
535 	err = shash_ahash_update(req, &rctx->desc);
536 
537 	req->base.complete = rctx->complete;
538 
539 out:
540 	cryptd_hash_complete(req, err);
541 }
542 
543 static int cryptd_hash_update_enqueue(struct ahash_request *req)
544 {
545 	return cryptd_hash_enqueue(req, cryptd_hash_update);
546 }
547 
548 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
549 {
550 	struct ahash_request *req = ahash_request_cast(req_async);
551 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
552 
553 	if (unlikely(err == -EINPROGRESS))
554 		goto out;
555 
556 	err = crypto_shash_final(&rctx->desc, req->result);
557 
558 	req->base.complete = rctx->complete;
559 
560 out:
561 	cryptd_hash_complete(req, err);
562 }
563 
564 static int cryptd_hash_final_enqueue(struct ahash_request *req)
565 {
566 	return cryptd_hash_enqueue(req, cryptd_hash_final);
567 }
568 
569 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
570 {
571 	struct ahash_request *req = ahash_request_cast(req_async);
572 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
573 
574 	if (unlikely(err == -EINPROGRESS))
575 		goto out;
576 
577 	err = shash_ahash_finup(req, &rctx->desc);
578 
579 	req->base.complete = rctx->complete;
580 
581 out:
582 	cryptd_hash_complete(req, err);
583 }
584 
585 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
586 {
587 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
588 }
589 
590 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
591 {
592 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
593 	struct crypto_shash *child = ctx->child;
594 	struct ahash_request *req = ahash_request_cast(req_async);
595 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
596 	struct shash_desc *desc = &rctx->desc;
597 
598 	if (unlikely(err == -EINPROGRESS))
599 		goto out;
600 
601 	desc->tfm = child;
602 
603 	err = shash_ahash_digest(req, desc);
604 
605 	req->base.complete = rctx->complete;
606 
607 out:
608 	cryptd_hash_complete(req, err);
609 }
610 
611 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
612 {
613 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
614 }
615 
616 static int cryptd_hash_export(struct ahash_request *req, void *out)
617 {
618 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
619 
620 	return crypto_shash_export(&rctx->desc, out);
621 }
622 
623 static int cryptd_hash_import(struct ahash_request *req, const void *in)
624 {
625 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
626 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
627 	struct shash_desc *desc = cryptd_shash_desc(req);
628 
629 	desc->tfm = ctx->child;
630 
631 	return crypto_shash_import(desc, in);
632 }
633 
634 static void cryptd_hash_free(struct ahash_instance *inst)
635 {
636 	struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
637 
638 	crypto_drop_shash(&ctx->spawn);
639 	kfree(inst);
640 }
641 
642 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
643 			      struct cryptd_queue *queue)
644 {
645 	struct hashd_instance_ctx *ctx;
646 	struct ahash_instance *inst;
647 	struct shash_alg *alg;
648 	u32 type = 0;
649 	u32 mask = 0;
650 	int err;
651 
652 	cryptd_check_internal(tb, &type, &mask);
653 
654 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
655 	if (!inst)
656 		return -ENOMEM;
657 
658 	ctx = ahash_instance_ctx(inst);
659 	ctx->queue = queue;
660 
661 	err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
662 				crypto_attr_alg_name(tb[1]), type, mask);
663 	if (err)
664 		goto err_free_inst;
665 	alg = crypto_spawn_shash_alg(&ctx->spawn);
666 
667 	err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
668 	if (err)
669 		goto err_free_inst;
670 
671 	inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
672 		(alg->base.cra_flags & (CRYPTO_ALG_INTERNAL |
673 					CRYPTO_ALG_OPTIONAL_KEY));
674 
675 	inst->alg.halg.digestsize = alg->digestsize;
676 	inst->alg.halg.statesize = alg->statesize;
677 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
678 
679 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
680 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
681 
682 	inst->alg.init   = cryptd_hash_init_enqueue;
683 	inst->alg.update = cryptd_hash_update_enqueue;
684 	inst->alg.final  = cryptd_hash_final_enqueue;
685 	inst->alg.finup  = cryptd_hash_finup_enqueue;
686 	inst->alg.export = cryptd_hash_export;
687 	inst->alg.import = cryptd_hash_import;
688 	if (crypto_shash_alg_has_setkey(alg))
689 		inst->alg.setkey = cryptd_hash_setkey;
690 	inst->alg.digest = cryptd_hash_digest_enqueue;
691 
692 	inst->free = cryptd_hash_free;
693 
694 	err = ahash_register_instance(tmpl, inst);
695 	if (err) {
696 err_free_inst:
697 		crypto_drop_shash(&ctx->spawn);
698 		kfree(inst);
699 	}
700 	return err;
701 }
702 
703 static int cryptd_aead_setkey(struct crypto_aead *parent,
704 			      const u8 *key, unsigned int keylen)
705 {
706 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
707 	struct crypto_aead *child = ctx->child;
708 
709 	return crypto_aead_setkey(child, key, keylen);
710 }
711 
712 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
713 				   unsigned int authsize)
714 {
715 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
716 	struct crypto_aead *child = ctx->child;
717 
718 	return crypto_aead_setauthsize(child, authsize);
719 }
720 
721 static void cryptd_aead_crypt(struct aead_request *req,
722 			struct crypto_aead *child,
723 			int err,
724 			int (*crypt)(struct aead_request *req))
725 {
726 	struct cryptd_aead_request_ctx *rctx;
727 	struct cryptd_aead_ctx *ctx;
728 	crypto_completion_t compl;
729 	struct crypto_aead *tfm;
730 	int refcnt;
