xref: /linux/crypto/asymmetric_keys/x509_public_key.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Instantiate a public key crypto key from an X.509 Certificate
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #define pr_fmt(fmt) "X.509: "fmt
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <keys/asymmetric-subtype.h>
13 #include <keys/asymmetric-parser.h>
14 #include <keys/system_keyring.h>
15 #include <crypto/hash.h>
16 #include "asymmetric_keys.h"
17 #include "x509_parser.h"
18 
19 /*
20  * Set up the signature parameters in an X.509 certificate.  This involves
21  * digesting the signed data and extracting the signature.
22  */
23 int x509_get_sig_params(struct x509_certificate *cert)
24 {
25 	struct public_key_signature *sig = cert->sig;
26 	struct crypto_shash *tfm;
27 	struct shash_desc *desc;
28 	size_t desc_size;
29 	int ret;
30 
31 	pr_devel("==>%s()\n", __func__);
32 
33 	sig->data = cert->tbs;
34 	sig->data_size = cert->tbs_size;
35 
36 	sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
37 	if (!sig->s)
38 		return -ENOMEM;
39 
40 	sig->s_size = cert->raw_sig_size;
41 
42 	/* Allocate the hashing algorithm we're going to need and find out how
43 	 * big the hash operational data will be.
44 	 */
45 	tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
46 	if (IS_ERR(tfm)) {
47 		if (PTR_ERR(tfm) == -ENOENT) {
48 			cert->unsupported_sig = true;
49 			return 0;
50 		}
51 		return PTR_ERR(tfm);
52 	}
53 
54 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
55 	sig->digest_size = crypto_shash_digestsize(tfm);
56 
57 	ret = -ENOMEM;
58 	sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
59 	if (!sig->digest)
60 		goto error;
61 
62 	desc = kzalloc(desc_size, GFP_KERNEL);
63 	if (!desc)
64 		goto error;
65 
66 	desc->tfm = tfm;
67 
68 	ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size, sig->digest);
69 	if (ret < 0)
70 		goto error_2;
71 
72 	ret = is_hash_blacklisted(sig->digest, sig->digest_size, "tbs");
73 	if (ret == -EKEYREJECTED) {
74 		pr_err("Cert %*phN is blacklisted\n",
75 		       sig->digest_size, sig->digest);
76 		cert->blacklisted = true;
77 		ret = 0;
78 	}
79 
80 error_2:
81 	kfree(desc);
82 error:
83 	crypto_free_shash(tfm);
84 	pr_devel("<==%s() = %d\n", __func__, ret);
85 	return ret;
86 }
87 
88 /*
89  * Check for self-signedness in an X.509 cert and if found, check the signature
90  * immediately if we can.
91  */
92 int x509_check_for_self_signed(struct x509_certificate *cert)
93 {
94 	int ret = 0;
95 
96 	pr_devel("==>%s()\n", __func__);
97 
98 	if (cert->raw_subject_size != cert->raw_issuer_size ||
99 	    memcmp(cert->raw_subject, cert->raw_issuer,
100 		   cert->raw_issuer_size) != 0)
101 		goto not_self_signed;
102 
103 	if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
104 		/* If the AKID is present it may have one or two parts.  If
105 		 * both are supplied, both must match.
106 		 */
107 		bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
108 		bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
109 
110 		if (!a && !b)
111 			goto not_self_signed;
112 
113 		ret = -EKEYREJECTED;
114 		if (((a && !b) || (b && !a)) &&
115 		    cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
116 			goto out;
117 	}
118 
119 	ret = public_key_verify_signature(cert->pub, cert->sig);
120 	if (ret < 0) {
121 		if (ret == -ENOPKG) {
122 			cert->unsupported_sig = true;
123 			ret = 0;
124 		}
125 		goto out;
126 	}
127 
128 	pr_devel("Cert Self-signature verified");
129 	cert->self_signed = true;
130 
131 out:
132 	pr_devel("<==%s() = %d\n", __func__, ret);
133 	return ret;
134 
135 not_self_signed:
136 	pr_devel("<==%s() = 0 [not]\n", __func__);
137 	return 0;
138 }
139 
140 /*
141  * Attempt to parse a data blob for a key as an X509 certificate.
