xref: /linux/crypto/asymmetric_keys/x509_public_key.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* Instantiate a public key crypto key from an X.509 Certificate
2  *
3  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public Licence
8  * as published by the Free Software Foundation; either version
9  * 2 of the Licence, or (at your option) any later version.
10  */
11 
12 #define pr_fmt(fmt) "X.509: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <keys/asymmetric-subtype.h>
17 #include <keys/asymmetric-parser.h>
18 #include <keys/system_keyring.h>
19 #include <crypto/hash.h>
20 #include "asymmetric_keys.h"
21 #include "x509_parser.h"
22 
23 /*
24  * Set up the signature parameters in an X.509 certificate.  This involves
25  * digesting the signed data and extracting the signature.
26  */
27 int x509_get_sig_params(struct x509_certificate *cert)
28 {
29 	struct public_key_signature *sig = cert->sig;
30 	struct crypto_shash *tfm;
31 	struct shash_desc *desc;
32 	size_t desc_size;
33 	int ret;
34 
35 	pr_devel("==>%s()\n", __func__);
36 
37 	if (!cert->pub->pkey_algo)
38 		cert->unsupported_key = true;
39 
40 	if (!sig->pkey_algo)
41 		cert->unsupported_sig = true;
42 
43 	/* We check the hash if we can - even if we can't then verify it */
44 	if (!sig->hash_algo) {
45 		cert->unsupported_sig = true;
46 		return 0;
47 	}
48 
49 	sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
50 	if (!sig->s)
51 		return -ENOMEM;
52 
53 	sig->s_size = cert->raw_sig_size;
54 
55 	/* Allocate the hashing algorithm we're going to need and find out how
56 	 * big the hash operational data will be.
57 	 */
58 	tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
59 	if (IS_ERR(tfm)) {
60 		if (PTR_ERR(tfm) == -ENOENT) {
61 			cert->unsupported_sig = true;
62 			return 0;
63 		}
64 		return PTR_ERR(tfm);
65 	}
66 
67 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
68 	sig->digest_size = crypto_shash_digestsize(tfm);
69 
70 	ret = -ENOMEM;
71 	sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
72 	if (!sig->digest)
73 		goto error;
74 
75 	desc = kzalloc(desc_size, GFP_KERNEL);
76 	if (!desc)
77 		goto error;
78 
79 	desc->tfm = tfm;
80 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
81 
82 	ret = crypto_shash_init(desc);
83 	if (ret < 0)
84 		goto error_2;
85 	might_sleep();
86 	ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, sig->digest);
87 
88 error_2:
89 	kfree(desc);
90 error:
91 	crypto_free_shash(tfm);
92 	pr_devel("<==%s() = %d\n", __func__, ret);
93 	return ret;
94 }
95 
96 /*
97  * Check for self-signedness in an X.509 cert and if found, check the signature
98  * immediately if we can.
99  */
100 int x509_check_for_self_signed(struct x509_certificate *cert)
101 {
102 	int ret = 0;
103 
104 	pr_devel("==>%s()\n", __func__);
105 
106 	if (cert->raw_subject_size != cert->raw_issuer_size ||
107 	    memcmp(cert->raw_subject, cert->raw_issuer,
108 		   cert->raw_issuer_size) != 0)
109 		goto not_self_signed;
110 
111 	if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
112 		/* If the AKID is present it may have one or two parts.  If
113 		 * both are supplied, both must match.
114 		 */
115 		bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
116 		bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
117 
118 		if (!a && !b)
119 			goto not_self_signed;
120 
121 		ret = -EKEYREJECTED;
122 		if (((a && !b) || (b && !a)) &&
123 		    cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
124 			goto out;
125 	}
126 
127 	ret = -EKEYREJECTED;
128 	if (cert->pub->pkey_algo != cert->sig->pkey_algo)
129 		goto out;
130 
131 	ret = public_key_verify_signature(cert->pub, cert->sig);
132 	if (ret < 0) {
133 		if (ret == -ENOPKG) {
134 			cert->unsupported_sig = true;
135 			ret = 0;
136 		}
137 		goto out;
138 	}
139 
140 	pr_devel("Cert Self-signature verified");
141 	cert->self_signed = true;
142 
143 out:
144 	pr_devel("<==%s() = %d\n", __func__, ret);
145 	return ret;
146 
147 not_self_signed:
148 	pr_devel("<==%s() = 0 [not]\n", __func__);
149 	return 0;
150 }
151 
152 /*
153  * Attempt to parse a data blob for a key as an X509 certificate.
