xref: /linux/crypto/cryptd.c (revision 0cbe89d5d17393f4ef3d5c25af8bc730fd507cf5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Software async crypto daemon.
4  *
5  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6  *
7  * Added AEAD support to cryptd.
8  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9  *             Adrian Hoban <adrian.hoban@intel.com>
10  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
11  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
12  *    Copyright (c) 2010, Intel Corporation.
13  */
14 
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29 
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33 
34 static struct workqueue_struct *cryptd_wq;
35 
36 struct cryptd_cpu_queue {
37 	struct crypto_queue queue;
38 	struct work_struct work;
39 };
40 
41 struct cryptd_queue {
42 	/*
43 	 * Protected by disabling BH to allow enqueueing from softinterrupt and
44 	 * dequeuing from kworker (cryptd_queue_worker()).
45 	 */
46 	struct cryptd_cpu_queue __percpu *cpu_queue;
47 };
48 
49 struct cryptd_instance_ctx {
50 	struct crypto_spawn spawn;
51 	struct cryptd_queue *queue;
52 };
53 
54 struct skcipherd_instance_ctx {
55 	struct crypto_skcipher_spawn spawn;
56 	struct cryptd_queue *queue;
57 };
58 
59 struct hashd_instance_ctx {
60 	struct crypto_shash_spawn spawn;
61 	struct cryptd_queue *queue;
62 };
63 
64 struct aead_instance_ctx {
65 	struct crypto_aead_spawn aead_spawn;
66 	struct cryptd_queue *queue;
67 };
68 
69 struct cryptd_skcipher_ctx {
70 	refcount_t refcnt;
71 	struct crypto_skcipher *child;
72 };
73 
74 struct cryptd_skcipher_request_ctx {
75 	struct skcipher_request req;
76 };
77 
78 struct cryptd_hash_ctx {
79 	refcount_t refcnt;
80 	struct crypto_shash *child;
81 };
82 
83 struct cryptd_hash_request_ctx {
84 	crypto_completion_t complete;
85 	void *data;
86 	struct shash_desc desc;
87 };
88 
89 struct cryptd_aead_ctx {
90 	refcount_t refcnt;
91 	struct crypto_aead *child;
92 };
93 
94 struct cryptd_aead_request_ctx {
95 	struct aead_request req;
96 };
97 
98 static void cryptd_queue_worker(struct work_struct *work);
99 
100 static int cryptd_init_queue(struct cryptd_queue *queue,
101 			     unsigned int max_cpu_qlen)
102 {
103 	int cpu;
104 	struct cryptd_cpu_queue *cpu_queue;
105 
106 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
107 	if (!queue->cpu_queue)
108 		return -ENOMEM;
109 	for_each_possible_cpu(cpu) {
110 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
111 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
112 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
113 	}
114 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
115 	return 0;
116 }
117 
118 static void cryptd_fini_queue(struct cryptd_queue *queue)
119 {
120 	int cpu;
121 	struct cryptd_cpu_queue *cpu_queue;
122 
123 	for_each_possible_cpu(cpu) {
124 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
125 		BUG_ON(cpu_queue->queue.qlen);
126 	}
127 	free_percpu(queue->cpu_queue);
128 }
129 
130 static int cryptd_enqueue_request(struct cryptd_queue *queue,
131 				  struct crypto_async_request *request)
132 {
133 	int err;
134 	struct cryptd_cpu_queue *cpu_queue;
135 	refcount_t *refcnt;
136 
137 	local_bh_disable();
138 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
139 	err = crypto_enqueue_request(&cpu_queue->queue, request);
140 
141 	refcnt = crypto_tfm_ctx(request->tfm);
142 
143 	if (err == -ENOSPC)
144 		goto out;
145 
146 	queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work);
147 
148 	if (!refcount_read(refcnt))
149 		goto out;
150 
151 	refcount_inc(refcnt);
152 
153 out:
154 	local_bh_enable();
155 
156 	return err;
157 }
158 
159 /* Called in workqueue context, do one real cryption work (via
160  * req->complete) and reschedule itself if there are more work to
161  * do. */
162 static void cryptd_queue_worker(struct work_struct *work)
163 {
164 	struct cryptd_cpu_queue *cpu_queue;
165 	struct crypto_async_request *req, *backlog;
166 
167 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
168 	/*
169 	 * Only handle one request at a time to avoid hogging crypto workqueue.
