xref: /linux/crypto/asymmetric_keys/x509_public_key.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Instantiate a public key crypto key from an X.509 Certificate
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #define pr_fmt(fmt) "X.509: "fmt
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <keys/asymmetric-subtype.h>
13 #include <keys/asymmetric-parser.h>
14 #include <keys/system_keyring.h>
15 #include <crypto/hash.h>
16 #include "asymmetric_keys.h"
17 #include "x509_parser.h"
18 
19 /*
20  * Set up the signature parameters in an X.509 certificate.  This involves
21  * digesting the signed data and extracting the signature.
22  */
23 int x509_get_sig_params(struct x509_certificate *cert)
24 {
25 	struct public_key_signature *sig = cert->sig;
26 	struct crypto_shash *tfm;
27 	struct shash_desc *desc;
28 	size_t desc_size;
29 	int ret;
30 
31 	pr_devel("==>%s()\n", __func__);
32 
33 	sig->data = cert->tbs;
34 	sig->data_size = cert->tbs_size;
35 
36 	if (!cert->pub->pkey_algo)
37 		cert->unsupported_key = true;
38 
39 	if (!sig->pkey_algo)
40 		cert->unsupported_sig = true;
41 
42 	/* We check the hash if we can - even if we can't then verify it */
43 	if (!sig->hash_algo) {
44 		cert->unsupported_sig = true;
45 		return 0;
46 	}
47 
48 	sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
49 	if (!sig->s)
50 		return -ENOMEM;
51 
52 	sig->s_size = cert->raw_sig_size;
53 
54 	/* Allocate the hashing algorithm we're going to need and find out how
55 	 * big the hash operational data will be.
56 	 */
57 	tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
58 	if (IS_ERR(tfm)) {
59 		if (PTR_ERR(tfm) == -ENOENT) {
60 			cert->unsupported_sig = true;
61 			return 0;
62 		}
63 		return PTR_ERR(tfm);
64 	}
65 
66 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
67 	sig->digest_size = crypto_shash_digestsize(tfm);
68 
69 	ret = -ENOMEM;
70 	sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
71 	if (!sig->digest)
72 		goto error;
73 
74 	desc = kzalloc(desc_size, GFP_KERNEL);
75 	if (!desc)
76 		goto error;
77 
78 	desc->tfm = tfm;
79 
80 	ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size, sig->digest);
81 	if (ret < 0)
82 		goto error_2;
83 
84 	ret = is_hash_blacklisted(sig->digest, sig->digest_size, "tbs");
85 	if (ret == -EKEYREJECTED) {
86 		pr_err("Cert %*phN is blacklisted\n",
87 		       sig->digest_size, sig->digest);
88 		cert->blacklisted = true;
89 		ret = 0;
90 	}
91 
92 error_2:
93 	kfree(desc);
94 error:
95 	crypto_free_shash(tfm);
96 	pr_devel("<==%s() = %d\n", __func__, ret);
97 	return ret;
98 }
99 
100 /*
101  * Check for self-signedness in an X.509 cert and if found, check the signature
102  * immediately if we can.
103  */
104 int x509_check_for_self_signed(struct x509_certificate *cert)
105 {
106 	int ret = 0;
107 
108 	pr_devel("==>%s()\n", __func__);
109 
110 	if (cert->raw_subject_size != cert->raw_issuer_size ||
111 	    memcmp(cert->raw_subject, cert->raw_issuer,
112 		   cert->raw_issuer_size) != 0)
113 		goto not_self_signed;
114 
115 	if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
116 		/* If the AKID is present it may have one or two parts.  If
117 		 * both are supplied, both must match.
118 		 */
119 		bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
120 		bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
121 
122 		if (!a && !b)
123 			goto not_self_signed;
124 
125 		ret = -EKEYREJECTED;
126 		if (((a && !b) || (b && !a)) &&
127 		    cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
128 			goto out;
129 	}
130 
131 	ret = -EKEYREJECTED;
132 	if (strcmp(cert->pub->pkey_algo, cert->sig->pkey_algo) != 0)
133 		goto out;
134 
135 	ret = public_key_verify_signature(cert->pub, cert->sig);
136 	if (ret < 0) {
137 		if (ret == -ENOPKG) {
138 			cert->unsupported_sig = true;
139 			ret = 0;
140 		}
141 		goto out;
142 	}
143 
144 	pr_devel("Cert Self-signature verified");
145 	cert->self_signed = true;
146 
147 out:
148 	pr_devel("<==%s() = %d\n", __func__, ret);
149 	return ret;
150 
151 not_self_signed:
152 	pr_devel("<==%s() = 0 [not]\n", __func__);
153 	return 0;
154 }
155 
156 /*
157  * Attempt to parse a data blob for a key as an X509 certificate.
