xref: /linux/crypto/async_tx/raid6test.c (revision 7c43185138cf523b0810ffd2c9e18e2ecb356730)
1 /*
2  * asynchronous raid6 recovery self test
3  * Copyright (c) 2009, Intel Corporation.
4  *
5  * based on drivers/md/raid6test/test.c:
6  * 	Copyright 2002-2007 H. Peter Anvin
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  */
22 #include <linux/async_tx.h>
23 #include <linux/gfp.h>
24 #include <linux/mm.h>
25 #include <linux/random.h>
26 
27 #undef pr
28 #define pr(fmt, args...) pr_info("raid6test: " fmt, ##args)
29 
30 #define NDISKS 16 /* Including P and Q */
31 
32 static struct page *dataptrs[NDISKS];
33 static addr_conv_t addr_conv[NDISKS];
34 static struct page *data[NDISKS+3];
35 static struct page *spare;
36 static struct page *recovi;
37 static struct page *recovj;
38 
39 static void callback(void *param)
40 {
41 	struct completion *cmp = param;
42 
43 	complete(cmp);
44 }
45 
46 static void makedata(int disks)
47 {
48 	int i, j;
49 
50 	for (i = 0; i < disks; i++) {
51 		for (j = 0; j < PAGE_SIZE/sizeof(u32); j += sizeof(u32)) {
52 			u32 *p = page_address(data[i]) + j;
53 
54 			*p = random32();
55 		}
56 
57 		dataptrs[i] = data[i];
58 	}
59 }
60 
61 static char disk_type(int d, int disks)
62 {
63 	if (d == disks - 2)
64 		return 'P';
65 	else if (d == disks - 1)
66 		return 'Q';
67 	else
68 		return 'D';
69 }
70 
71 /* Recover two failed blocks. */
72 static void raid6_dual_recov(int disks, size_t bytes, int faila, int failb, struct page **ptrs)
73 {
74 	struct async_submit_ctl submit;
75 	struct completion cmp;
76 	struct dma_async_tx_descriptor *tx = NULL;
77 	enum sum_check_flags result = ~0;
78 
79 	if (faila > failb)
80 		swap(faila, failb);
81 
82 	if (failb == disks-1) {
83 		if (faila == disks-2) {
84 			/* P+Q failure.  Just rebuild the syndrome. */
85 			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
86 			tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
87 		} else {
88 			struct page *blocks[disks];
89 			struct page *dest;
90 			int count = 0;
91 			int i;
92 
93 			/* data+Q failure.  Reconstruct data from P,
94 			 * then rebuild syndrome
95 			 */
96 			for (i = disks; i-- ; ) {
97 				if (i == faila || i == failb)
98 					continue;
99 				blocks[count++] = ptrs[i];
100 			}
101 			dest = ptrs[faila];
102 			init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
103 					  NULL, NULL, addr_conv);
104 			tx = async_xor(dest, blocks, 0, count, bytes, &submit);
105 
106 			init_async_submit(&submit, 0, tx, NULL, NULL, addr_conv);
107 			tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
108 		}
109 	} else {
110 		if (failb == disks-2) {
111 			/* data+P failure. */
112 			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
113 			tx = async_raid6_datap_recov(disks, bytes, faila, ptrs, &submit);
114 		} else {
115 			/* data+data failure. */
116 			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
117 			tx = async_raid6_2data_recov(disks, bytes, faila, failb, ptrs, &submit);
118 		}
119 	}
120 	init_completion(&cmp);
121 	init_async_submit(&submit, ASYNC_TX_ACK, tx, callback, &cmp, addr_conv);
122 	tx = async_syndrome_val(ptrs, 0, disks, bytes, &result, spare, &submit);
123 	async_tx_issue_pending(tx);
124 
125 	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0)
126 		pr("%s: timeout! (faila: %d failb: %d disks: %d)\n",
127 		   __func__, faila, failb, disks);