170 	 */
171 	local_bh_disable();
172 	backlog = crypto_get_backlog(&cpu_queue->queue);
173 	req = crypto_dequeue_request(&cpu_queue->queue);
174 	local_bh_enable();
175 
176 	if (!req)
177 		return;
178 
179 	if (backlog)
180 		crypto_request_complete(backlog, -EINPROGRESS);
181 	crypto_request_complete(req, 0);
182 
183 	if (cpu_queue->queue.qlen)
184 		queue_work(cryptd_wq, &cpu_queue->work);
185 }
186 
187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 	return ictx->queue;
192 }
193 
194 static void cryptd_type_and_mask(struct crypto_attr_type *algt,
195 				 u32 *type, u32 *mask)
196 {
197 	/*
198 	 * cryptd is allowed to wrap internal algorithms, but in that case the
199 	 * resulting cryptd instance will be marked as internal as well.
200 	 */
201 	*type = algt->type & CRYPTO_ALG_INTERNAL;
202 	*mask = algt->mask & CRYPTO_ALG_INTERNAL;
203 
204 	/* No point in cryptd wrapping an algorithm that's already async. */
205 	*mask |= CRYPTO_ALG_ASYNC;
206 
207 	*mask |= crypto_algt_inherited_mask(algt);
208 }
209 
210 static int cryptd_init_instance(struct crypto_instance *inst,
211 				struct crypto_alg *alg)
212 {
213 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
214 		     "cryptd(%s)",
215 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
216 		return -ENAMETOOLONG;
217 
218 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
219 
220 	inst->alg.cra_priority = alg->cra_priority + 50;
221 	inst->alg.cra_blocksize = alg->cra_blocksize;
222 	inst->alg.cra_alignmask = alg->cra_alignmask;
223 
224 	return 0;
225 }
226 
227 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
228 				  const u8 *key, unsigned int keylen)
229 {
230 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
231 	struct crypto_skcipher *child = ctx->child;
232 
233 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
234 	crypto_skcipher_set_flags(child,
235 				  crypto_skcipher_get_flags(parent) &
236 				  CRYPTO_TFM_REQ_MASK);
237 	return crypto_skcipher_setkey(child, key, keylen);
238 }
239 
240 static struct skcipher_request *cryptd_skcipher_prepare(
241 	struct skcipher_request *req, int err)
242 {
243 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
244 	struct skcipher_request *subreq = &rctx->req;
245 	struct cryptd_skcipher_ctx *ctx;
246 	struct crypto_skcipher *child;
247 
248 	req->base.complete = subreq->base.complete;
249 	req->base.data = subreq->base.data;
250 
251 	if (unlikely(err == -EINPROGRESS))
252 		return NULL;
253 
254 	ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
255 	child = ctx->child;
256 
257 	skcipher_request_set_tfm(subreq, child);
258 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
259 				      NULL, NULL);
260 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
261 				   req->iv);
262 
263 	return subreq;
264 }
265 
266 static void cryptd_skcipher_complete(struct skcipher_request *req, int err,
267 				     crypto_completion_t complete)
268 {
269 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
270 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
271 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
272 	struct skcipher_request *subreq = &rctx->req;
273 	int refcnt = refcount_read(&ctx->refcnt);
274 
275 	local_bh_disable();
276 	skcipher_request_complete(req, err);
277 	local_bh_enable();
278 
279 	if (unlikely(err == -EINPROGRESS)) {
280 		subreq->base.complete = req->base.complete;
281 		subreq->base.data = req->base.data;
282 		req->base.complete = complete;
283 		req->base.data = req;
284 	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
285 		crypto_free_skcipher(tfm);
286 }
287 
288 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
289 				    int err)
290 {
291 	struct skcipher_request *req = skcipher_request_cast(base);
292 	struct skcipher_request *subreq;
293 
294 	subreq = cryptd_skcipher_prepare(req, err);
295 	if (likely(subreq))
296 		err = crypto_skcipher_encrypt(subreq);
297 
298 	cryptd_skcipher_complete(req, err, cryptd_skcipher_encrypt);
299 }
300 
301 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
302 				    int err)
303 {
304 	struct skcipher_request *req = skcipher_request_cast(base);