154  */
155 static int x509_key_preparse(struct key_preparsed_payload *prep)
156 {
157 	struct asymmetric_key_ids *kids;
158 	struct x509_certificate *cert;
159 	const char *q;
160 	size_t srlen, sulen;
161 	char *desc = NULL, *p;
162 	int ret;
163 
164 	cert = x509_cert_parse(prep->data, prep->datalen);
165 	if (IS_ERR(cert))
166 		return PTR_ERR(cert);
167 
168 	pr_devel("Cert Issuer: %s\n", cert->issuer);
169 	pr_devel("Cert Subject: %s\n", cert->subject);
170 
171 	if (cert->unsupported_key) {
172 		ret = -ENOPKG;
173 		goto error_free_cert;
174 	}
175 
176 	pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
177 	pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
178 
179 	cert->pub->id_type = "X509";
180 
181 	if (cert->unsupported_sig) {
182 		public_key_signature_free(cert->sig);
183 		cert->sig = NULL;
184 	} else {
185 		pr_devel("Cert Signature: %s + %s\n",
186 			 cert->sig->pkey_algo, cert->sig->hash_algo);
187 	}
188 
189 	/* Propose a description */
190 	sulen = strlen(cert->subject);
191 	if (cert->raw_skid) {
192 		srlen = cert->raw_skid_size;
193 		q = cert->raw_skid;
194 	} else {
195 		srlen = cert->raw_serial_size;
196 		q = cert->raw_serial;
197 	}
198 
199 	ret = -ENOMEM;
200 	desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
201 	if (!desc)
202 		goto error_free_cert;
203 	p = memcpy(desc, cert->subject, sulen);
204 	p += sulen;
205 	*p++ = ':';
206 	*p++ = ' ';
207 	p = bin2hex(p, q, srlen);
208 	*p = 0;
209 
210 	kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
211 	if (!kids)
212 		goto error_free_desc;
213 	kids->id[0] = cert->id;
214 	kids->id[1] = cert->skid;
215 
216 	/* We're pinning the module by being linked against it */
217 	__module_get(public_key_subtype.owner);
218 	prep->payload.data[asym_subtype] = &public_key_subtype;
219 	prep->payload.data[asym_key_ids] = kids;
220 	prep->payload.data[asym_crypto] = cert->pub;
221 	prep->payload.data[asym_auth] = cert->sig;
222 	prep->description = desc;
223 	prep->quotalen = 100;
224 
225 	/* We've finished with the certificate */
226 	cert->pub = NULL;
227 	cert->id = NULL;
228 	cert->skid = NULL;
229 	cert->sig = NULL;
230 	desc = NULL;
231 	ret = 0;
232 
233 error_free_desc:
234 	kfree(desc);
235 error_free_cert:
236 	x509_free_certificate(cert);
237 	return ret;
238 }
239 
240 static struct asymmetric_key_parser x509_key_parser = {
241 	.owner	= THIS_MODULE,
242 	.name	= "x509",
243 	.parse	= x509_key_preparse,
244 };
245 
246 /*
247  * Module stuff
248  */
249 static int __init x509_key_init(void)
250 {
251 	return register_asymmetric_key_parser(&x509_key_parser);
252 }
253 
254 static void __exit x509_key_exit(void)
255 {
256 	unregister_asymmetric_key_parser(&x509_key_parser);
257 }
258 
259 module_init(x509_key_init);
260 module_exit(x509_key_exit);
261 
262 MODULE_DESCRIPTION("X.509 certificate parser");
263 MODULE_LICENSE("GPL");
264