158  */
159 static int x509_key_preparse(struct key_preparsed_payload *prep)
160 {
161 	struct asymmetric_key_ids *kids;
162 	struct x509_certificate *cert;
163 	const char *q;
164 	size_t srlen, sulen;
165 	char *desc = NULL, *p;
166 	int ret;
167 
168 	cert = x509_cert_parse(prep->data, prep->datalen);
169 	if (IS_ERR(cert))
170 		return PTR_ERR(cert);
171 
172 	pr_devel("Cert Issuer: %s\n", cert->issuer);
173 	pr_devel("Cert Subject: %s\n", cert->subject);
174 
175 	if (cert->unsupported_key) {
176 		ret = -ENOPKG;
177 		goto error_free_cert;
178 	}
179 
180 	pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
181 	pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
182 
183 	cert->pub->id_type = "X509";
184 
185 	if (cert->unsupported_sig) {
186 		public_key_signature_free(cert->sig);
187 		cert->sig = NULL;
188 	} else {
189 		pr_devel("Cert Signature: %s + %s\n",
190 			 cert->sig->pkey_algo, cert->sig->hash_algo);
191 	}
192 
193 	/* Don't permit addition of blacklisted keys */
194 	ret = -EKEYREJECTED;
195 	if (cert->blacklisted)
196 		goto error_free_cert;
197 
198 	/* Propose a description */
199 	sulen = strlen(cert->subject);
200 	if (cert->raw_skid) {
201 		srlen = cert->raw_skid_size;
202 		q = cert->raw_skid;
203 	} else {
204 		srlen = cert->raw_serial_size;
205 		q = cert->raw_serial;
206 	}
207 
208 	ret = -ENOMEM;
209 	desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
210 	if (!desc)
211 		goto error_free_cert;
212 	p = memcpy(desc, cert->subject, sulen);
213 	p += sulen;
214 	*p++ = ':';
215 	*p++ = ' ';
216 	p = bin2hex(p, q, srlen);
217 	*p = 0;
218 
219 	kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
220 	if (!kids)
221 		goto error_free_desc;
222 	kids->id[0] = cert->id;
223 	kids->id[1] = cert->skid;
224 
225 	/* We're pinning the module by being linked against it */
226 	__module_get(public_key_subtype.owner);
227 	prep->payload.data[asym_subtype] = &public_key_subtype;
228 	prep->payload.data[asym_key_ids] = kids;
229 	prep->payload.data[asym_crypto] = cert->pub;
230 	prep->payload.data[asym_auth] = cert->sig;
231 	prep->description = desc;
232 	prep->quotalen = 100;
233 
234 	/* We've finished with the certificate */
235 	cert->pub = NULL;
236 	cert->id = NULL;
237 	cert->skid = NULL;
238 	cert->sig = NULL;
239 	desc = NULL;
240 	ret = 0;
241 
242 error_free_desc:
243 	kfree(desc);
244 error_free_cert:
245 	x509_free_certificate(cert);
246 	return ret;
247 }
248 
249 static struct asymmetric_key_parser x509_key_parser = {
250 	.owner	= THIS_MODULE,
251 	.name	= "x509",
252 	.parse	= x509_key_preparse,
253 };
254 
255 /*
256  * Module stuff
257  */
258 static int __init x509_key_init(void)
259 {
260 	return register_asymmetric_key_parser(&x509_key_parser);
261 }
262 
263 static void __exit x509_key_exit(void)
264 {
265 	unregister_asymmetric_key_parser(&x509_key_parser);
266 }
267 
268 module_init(x509_key_init);
269 module_exit(x509_key_exit);
270 
271 MODULE_DESCRIPTION("X.509 certificate parser");
272 MODULE_AUTHOR("Red Hat, Inc.");
273 MODULE_LICENSE("GPL");
274