305 	struct skcipher_request *subreq;
306 
307 	subreq = cryptd_skcipher_prepare(req, err);
308 	if (likely(subreq))
309 		err = crypto_skcipher_decrypt(subreq);
310 
311 	cryptd_skcipher_complete(req, err, cryptd_skcipher_decrypt);
312 }
313 
314 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
315 				   crypto_completion_t compl)
316 {
317 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
318 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
319 	struct skcipher_request *subreq = &rctx->req;
320 	struct cryptd_queue *queue;
321 
322 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
323 	subreq->base.complete = req->base.complete;
324 	subreq->base.data = req->base.data;
325 	req->base.complete = compl;
326 	req->base.data = req;
327 
328 	return cryptd_enqueue_request(queue, &req->base);
329 }
330 
331 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
332 {
333 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
334 }
335 
336 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
337 {
338 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
339 }
340 
341 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
342 {
343 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
344 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
345 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
346 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
347 	struct crypto_skcipher *cipher;
348 
349 	cipher = crypto_spawn_skcipher(spawn);
350 	if (IS_ERR(cipher))
351 		return PTR_ERR(cipher);
352 
353 	ctx->child = cipher;
354 	crypto_skcipher_set_reqsize(
355 		tfm, sizeof(struct cryptd_skcipher_request_ctx) +
356 		     crypto_skcipher_reqsize(cipher));
357 	return 0;
358 }
359 
360 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
361 {
362 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
363 
364 	crypto_free_skcipher(ctx->child);
365 }
366 
367 static void cryptd_skcipher_free(struct skcipher_instance *inst)
368 {
369 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
370 
371 	crypto_drop_skcipher(&ctx->spawn);
372 	kfree(inst);
373 }
374 
375 static int cryptd_create_skcipher(struct crypto_template *tmpl,
376 				  struct rtattr **tb,
377 				  struct crypto_attr_type *algt,
378 				  struct cryptd_queue *queue)
379 {
380 	struct skcipherd_instance_ctx *ctx;
381 	struct skcipher_instance *inst;
382 	struct skcipher_alg *alg;
383 	u32 type;
384 	u32 mask;
385 	int err;
386 
387 	cryptd_type_and_mask(algt, &type, &mask);
388 
389 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
390 	if (!inst)
391 		return -ENOMEM;
392 
393 	ctx = skcipher_instance_ctx(inst);
394 	ctx->queue = queue;
395 
396 	err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
397 				   crypto_attr_alg_name(tb[1]), type, mask);
398 	if (err)
399 		goto err_free_inst;
400 
401 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
402 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
403 	if (err)
404 		goto err_free_inst;
405 
406 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
407 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
408 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
409 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
410 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
411 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
412 
413 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
414 
415 	inst->alg.init = cryptd_skcipher_init_tfm;
416 	inst->alg.exit = cryptd_skcipher_exit_tfm;
417 
418 	inst->alg.setkey = cryptd_skcipher_setkey;
419 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
420 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
421 
422 	inst->free = cryptd_skcipher_free;
423 
424 	err = skcipher_register_instance(tmpl, inst);
425 	if (err) {
426 err_free_inst:
427 		cryptd_skcipher_free(inst);
428 	}
429 	return err;
430 }
431 
432 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
433 {
434 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
435 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
436 	struct crypto_shash_spawn *spawn = &ictx->spawn;
