xref: /linux/crypto/asymmetric_keys/x509_cert_parser.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* X.509 certificate parser
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #define pr_fmt(fmt) "X.509: "fmt
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/slab.h>
12 #include <linux/err.h>
13 #include <linux/oid_registry.h>
14 #include <crypto/public_key.h>
15 #include "x509_parser.h"
16 #include "x509.asn1.h"
17 #include "x509_akid.asn1.h"
18 
19 struct x509_parse_context {
20 	struct x509_certificate	*cert;		/* Certificate being constructed */
21 	unsigned long	data;			/* Start of data */
22 	const void	*key;			/* Key data */
23 	size_t		key_size;		/* Size of key data */
24 	const void	*params;		/* Key parameters */
25 	size_t		params_size;		/* Size of key parameters */
26 	enum OID	key_algo;		/* Algorithm used by the cert's key */
27 	enum OID	last_oid;		/* Last OID encountered */
28 	enum OID	sig_algo;		/* Algorithm used to sign the cert */
29 	u8		o_size;			/* Size of organizationName (O) */
30 	u8		cn_size;		/* Size of commonName (CN) */
31 	u8		email_size;		/* Size of emailAddress */
32 	u16		o_offset;		/* Offset of organizationName (O) */
33 	u16		cn_offset;		/* Offset of commonName (CN) */
34 	u16		email_offset;		/* Offset of emailAddress */
35 	unsigned	raw_akid_size;
36 	const void	*raw_akid;		/* Raw authorityKeyId in ASN.1 */
37 	const void	*akid_raw_issuer;	/* Raw directoryName in authorityKeyId */
38 	unsigned	akid_raw_issuer_size;
39 };
40 
41 /*
42  * Free an X.509 certificate
43  */
44 void x509_free_certificate(struct x509_certificate *cert)
45 {
46 	if (cert) {
47 		public_key_free(cert->pub);
48 		public_key_signature_free(cert->sig);
49 		kfree(cert->issuer);
50 		kfree(cert->subject);
51 		kfree(cert->id);
52 		kfree(cert->skid);
53 		kfree(cert);
54 	}
55 }
56 EXPORT_SYMBOL_GPL(x509_free_certificate);
57 
58 /*
59  * Parse an X.509 certificate
60  */
61 struct x509_certificate *x509_cert_parse(const void *data, size_t datalen)
62 {
63 	struct x509_certificate *cert __free(x509_free_certificate);
64 	struct x509_parse_context *ctx __free(kfree) = NULL;
65 	struct asymmetric_key_id *kid;
66 	long ret;
67 
68 	cert = kzalloc(sizeof(struct x509_certificate), GFP_KERNEL);
69 	if (!cert)
70 		return ERR_PTR(-ENOMEM);
71 	cert->pub = kzalloc(sizeof(struct public_key), GFP_KERNEL);
72 	if (!cert->pub)
73 		return ERR_PTR(-ENOMEM);
74 	cert->sig = kzalloc(sizeof(struct public_key_signature), GFP_KERNEL);
75 	if (!cert->sig)
76 		return ERR_PTR(-ENOMEM);
77 	ctx = kzalloc(sizeof(struct x509_parse_context), GFP_KERNEL);
78 	if (!ctx)
79 		return ERR_PTR(-ENOMEM);
80 
81 	ctx->cert = cert;
82 	ctx->data = (unsigned long)data;
83 
84 	/* Attempt to decode the certificate */
85 	ret = asn1_ber_decoder(&x509_decoder, ctx, data, datalen);
86 	if (ret < 0)
87 		return ERR_PTR(ret);
88 
89 	/* Decode the AuthorityKeyIdentifier */
90 	if (ctx->raw_akid) {
91 		pr_devel("AKID: %u %*phN\n",
92 			 ctx->raw_akid_size, ctx->raw_akid_size, ctx->raw_akid);
93 		ret = asn1_ber_decoder(&x509_akid_decoder, ctx,
94 				       ctx->raw_akid, ctx->raw_akid_size);
95 		if (ret < 0) {
