xref: /linux/crypto/asymmetric_keys/x509_public_key.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Instantiate a public key crypto key from an X.509 Certificate
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #define pr_fmt(fmt) "X.509: "fmt
9 #include <crypto/hash.h>
10 #include <crypto/sm2.h>
11 #include <keys/asymmetric-parser.h>
12 #include <keys/asymmetric-subtype.h>
13 #include <keys/system_keyring.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include "asymmetric_keys.h"
19 #include "x509_parser.h"
20 
21 /*
22  * Set up the signature parameters in an X.509 certificate.  This involves
23  * digesting the signed data and extracting the signature.
24  */
25 int x509_get_sig_params(struct x509_certificate *cert)
26 {
27 	struct public_key_signature *sig = cert->sig;
28 	struct crypto_shash *tfm;
29 	struct shash_desc *desc;
30 	size_t desc_size;
31 	int ret;
32 
33 	pr_devel("==>%s()\n", __func__);
34 
35 	sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
36 	if (!sig->s)
37 		return -ENOMEM;
38 
39 	sig->s_size = cert->raw_sig_size;
40 
41 	/* Allocate the hashing algorithm we're going to need and find out how
42 	 * big the hash operational data will be.
43 	 */
44 	tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
45 	if (IS_ERR(tfm)) {
46 		if (PTR_ERR(tfm) == -ENOENT) {
47 			cert->unsupported_sig = true;
48 			return 0;
49 		}
50 		return PTR_ERR(tfm);
51 	}
52 
53 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
54 	sig->digest_size = crypto_shash_digestsize(tfm);
55 
56 	ret = -ENOMEM;
57 	sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
58 	if (!sig->digest)
59 		goto error;
60 
61 	desc = kzalloc(desc_size, GFP_KERNEL);
62 	if (!desc)
63 		goto error;
64 
65 	desc->tfm = tfm;
66 
67 	if (strcmp(cert->pub->pkey_algo, "sm2") == 0) {
68 		ret = strcmp(sig->hash_algo, "sm3") != 0 ? -EINVAL :
69 		      crypto_shash_init(desc) ?:
70 		      sm2_compute_z_digest(desc, cert->pub->key,
71 					   cert->pub->keylen, sig->digest) ?:
72 		      crypto_shash_init(desc) ?:
73 		      crypto_shash_update(desc, sig->digest,
74 					  sig->digest_size) ?:
75 		      crypto_shash_finup(desc, cert->tbs, cert->tbs_size,
76 					 sig->digest);
77 	} else {
78 		ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size,
79 					  sig->digest);
80 	}
81 
82 	if (ret < 0)
83 		goto error_2;
84 
85 	ret = is_hash_blacklisted(sig->digest, sig->digest_size,
86 				  BLACKLIST_HASH_X509_TBS);
87 	if (ret == -EKEYREJECTED) {
88 		pr_err("Cert %*phN is blacklisted\n",
89 		       sig->digest_size, sig->digest);
90 		cert->blacklisted = true;
91 		ret = 0;
92 	}
93 
94 error_2:
95 	kfree(desc);
96 error:
97 	crypto_free_shash(tfm);
98 	pr_devel("<==%s() = %d\n", __func__, ret);
99 	return ret;
100 }
101 
102 /*
103  * Check for self-signedness in an X.509 cert and if found, check the signature
104  * immediately if we can.
105  */
106 int x509_check_for_self_signed(struct x509_certificate *cert)
107 {
108 	int ret = 0;
109 
110 	pr_devel("==>%s()\n", __func__);
111 
112 	if (cert->raw_subject_size != cert->raw_issuer_size ||
113 	    memcmp(cert->raw_subject, cert->raw_issuer,
114 		   cert->raw_issuer_size) != 0)
115 		goto not_self_signed;
116 
117 	if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
118 		/* If the AKID is present it may have one or two parts.  If
119 		 * both are supplied, both must match.
120 		 */
121 		bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
122 		bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
123 
124 		if (!a && !b)
125 			goto not_self_signed;
126 
127 		ret = -EKEYREJECTED;
128 		if (((a && !b) || (b && !a)) &&
129 		    cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
130 			goto out;
131 	}
132 
133 	if (cert->unsupported_sig) {
134 		ret = 0;
135 		goto out;
136 	}
137 
138 	ret = public_key_verify_signature(cert->pub, cert->sig);
139 	if (ret < 0) {
140 		if (ret == -ENOPKG) {
141 			cert->unsupported_sig = true;
142 			ret = 0;
143 		}
144 		goto out;
145 	}
146 
147 	pr_devel("Cert Self-signature verified");
148 	cert->self_signed = true;
149 
150 out:
151 	pr_devel("<==%s() = %d\n", __func__, ret);
152 	return ret;
153 
154 not_self_signed:
155 	pr_devel("<==%s() = 0 [not]\n", __func__);
156 	return 0;
157 }
158 
159 /*
160  * Attempt to parse a data blob for a key as an X509 certificate.