731 
732 	rctx = aead_request_ctx(req);
733 	compl = rctx->complete;
734 
735 	tfm = crypto_aead_reqtfm(req);
736 
737 	if (unlikely(err == -EINPROGRESS))
738 		goto out;
739 	aead_request_set_tfm(req, child);
740 	err = crypt( req );
741 
742 out:
743 	ctx = crypto_aead_ctx(tfm);
744 	refcnt = refcount_read(&ctx->refcnt);
745 
746 	local_bh_disable();
747 	compl(&req->base, err);
748 	local_bh_enable();
749 
750 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
751 		crypto_free_aead(tfm);
752 }
753 
754 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
755 {
756 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
757 	struct crypto_aead *child = ctx->child;
758 	struct aead_request *req;
759 
760 	req = container_of(areq, struct aead_request, base);
761 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
762 }
763 
764 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
765 {
766 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
767 	struct crypto_aead *child = ctx->child;
768 	struct aead_request *req;
769 
770 	req = container_of(areq, struct aead_request, base);
771 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
772 }
773 
774 static int cryptd_aead_enqueue(struct aead_request *req,
775 				    crypto_completion_t compl)
776 {
777 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
778 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
779 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
780 
781 	rctx->complete = req->base.complete;
782 	req->base.complete = compl;
783 	return cryptd_enqueue_request(queue, &req->base);
784 }
785 
786 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
787 {
788 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
789 }
790 
791 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
792 {
793 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
794 }
795 
796 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
797 {
798 	struct aead_instance *inst = aead_alg_instance(tfm);
799 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
800 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
801 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
802 	struct crypto_aead *cipher;
803 
804 	cipher = crypto_spawn_aead(spawn);
805 	if (IS_ERR(cipher))
806 		return PTR_ERR(cipher);
807 
808 	ctx->child = cipher;
809 	crypto_aead_set_reqsize(
810 		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
811 			 crypto_aead_reqsize(cipher)));
812 	return 0;
813 }
814 
815 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
816 {
817 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
818 	crypto_free_aead(ctx->child);
819 }
820 
821 static void cryptd_aead_free(struct aead_instance *inst)
822 {
823 	struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
824 
825 	crypto_drop_aead(&ctx->aead_spawn);
826 	kfree(inst);
827 }
828 
829 static int cryptd_create_aead(struct crypto_template *tmpl,
830 		              struct rtattr **tb,
831 			      struct cryptd_queue *queue)
832 {
833 	struct aead_instance_ctx *ctx;
834 	struct aead_instance *inst;
835 	struct aead_alg *alg;
836 	const char *name;
837 	u32 type = 0;
838 	u32 mask = CRYPTO_ALG_ASYNC;
839 	int err;
840 
841 	cryptd_check_internal(tb, &type, &mask);
842 
843 	name = crypto_attr_alg_name(tb[1]);
844 	if (IS_ERR(name))
845 		return PTR_ERR(name);
846 
847 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
848 	if (!inst)
849 		return -ENOMEM;
850 
851 	ctx = aead_instance_ctx(inst);
852 	ctx->queue = queue;
853 
854 	err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
855 			       name, type, mask);
856 	if (err)
857 		goto out_free_inst;
858 
859 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
860 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
861 	if (err)
862 		goto out_drop_aead;
863 
864 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
865 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
866 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
867 
868 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
869 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
870 
871 	inst->alg.init = cryptd_aead_init_tfm;
872 	inst->alg.exit = cryptd_aead_exit_tfm;
873 	inst->alg.setkey = cryptd_aead_setkey;
874 	inst->alg.setauthsize = cryptd_aead_setauthsize;
875 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
876 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
877 
878 	inst->free = cryptd_aead_free;
879 
880 	err = aead_register_instance(tmpl, inst);
881 	if (err) {
882 out_drop_aead:
883 		crypto_drop_aead(&ctx->aead_spawn);
884 out_free_inst:
885 		kfree(inst);
886 	}
887 	return err;
888 }
889 
890 static struct cryptd_queue queue;
891 
892 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
893 {
894 	struct crypto_attr_type *algt;
895 
896 	algt = crypto_get_attr_type(tb);
897 	if (IS_ERR(algt))
898 		return PTR_ERR(algt);
899 
900 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
901 	case CRYPTO_ALG_TYPE_SKCIPHER:
902 		return cryptd_create_skcipher(tmpl, tb, &queue);
903 	case CRYPTO_ALG_TYPE_HASH:
904 		return cryptd_create_hash(tmpl, tb, &queue);
905 	case CRYPTO_ALG_TYPE_AEAD:
906 		return cryptd_create_aead(tmpl, tb, &queue);
907 	}
908 
909 	return -EINVAL;
910 }
911 
912 static struct crypto_template cryptd_tmpl = {
913 	.name = "cryptd",
914 	.create = cryptd_create,
915 	.module = THIS_MODULE,
916 };
917 
918 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
919 					      u32 type, u32 mask)
920 {
921 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
922 	struct cryptd_skcipher_ctx *ctx;
923 	struct crypto_skcipher *tfm;
924 