437 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
438 	struct crypto_shash *hash;
439 
440 	hash = crypto_spawn_shash(spawn);
441 	if (IS_ERR(hash))
442 		return PTR_ERR(hash);
443 
444 	ctx->child = hash;
445 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
446 				 sizeof(struct cryptd_hash_request_ctx) +
447 				 crypto_shash_descsize(hash));
448 	return 0;
449 }
450 
451 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
452 {
453 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
454 
455 	crypto_free_shash(ctx->child);
456 }
457 
458 static int cryptd_hash_setkey(struct crypto_ahash *parent,
459 				   const u8 *key, unsigned int keylen)
460 {
461 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
462 	struct crypto_shash *child = ctx->child;
463 
464 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
465 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
466 				      CRYPTO_TFM_REQ_MASK);
467 	return crypto_shash_setkey(child, key, keylen);
468 }
469 
470 static int cryptd_hash_enqueue(struct ahash_request *req,
471 				crypto_completion_t compl)
472 {
473 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
474 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
475 	struct cryptd_queue *queue =
476 		cryptd_get_queue(crypto_ahash_tfm(tfm));
477 
478 	rctx->complete = req->base.complete;
479 	rctx->data = req->base.data;
480 	req->base.complete = compl;
481 	req->base.data = req;
482 
483 	return cryptd_enqueue_request(queue, &req->base);
484 }
485 
486 static struct shash_desc *cryptd_hash_prepare(struct ahash_request *req,
487 					      int err)
488 {
489 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
490 
491 	req->base.complete = rctx->complete;
492 	req->base.data = rctx->data;
493 
494 	if (unlikely(err == -EINPROGRESS))
495 		return NULL;
496 
497 	return &rctx->desc;
498 }
499 
500 static void cryptd_hash_complete(struct ahash_request *req, int err,
501 				 crypto_completion_t complete)
502 {
503 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
504 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
505 	int refcnt = refcount_read(&ctx->refcnt);
506 
507 	local_bh_disable();
508 	ahash_request_complete(req, err);
509 	local_bh_enable();
510 
511 	if (err == -EINPROGRESS) {
512 		req->base.complete = complete;
513 		req->base.data = req;
514 	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
515 		crypto_free_ahash(tfm);
516 }
517 
518 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
519 {
520 	struct ahash_request *req = ahash_request_cast(req_async);
521 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
522 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
523 	struct crypto_shash *child = ctx->child;
524 	struct shash_desc *desc;
525 
526 	desc = cryptd_hash_prepare(req, err);
527 	if (unlikely(!desc))
528 		goto out;
529 
530 	desc->tfm = child;
531 
532 	err = crypto_shash_init(desc);
533 
534 out:
535 	cryptd_hash_complete(req, err, cryptd_hash_init);
536 }
537 
538 static int cryptd_hash_init_enqueue(struct ahash_request *req)
539 {
540 	return cryptd_hash_enqueue(req, cryptd_hash_init);
541 }
542 
543 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
544 {
545 	struct ahash_request *req = ahash_request_cast(req_async);
546 	struct shash_desc *desc;
547 
548 	desc = cryptd_hash_prepare(req, err);
549 	if (likely(desc))
550 		err = shash_ahash_update(req, desc);
551 
552 	cryptd_hash_complete(req, err, cryptd_hash_update);
553 }
554 
555 static int cryptd_hash_update_enqueue(struct ahash_request *req)
556 {
557 	return cryptd_hash_enqueue(req, cryptd_hash_update);
558 }
559 
560 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
561 {
562 	struct ahash_request *req = ahash_request_cast(req_async);
563 	struct shash_desc *desc;
564 
565 	desc = cryptd_hash_prepare(req, err);
566 	if (likely(desc))
567 		err = crypto_shash_final(desc, req->result);
568 
569 	cryptd_hash_complete(req, err, cryptd_hash_final);
570 }
571 
572 static int cryptd_hash_final_enqueue(struct ahash_request *req)
573 {
574 	return cryptd_hash_enqueue(req, cryptd_hash_final);
575 }
576 