161  */
162 static int x509_key_preparse(struct key_preparsed_payload *prep)
163 {
164 	struct asymmetric_key_ids *kids;
165 	struct x509_certificate *cert;
166 	const char *q;
167 	size_t srlen, sulen;
168 	char *desc = NULL, *p;
169 	int ret;
170 
171 	cert = x509_cert_parse(prep->data, prep->datalen);
172 	if (IS_ERR(cert))
173 		return PTR_ERR(cert);
174 
175 	pr_devel("Cert Issuer: %s\n", cert->issuer);
176 	pr_devel("Cert Subject: %s\n", cert->subject);
177 	pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
178 	pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
179 
180 	cert->pub->id_type = "X509";
181 
182 	if (cert->unsupported_sig) {
183 		public_key_signature_free(cert->sig);
184 		cert->sig = NULL;
185 	} else {
186 		pr_devel("Cert Signature: %s + %s\n",
187 			 cert->sig->pkey_algo, cert->sig->hash_algo);
188 	}
189 
190 	/* Don't permit addition of blacklisted keys */
191 	ret = -EKEYREJECTED;
192 	if (cert->blacklisted)
193 		goto error_free_cert;
194 
195 	/* Propose a description */
196 	sulen = strlen(cert->subject);
197 	if (cert->raw_skid) {
198 		srlen = cert->raw_skid_size;
199 		q = cert->raw_skid;
200 	} else {
201 		srlen = cert->raw_serial_size;
202 		q = cert->raw_serial;
203 	}
204 
205 	ret = -ENOMEM;
206 	desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
207 	if (!desc)
208 		goto error_free_cert;
209 	p = memcpy(desc, cert->subject, sulen);
210 	p += sulen;
211 	*p++ = ':';
212 	*p++ = ' ';
213 	p = bin2hex(p, q, srlen);
214 	*p = 0;
215 
216 	kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
217 	if (!kids)
218 		goto error_free_desc;
219 	kids->id[0] = cert->id;
220 	kids->id[1] = cert->skid;
221 	kids->id[2] = asymmetric_key_generate_id(cert->raw_subject,
222 						 cert->raw_subject_size,
223 						 "", 0);
224 	if (IS_ERR(kids->id[2])) {
225 		ret = PTR_ERR(kids->id[2]);
226 		goto error_free_kids;
227 	}
228 
229 	/* We're pinning the module by being linked against it */
230 	__module_get(public_key_subtype.owner);
231 	prep->payload.data[asym_subtype] = &public_key_subtype;
232 	prep->payload.data[asym_key_ids] = kids;
233 	prep->payload.data[asym_crypto] = cert->pub;
234 	prep->payload.data[asym_auth] = cert->sig;
235 	prep->description = desc;
236 	prep->quotalen = 100;
237 
238 	/* We've finished with the certificate */
239 	cert->pub = NULL;
240 	cert->id = NULL;
241 	cert->skid = NULL;
242 	cert->sig = NULL;
243 	desc = NULL;
244 	kids = NULL;
245 	ret = 0;
246 
247 error_free_kids:
248 	kfree(kids);
249 error_free_desc:
250 	kfree(desc);
251 error_free_cert:
252 	x509_free_certificate(cert);
253 	return ret;
254 }
255 
256 static struct asymmetric_key_parser x509_key_parser = {
257 	.owner	= THIS_MODULE,
258 	.name	= "x509",
259 	.parse	= x509_key_preparse,
260 };
261 
262 /*
263  * Module stuff
264  */
265 static int __init x509_key_init(void)
266 {
267 	return register_asymmetric_key_parser(&x509_key_parser);
268 }
269 
270 static void __exit x509_key_exit(void)
271 {
272 	unregister_asymmetric_key_parser(&x509_key_parser);
273 }
274 
275 module_init(x509_key_init);
276 module_exit(x509_key_exit);
277 
278 MODULE_DESCRIPTION("X.509 certificate parser");
279 MODULE_AUTHOR("Red Hat, Inc.");
280 MODULE_LICENSE("GPL");
281