925 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
926 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
927 		return ERR_PTR(-EINVAL);
928 
929 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
930 	if (IS_ERR(tfm))
931 		return ERR_CAST(tfm);
932 
933 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
934 		crypto_free_skcipher(tfm);
935 		return ERR_PTR(-EINVAL);
936 	}
937 
938 	ctx = crypto_skcipher_ctx(tfm);
939 	refcount_set(&ctx->refcnt, 1);
940 
941 	return container_of(tfm, struct cryptd_skcipher, base);
942 }
943 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
944 
945 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
946 {
947 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
948 
949 	return &ctx->child->base;
950 }
951 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
952 
953 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
954 {
955 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
956 
957 	return refcount_read(&ctx->refcnt) - 1;
958 }
959 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
960 
961 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
962 {
963 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
964 
965 	if (refcount_dec_and_test(&ctx->refcnt))
966 		crypto_free_skcipher(&tfm->base);
967 }
968 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
969 
970 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
971 					u32 type, u32 mask)
972 {
973 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
974 	struct cryptd_hash_ctx *ctx;
975 	struct crypto_ahash *tfm;
976 
977 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
978 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
979 		return ERR_PTR(-EINVAL);
980 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
981 	if (IS_ERR(tfm))
982 		return ERR_CAST(tfm);
983 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
984 		crypto_free_ahash(tfm);
985 		return ERR_PTR(-EINVAL);
986 	}
987 
988 	ctx = crypto_ahash_ctx(tfm);
989 	refcount_set(&ctx->refcnt, 1);
990 
991 	return __cryptd_ahash_cast(tfm);
992 }
993 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
994 
995 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
996 {
997 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
998 
999 	return ctx->child;
1000 }
1001 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1002 
1003 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1004 {
1005 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1006 	return &rctx->desc;
1007 }
1008 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1009 
1010 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1011 {
1012 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1013 
1014 	return refcount_read(&ctx->refcnt) - 1;
1015 }
1016 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1017 
1018 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1019 {
1020 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1021 
1022 	if (refcount_dec_and_test(&ctx->refcnt))
1023 		crypto_free_ahash(&tfm->base);
1024 }
1025 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1026 
1027 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1028 						  u32 type, u32 mask)
1029 {
1030 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1031 	struct cryptd_aead_ctx *ctx;
1032 	struct crypto_aead *tfm;
1033 
1034 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1035 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1036 		return ERR_PTR(-EINVAL);
1037 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1038 	if (IS_ERR(tfm))
1039 		return ERR_CAST(tfm);
1040 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1041 		crypto_free_aead(tfm);
1042 		return ERR_PTR(-EINVAL);
1043 	}
1044 
1045 	ctx = crypto_aead_ctx(tfm);
1046 	refcount_set(&ctx->refcnt, 1);
1047 
1048 	return __cryptd_aead_cast(tfm);
1049 }
1050 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1051 
1052 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1053 {
1054 	struct cryptd_aead_ctx *ctx;
1055 	ctx = crypto_aead_ctx(&tfm->base);
1056 	return ctx->child;
1057 }
1058 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1059 
1060 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1061 {
1062 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1063 
1064 	return refcount_read(&ctx->refcnt) - 1;
1065 }
1066 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1067 
1068 void cryptd_free_aead(struct cryptd_aead *tfm)
1069 {
1070 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1071 
1072 	if (refcount_dec_and_test(&ctx->refcnt))
1073 		crypto_free_aead(&tfm->base);
1074 }
1075 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1076 
1077 static int __init cryptd_init(void)
1078 {
1079 	int err;
1080 
1081 	cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1082 				    1);
1083 	if (!cryptd_wq)
1084 		return -ENOMEM;
1085 
1086 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1087 	if (err)
1088 		goto err_destroy_wq;
1089 
1090 	err = crypto_register_template(&cryptd_tmpl);
1091 	if (err)
1092 		goto err_fini_queue;
1093 
1094 	return 0;
1095 
1096 err_fini_queue:
1097 	cryptd_fini_queue(&queue);
1098 err_destroy_wq:
1099 	destroy_workqueue(cryptd_wq);
1100 	return err;
1101 }
1102 
1103 static void __exit cryptd_exit(void)
1104 {
1105 	destroy_workqueue(cryptd_wq);
1106 	cryptd_fini_queue(&queue);
1107 	crypto_unregister_template(&cryptd_tmpl);
1108 }
1109 
1110 subsys_initcall(cryptd_init);
1111 module_exit(cryptd_exit);
1112 
1113 MODULE_LICENSE("GPL");
1114 MODULE_DESCRIPTION("Software async crypto daemon");
1115 MODULE_ALIAS_CRYPTO("cryptd");
1116