577 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
578 {
579 	struct ahash_request *req = ahash_request_cast(req_async);
580 	struct shash_desc *desc;
581 
582 	desc = cryptd_hash_prepare(req, err);
583 	if (likely(desc))
584 		err = shash_ahash_finup(req, desc);
585 
586 	cryptd_hash_complete(req, err, cryptd_hash_finup);
587 }
588 
589 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
590 {
591 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
592 }
593 
594 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
595 {
596 	struct ahash_request *req = ahash_request_cast(req_async);
597 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
598 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
599 	struct crypto_shash *child = ctx->child;
600 	struct shash_desc *desc;
601 
602 	desc = cryptd_hash_prepare(req, err);
603 	if (unlikely(!desc))
604 		goto out;
605 
606 	desc->tfm = child;
607 
608 	err = shash_ahash_digest(req, desc);
609 
610 out:
611 	cryptd_hash_complete(req, err, cryptd_hash_digest);
612 }
613 
614 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
615 {
616 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
617 }
618 
619 static int cryptd_hash_export(struct ahash_request *req, void *out)
620 {
621 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
622 
623 	return crypto_shash_export(&rctx->desc, out);
624 }
625 
626 static int cryptd_hash_import(struct ahash_request *req, const void *in)
627 {
628 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
629 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
630 	struct shash_desc *desc = cryptd_shash_desc(req);
631 
632 	desc->tfm = ctx->child;
633 
634 	return crypto_shash_import(desc, in);
635 }
636 
637 static void cryptd_hash_free(struct ahash_instance *inst)
638 {
639 	struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
640 
641 	crypto_drop_shash(&ctx->spawn);
642 	kfree(inst);
643 }
644 
645 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
646 			      struct crypto_attr_type *algt,
647 			      struct cryptd_queue *queue)
648 {
649 	struct hashd_instance_ctx *ctx;
650 	struct ahash_instance *inst;
651 	struct shash_alg *alg;
652 	u32 type;
653 	u32 mask;
654 	int err;
655 
656 	cryptd_type_and_mask(algt, &type, &mask);
657 
658 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
659 	if (!inst)
660 		return -ENOMEM;
661 
662 	ctx = ahash_instance_ctx(inst);
663 	ctx->queue = queue;
664 
665 	err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
666 				crypto_attr_alg_name(tb[1]), type, mask);
667 	if (err)
668 		goto err_free_inst;
669 	alg = crypto_spawn_shash_alg(&ctx->spawn);
670 
671 	err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
672 	if (err)
673 		goto err_free_inst;
674 
675 	inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC |
676 		(alg->base.cra_flags & (CRYPTO_ALG_INTERNAL|
677 					CRYPTO_ALG_OPTIONAL_KEY));
678 	inst->alg.halg.digestsize = alg->digestsize;
679 	inst->alg.halg.statesize = alg->statesize;
680 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
681 
682 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
683 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
684 
685 	inst->alg.init   = cryptd_hash_init_enqueue;
686 	inst->alg.update = cryptd_hash_update_enqueue;
687 	inst->alg.final  = cryptd_hash_final_enqueue;
688 	inst->alg.finup  = cryptd_hash_finup_enqueue;
689 	inst->alg.export = cryptd_hash_export;
690 	inst->alg.import = cryptd_hash_import;
691 	if (crypto_shash_alg_has_setkey(alg))
692 		inst->alg.setkey = cryptd_hash_setkey;
693 	inst->alg.digest = cryptd_hash_digest_enqueue;
694 
695 	inst->free = cryptd_hash_free;
696 
697 	err = ahash_register_instance(tmpl, inst);
698 	if (err) {
699 err_free_inst:
700 		cryptd_hash_free(inst);
701 	}
702 	return err;
703 }
704 
705 static int cryptd_aead_setkey(struct crypto_aead *parent,
706 			      const u8 *key, unsigned int keylen)
707 {
708 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
709 	struct crypto_aead *child = ctx->child;
710 
711 	return crypto_aead_setkey(child, key, keylen);
712 }
713 
714 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