128 
129 	if (result != 0)
130 		pr("%s: validation failure! faila: %d failb: %d sum_check_flags: %x\n",
131 		   __func__, faila, failb, result);
132 }
133 
134 static int test_disks(int i, int j, int disks)
135 {
136 	int erra, errb;
137 
138 	memset(page_address(recovi), 0xf0, PAGE_SIZE);
139 	memset(page_address(recovj), 0xba, PAGE_SIZE);
140 
141 	dataptrs[i] = recovi;
142 	dataptrs[j] = recovj;
143 
144 	raid6_dual_recov(disks, PAGE_SIZE, i, j, dataptrs);
145 
146 	erra = memcmp(page_address(data[i]), page_address(recovi), PAGE_SIZE);
147 	errb = memcmp(page_address(data[j]), page_address(recovj), PAGE_SIZE);
148 
149 	pr("%s(%d, %d): faila=%3d(%c)  failb=%3d(%c)  %s\n",
150 	   __func__, i, j, i, disk_type(i, disks), j, disk_type(j, disks),
151 	   (!erra && !errb) ? "OK" : !erra ? "ERRB" : !errb ? "ERRA" : "ERRAB");
152 
153 	dataptrs[i] = data[i];
154 	dataptrs[j] = data[j];
155 
156 	return erra || errb;
157 }
158 
159 static int test(int disks, int *tests)
160 {
161 	struct dma_async_tx_descriptor *tx;
162 	struct async_submit_ctl submit;
163 	struct completion cmp;
164 	int err = 0;
165 	int i, j;
166 
167 	recovi = data[disks];
168 	recovj = data[disks+1];
169 	spare  = data[disks+2];
170 
171 	makedata(disks);
172 
173 	/* Nuke syndromes */
174 	memset(page_address(data[disks-2]), 0xee, PAGE_SIZE);
175 	memset(page_address(data[disks-1]), 0xee, PAGE_SIZE);
176 
177 	/* Generate assumed good syndrome */
178 	init_completion(&cmp);
179 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, callback, &cmp, addr_conv);
180 	tx = async_gen_syndrome(dataptrs, 0, disks, PAGE_SIZE, &submit);
181 	async_tx_issue_pending(tx);
182 
183 	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0) {
184 		pr("error: initial gen_syndrome(%d) timed out\n", disks);
185 		return 1;
186 	}
187 
188 	pr("testing the %d-disk case...\n", disks);
189 	for (i = 0; i < disks-1; i++)
190 		for (j = i+1; j < disks; j++) {
191 			(*tests)++;
192 			err += test_disks(i, j, disks);
193 		}
194 
195 	return err;
196 }
197 
198 
199 static int raid6_test(void)
200 {
201 	int err = 0;
202 	int tests = 0;
203 	int i;
204 
205 	for (i = 0; i < NDISKS+3; i++) {
206 		data[i] = alloc_page(GFP_KERNEL);
207 		if (!data[i]) {
208 			while (i--)
209 				put_page(data[i]);
210 			return -ENOMEM;
211 		}
212 	}
213 
214 	/* the 4-disk and 5-disk cases are special for the recovery code */
215 	if (NDISKS > 4)
216 		err += test(4, &tests);
217 	if (NDISKS > 5)
218 		err += test(5, &tests);
219 	/* the 11 and 12 disk cases are special for ioatdma (p-disabled
220 	 * q-continuation without extended descriptor)
221 	 */
222 	if (NDISKS > 12) {
223 		err += test(11, &tests);
224 		err += test(12, &tests);
225 	}
226 	err += test(NDISKS, &tests);
227 
228 	pr("\n");
229 	pr("complete (%d tests, %d failure%s)\n",
230 	   tests, err, err == 1 ? "" : "s");
231 
232 	for (i = 0; i < NDISKS+3; i++)
233 		put_page(data[i]);
234 
235 	return 0;
236 }
237 
238 static void raid6_test_exit(void)
239 {
240 }
241 
242 /* when compiled-in wait for drivers to load first (assumes dma drivers
243  * are also compliled-in)
244  */
245 late_initcall(raid6_test);
246 module_exit(raid6_test_exit);
247 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
248 MODULE_DESCRIPTION("asynchronous RAID-6 recovery self tests");
249 MODULE_LICENSE("GPL");
250