142  */
143 static int x509_key_preparse(struct key_preparsed_payload *prep)
144 {
145 	struct asymmetric_key_ids *kids;
146 	struct x509_certificate *cert;
147 	const char *q;
148 	size_t srlen, sulen;
149 	char *desc = NULL, *p;
150 	int ret;
151 
152 	cert = x509_cert_parse(prep->data, prep->datalen);
153 	if (IS_ERR(cert))
154 		return PTR_ERR(cert);
155 
156 	pr_devel("Cert Issuer: %s\n", cert->issuer);
157 	pr_devel("Cert Subject: %s\n", cert->subject);
158 	pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
159 	pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
160 
161 	cert->pub->id_type = "X509";
162 
163 	if (cert->unsupported_sig) {
164 		public_key_signature_free(cert->sig);
165 		cert->sig = NULL;
166 	} else {
167 		pr_devel("Cert Signature: %s + %s\n",
168 			 cert->sig->pkey_algo, cert->sig->hash_algo);
169 	}
170 
171 	/* Don't permit addition of blacklisted keys */
172 	ret = -EKEYREJECTED;
173 	if (cert->blacklisted)
174 		goto error_free_cert;
175 
176 	/* Propose a description */
177 	sulen = strlen(cert->subject);
178 	if (cert->raw_skid) {
179 		srlen = cert->raw_skid_size;
180 		q = cert->raw_skid;
181 	} else {
182 		srlen = cert->raw_serial_size;
183 		q = cert->raw_serial;
184 	}
185 
186 	ret = -ENOMEM;
187 	desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
188 	if (!desc)
189 		goto error_free_cert;
190 	p = memcpy(desc, cert->subject, sulen);
191 	p += sulen;
192 	*p++ = ':';
193 	*p++ = ' ';
194 	p = bin2hex(p, q, srlen);
195 	*p = 0;
196 
197 	kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
198 	if (!kids)
199 		goto error_free_desc;
200 	kids->id[0] = cert->id;
201 	kids->id[1] = cert->skid;
202 	kids->id[2] = asymmetric_key_generate_id(cert->raw_subject,
203 						 cert->raw_subject_size,
204 						 "", 0);
205 	if (IS_ERR(kids->id[2])) {
206 		ret = PTR_ERR(kids->id[2]);
207 		goto error_free_kids;
208 	}
209 
210 	/* We're pinning the module by being linked against it */
211 	__module_get(public_key_subtype.owner);
212 	prep->payload.data[asym_subtype] = &public_key_subtype;
213 	prep->payload.data[asym_key_ids] = kids;
214 	prep->payload.data[asym_crypto] = cert->pub;
215 	prep->payload.data[asym_auth] = cert->sig;
216 	prep->description = desc;
217 	prep->quotalen = 100;
218 
219 	/* We've finished with the certificate */
220 	cert->pub = NULL;
221 	cert->id = NULL;
222 	cert->skid = NULL;
223 	cert->sig = NULL;
224 	desc = NULL;
225 	kids = NULL;
226 	ret = 0;
227 
228 error_free_kids:
229 	kfree(kids);
230 error_free_desc:
231 	kfree(desc);
232 error_free_cert:
233 	x509_free_certificate(cert);
234 	return ret;
235 }
236 
237 static struct asymmetric_key_parser x509_key_parser = {
238 	.owner	= THIS_MODULE,
239 	.name	= "x509",
240 	.parse	= x509_key_preparse,
241 };
242 
243 /*
244  * Module stuff
245  */
246 static int __init x509_key_init(void)
247 {
248 	return register_asymmetric_key_parser(&x509_key_parser);
249 }
250 
251 static void __exit x509_key_exit(void)
252 {
253 	unregister_asymmetric_key_parser(&x509_key_parser);
254 }
255 
256 module_init(x509_key_init);
257 module_exit(x509_key_exit);
258 
259 MODULE_DESCRIPTION("X.509 certificate parser");
260 MODULE_AUTHOR("Red Hat, Inc.");
261 MODULE_LICENSE("GPL");
262