715 				   unsigned int authsize)
716 {
717 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
718 	struct crypto_aead *child = ctx->child;
719 
720 	return crypto_aead_setauthsize(child, authsize);
721 }
722 
723 static void cryptd_aead_crypt(struct aead_request *req,
724 			      struct crypto_aead *child, int err,
725 			      int (*crypt)(struct aead_request *req),
726 			      crypto_completion_t compl)
727 {
728 	struct cryptd_aead_request_ctx *rctx;
729 	struct aead_request *subreq;
730 	struct cryptd_aead_ctx *ctx;
731 	struct crypto_aead *tfm;
732 	int refcnt;
733 
734 	rctx = aead_request_ctx(req);
735 	subreq = &rctx->req;
736 	req->base.complete = subreq->base.complete;
737 	req->base.data = subreq->base.data;
738 
739 	tfm = crypto_aead_reqtfm(req);
740 
741 	if (unlikely(err == -EINPROGRESS))
742 		goto out;
743 
744 	aead_request_set_tfm(subreq, child);
745 	aead_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
746 				  NULL, NULL);
747 	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
748 			       req->iv);
749 	aead_request_set_ad(subreq, req->assoclen);
750 
751 	err = crypt(subreq);
752 
753 out:
754 	ctx = crypto_aead_ctx(tfm);
755 	refcnt = refcount_read(&ctx->refcnt);
756 
757 	local_bh_disable();
758 	aead_request_complete(req, err);
759 	local_bh_enable();
760 
761 	if (err == -EINPROGRESS) {
762 		subreq->base.complete = req->base.complete;
763 		subreq->base.data = req->base.data;
764 		req->base.complete = compl;
765 		req->base.data = req;
766 	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
767 		crypto_free_aead(tfm);
768 }
769 
770 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
771 {
772 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
773 	struct crypto_aead *child = ctx->child;
774 	struct aead_request *req;
775 
776 	req = container_of(areq, struct aead_request, base);
777 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt,
778 			  cryptd_aead_encrypt);
779 }
780 
781 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
782 {
783 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
784 	struct crypto_aead *child = ctx->child;
785 	struct aead_request *req;
786 
787 	req = container_of(areq, struct aead_request, base);
788 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt,
789 			  cryptd_aead_decrypt);
790 }
791 
792 static int cryptd_aead_enqueue(struct aead_request *req,
793 				    crypto_completion_t compl)
794 {
795 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
796 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
797 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
798 	struct aead_request *subreq = &rctx->req;
799 
800 	subreq->base.complete = req->base.complete;
801 	subreq->base.data = req->base.data;
802 	req->base.complete = compl;
803 	req->base.data = req;
804 	return cryptd_enqueue_request(queue, &req->base);
805 }
806 
807 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
808 {
809 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
810 }
811 
812 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
813 {
814 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
815 }
816 
817 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
818 {
819 	struct aead_instance *inst = aead_alg_instance(tfm);
820 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
821 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
822 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
823 	struct crypto_aead *cipher;
824 
825 	cipher = crypto_spawn_aead(spawn);
826 	if (IS_ERR(cipher))
827 		return PTR_ERR(cipher);
828 
829 	ctx->child = cipher;
830 	crypto_aead_set_reqsize(
831 		tfm, sizeof(struct cryptd_aead_request_ctx) +
832 		     crypto_aead_reqsize(cipher));
833 	return 0;
834 }
835 
836 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
837 {
838 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
839 	crypto_free_aead(ctx->child);
840 }
841 
842 static void cryptd_aead_free(struct aead_instance *inst)
843 {
844 	struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
845 
846 	crypto_drop_aead(&ctx->aead_spawn);
847 	kfree(inst);
848 }
849 
850 static int cryptd_create_aead(struct crypto_template *tmpl,
851 		              struct rtattr **tb,
852 			      struct crypto_attr_type *algt,
853 			      struct cryptd_queue *queue)
854 {
855 	struct aead_instance_ctx *ctx;
856 	struct aead_instance *inst;
857 	struct aead_alg *alg;
858 	u32 type;
859 	u32 mask;
860 	int err;
861 
862 	cryptd_type_and_mask(algt, &type, &mask);
863 
864 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
865 	if (!inst)
866 		return -ENOMEM;
867 
868 	ctx = aead_instance_ctx(inst);
869 	ctx->queue = queue;
870 
871 	err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
872 			       crypto_attr_alg_name(tb[1]), type, mask);
873 	if (err)
874 		goto err_free_inst;
875 
876 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
877 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
878 	if (err)
879 		goto err_free_inst;
880 
881 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
882 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
883 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
884 
885 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
886 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
887 
888 	inst->alg.init = cryptd_aead_init_tfm;
889 	inst->alg.exit = cryptd_aead_exit_tfm;
890 	inst->alg.setkey = cryptd_aead_setkey;
891 	inst->alg.setauthsize = cryptd_aead_setauthsize;
892 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
893 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
894 
895 	inst->free = cryptd_aead_free;
896 
897 	err = aead_register_instance(tmpl, inst);
898 	if (err) {
899 err_free_inst:
900 		cryptd_aead_free(inst);
901 	}
902 	return err;
903 }
904 
905 static struct cryptd_queue queue;
906 
907 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
908 {
909 	struct crypto_attr_type *algt;
910 
911 	algt = crypto_get_attr_type(tb);
912 	if (IS_ERR(algt))
913 		return PTR_ERR(algt);
914 
915 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
916 	case CRYPTO_ALG_TYPE_SKCIPHER:
917 		return cryptd_create_skcipher(tmpl, tb, algt, &queue);
918 	case CRYPTO_ALG_TYPE_HASH:
919 		return cryptd_create_hash(tmpl, tb, algt, &queue);
920 	case CRYPTO_ALG_TYPE_AEAD:
921 		return cryptd_create_aead(tmpl, tb, algt, &queue);
922 	}
923 
924 	return -EINVAL;
925 }
926 
927 static struct crypto_template cryptd_tmpl = {
928 	.name = "cryptd",
929 	.create = cryptd_create,
930 	.module = THIS_MODULE,
931 };
932 
933 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
934 					      u32 type, u32 mask)
935 {
936 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
937 	struct cryptd_skcipher_ctx *ctx;
938 	struct crypto_skcipher *tfm;
939 
940 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
941 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
942 		return ERR_PTR(-EINVAL);
943 
944 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
945 	if (IS_ERR(tfm))
946 		return ERR_CAST(tfm);
947 
948 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
949 		crypto_free_skcipher(tfm);
950 		return ERR_PTR(-EINVAL);
951 	}
952 
953 	ctx = crypto_skcipher_ctx(tfm);
954 	refcount_set(&ctx->refcnt, 1);
955 
956 	return container_of(tfm, struct cryptd_skcipher, base);
957 }
958 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
959 
960 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
961 {
962 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
963 
964 	return ctx->child;
965 }
966 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
967 
968 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
969 {
970 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
971 
972 	return refcount_read(&ctx->refcnt) - 1;
973 }
974 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
975 
976 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
977 {
978 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
979 
980 	if (refcount_dec_and_test(&ctx->refcnt))
981 		crypto_free_skcipher(&tfm->base);
982 }
983 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
984 
985 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
986 					u32 type, u32 mask)
987 {
988 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
989 	struct cryptd_hash_ctx *ctx;
990 	struct crypto_ahash *tfm;
991 
992 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
993 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
994 		return ERR_PTR(-EINVAL);
995 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
996 	if (IS_ERR(tfm))
997 		return ERR_CAST(tfm);
998 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
999 		crypto_free_ahash(tfm);
1000 		return ERR_PTR(-EINVAL);
1001 	}
1002 
1003 	ctx = crypto_ahash_ctx(tfm);
1004 	refcount_set(&ctx->refcnt, 1);
1005 
1006 	return __cryptd_ahash_cast(tfm);
1007 }
1008 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1009 
1010 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1011 {
1012 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1013 
1014 	return ctx->child;
1015 }
1016 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1017 
1018 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1019 {
1020 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1021 	return &rctx->desc;
1022 }
1023 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1024 
1025 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1026 {
1027 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1028 
1029 	return refcount_read(&ctx->refcnt) - 1;
1030 }
1031 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1032 
1033 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1034 {
1035 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1036 
1037 	if (refcount_dec_and_test(&ctx->refcnt))
1038 		crypto_free_ahash(&tfm->base);
1039 }
1040 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1041 
1042 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1043 						  u32 type, u32 mask)
1044 {
1045 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1046 	struct cryptd_aead_ctx *ctx;
1047 	struct crypto_aead *tfm;
1048 
1049 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1050 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1051 		return ERR_PTR(-EINVAL);
1052 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1053 	if (IS_ERR(tfm))
1054 		return ERR_CAST(tfm);
1055 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1056 		crypto_free_aead(tfm);
1057 		return ERR_PTR(-EINVAL);
1058 	}
1059 
1060 	ctx = crypto_aead_ctx(tfm);
1061 	refcount_set(&ctx->refcnt, 1);
1062 
1063 	return __cryptd_aead_cast(tfm);
1064 }
1065 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1066 
1067 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1068 {
1069 	struct cryptd_aead_ctx *ctx;
1070 	ctx = crypto_aead_ctx(&tfm->base);
1071 	return ctx->child;
1072 }
1073 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1074 
1075 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1076 {
1077 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1078 
1079 	return refcount_read(&ctx->refcnt) - 1;
1080 }
1081 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1082 
1083 void cryptd_free_aead(struct cryptd_aead *tfm)
1084 {
1085 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1086 
1087 	if (refcount_dec_and_test(&ctx->refcnt))
1088 		crypto_free_aead(&tfm->base);
1089 }
1090 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1091 
1092 static int __init cryptd_init(void)
1093 {
1094 	int err;
1095 
1096 	cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1097 				    1);
1098 	if (!cryptd_wq)
1099 		return -ENOMEM;
1100 
1101 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1102 	if (err)
1103 		goto err_destroy_wq;
1104 
1105 	err = crypto_register_template(&cryptd_tmpl);
1106 	if (err)
1107 		goto err_fini_queue;
1108 
1109 	return 0;
1110 
1111 err_fini_queue:
1112 	cryptd_fini_queue(&queue);
1113 err_destroy_wq:
1114 	destroy_workqueue(cryptd_wq);
1115 	return err;
1116 }
1117 
1118 static void __exit cryptd_exit(void)
1119 {
1120 	destroy_workqueue(cryptd_wq);
1121 	cryptd_fini_queue(&queue);
1122 	crypto_unregister_template(&cryptd_tmpl);
1123 }
1124 
1125 subsys_initcall(cryptd_init);
1126 module_exit(cryptd_exit);
1127 
1128 MODULE_LICENSE("GPL");
1129 MODULE_DESCRIPTION("Software async crypto daemon");
1130 MODULE_ALIAS_CRYPTO("cryptd");
1131