96 			pr_warn("Couldn't decode AuthKeyIdentifier\n");
97 			return ERR_PTR(ret);
98 		}
99 	}
100 
101 	cert->pub->key = kmemdup(ctx->key, ctx->key_size, GFP_KERNEL);
102 	if (!cert->pub->key)
103 		return ERR_PTR(-ENOMEM);
104 
105 	cert->pub->keylen = ctx->key_size;
106 
107 	cert->pub->params = kmemdup(ctx->params, ctx->params_size, GFP_KERNEL);
108 	if (!cert->pub->params)
109 		return ERR_PTR(-ENOMEM);
110 
111 	cert->pub->paramlen = ctx->params_size;
112 	cert->pub->algo = ctx->key_algo;
113 
114 	/* Grab the signature bits */
115 	ret = x509_get_sig_params(cert);
116 	if (ret < 0)
117 		return ERR_PTR(ret);
118 
119 	/* Generate cert issuer + serial number key ID */
120 	kid = asymmetric_key_generate_id(cert->raw_serial,
121 					 cert->raw_serial_size,
122 					 cert->raw_issuer,
123 					 cert->raw_issuer_size);
124 	if (IS_ERR(kid))
125 		return ERR_CAST(kid);
126 	cert->id = kid;
127 
128 	/* Detect self-signed certificates */
129 	ret = x509_check_for_self_signed(cert);
130 	if (ret < 0)
131 		return ERR_PTR(ret);
132 
133 	return_ptr(cert);
134 }
135 EXPORT_SYMBOL_GPL(x509_cert_parse);
136 
137 /*
138  * Note an OID when we find one for later processing when we know how
139  * to interpret it.
140  */
141 int x509_note_OID(void *context, size_t hdrlen,
142 	     unsigned char tag,
143 	     const void *value, size_t vlen)
144 {
145 	struct x509_parse_context *ctx = context;
146 
147 	ctx->last_oid = look_up_OID(value, vlen);
148 	if (ctx->last_oid == OID__NR) {
149 		char buffer[50];
150 		sprint_oid(value, vlen, buffer, sizeof(buffer));
151 		pr_debug("Unknown OID: [%lu] %s\n",
152 			 (unsigned long)value - ctx->data, buffer);
153 	}
154 	return 0;
155 }
156 
157 /*
158  * Save the position of the TBS data so that we can check the signature over it
159  * later.
160  */
161 int x509_note_tbs_certificate(void *context, size_t hdrlen,
162 			      unsigned char tag,
163 			      const void *value, size_t vlen)
164 {
165 	struct x509_parse_context *ctx = context;
166 
167 	pr_debug("x509_note_tbs_certificate(,%zu,%02x,%ld,%zu)!\n",
168 		 hdrlen, tag, (unsigned long)value - ctx->data, vlen);
169 
170 	ctx->cert->tbs = value - hdrlen;
171 	ctx->cert->tbs_size = vlen + hdrlen;
172 	return 0;
173 }
174 
175 /*
176  * Record the algorithm that was used to sign this certificate.
177  */
178 int x509_note_sig_algo(void *context, size_t hdrlen, unsigned char tag,
179 		       const void *value, size_t vlen)
180 {
181 	struct x509_parse_context *ctx = context;
182 
183 	pr_debug("PubKey Algo: %u\n", ctx->last_oid);
184 
185 	switch (ctx->last_oid) {
186 	default:
187 		return -ENOPKG; /* Unsupported combination */
188 
189 	case OID_sha1WithRSAEncryption:
190 		ctx->cert->sig->hash_algo = "sha1";
191 		goto rsa_pkcs1;
192 
193 	case OID_sha256WithRSAEncryption:
194 		ctx->cert->sig->hash_algo = "sha256";
195 		goto rsa_pkcs1;
196 
197 	case OID_sha384WithRSAEncryption:
198 		ctx->cert->sig->hash_algo = "sha384";
199 		goto rsa_pkcs1;
200 
201 	case OID_sha512WithRSAEncryption:
202 		ctx->cert->sig->hash_algo = "sha512";
203 		goto rsa_pkcs1;
204 
205 	case OID_sha224WithRSAEncryption:
206 		ctx->cert->sig->hash_algo = "sha224";
207 		goto rsa_pkcs1;
208 
209 	case OID_id_ecdsa_with_sha1:
210 		ctx->cert->sig->hash_algo = "sha1";
211 		goto ecdsa;
212 
213 	case OID_id_rsassa_pkcs1_v1_5_with_sha3_256:
214 		ctx->cert->sig->hash_algo = "sha3-256";
215 		goto rsa_pkcs1;
216 
217 	case OID_id_rsassa_pkcs1_v1_5_with_sha3_384:
218 		ctx->cert->sig->hash_algo = "sha3-384";
219 		goto rsa_pkcs1;
220 
221 	case OID_id_rsassa_pkcs1_v1_5_with_sha3_512:
222 		ctx->cert->sig->hash_algo = "sha3-512";
223 		goto rsa_pkcs1;
224 
225 	case OID_id_ecdsa_with_sha224:
226 		ctx->cert->sig->hash_algo = "sha224";
227 		goto ecdsa;
228 
229 	case OID_id_ecdsa_with_sha256:
230 		ctx->cert->sig->hash_algo = "sha256";
231 		goto ecdsa;
232 
233 	case OID_id_ecdsa_with_sha384:
234 		ctx->cert->sig->hash_algo = "sha384";
235 		goto ecdsa;
236 
237 	case OID_id_ecdsa_with_sha512:
238 		ctx->cert->sig->hash_algo = "sha512";
239 		goto ecdsa;
240 
241 	case OID_id_ecdsa_with_sha3_256:
242 		ctx->cert->sig->hash_algo = "sha3-256";
243 		goto ecdsa;
244 
245 	case OID_id_ecdsa_with_sha3_384:
246 		ctx->cert->sig->hash_algo = "sha3-384";
247 		goto ecdsa;
248 
249 	case OID_id_ecdsa_with_sha3_512:
250 		ctx->cert->sig->hash_algo = "sha3-512";
251 		goto ecdsa;
252 
253 	case OID_gost2012Signature256:
254 		ctx->cert->sig->hash_algo = "streebog256";
255 		goto ecrdsa;
256 
257 	case OID_gost2012Signature512:
258 		ctx->cert->sig->hash_algo = "streebog512";
259 		goto ecrdsa;
260 	}
261 
262 rsa_pkcs1:
263 	ctx->cert->sig->pkey_algo = "rsa";
264 	ctx->cert->sig->encoding = "pkcs1";
265 	ctx->sig_algo = ctx->last_oid;
266 	return 0;
267 ecrdsa:
268 	ctx->cert->sig->pkey_algo = "ecrdsa";
269 	ctx->cert->sig->encoding = "raw";
270 	ctx->sig_algo = ctx->last_oid;
271 	return 0;
272 ecdsa:
273 	ctx->cert->sig->pkey_algo = "ecdsa";
274 	ctx->cert->sig->encoding = "x962";
275 	ctx->sig_algo = ctx->last_oid;
276 	return 0;
277 }
278 
279 /*
280  * Note the whereabouts and type of the signature.
281  */
282 int x509_note_signature(void *context, size_t hdrlen,
283 			unsigned char tag,
284 			const void *value, size_t vlen)
285 {
286 	struct x509_parse_context *ctx = context;
287 
288 	pr_debug("Signature: alg=%u, size=%zu\n", ctx->last_oid, vlen);
289 
290 	/*
291 	 * In X.509 certificates, the signature's algorithm is stored in two
292 	 * places: inside the TBSCertificate (the data that is signed), and
293 	 * alongside the signature.  These *must* match.
294 	 */
295 	if (ctx->last_oid != ctx->sig_algo) {
296 		pr_warn("signatureAlgorithm (%u) differs from tbsCertificate.signature (%u)\n",
297 			ctx->last_oid, ctx->sig_algo);
298 		return -EINVAL;
299 	}
300 
301 	if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0 ||
302 	    strcmp(ctx->cert->sig->pkey_algo, "ecrdsa") == 0 ||
303 	    strcmp(ctx->cert->sig->pkey_algo, "ecdsa") == 0) {
304 		/* Discard the BIT STRING metadata */
305 		if (vlen < 1 || *(const u8 *)value != 0)
306 			return -EBADMSG;
307 
308 		value++;
309 		vlen--;
310 	}
311 
312 	ctx->cert->raw_sig = value;
313 	ctx->cert->raw_sig_size = vlen;
314 	return 0;
315 }
316 
317 /*
318  * Note the certificate serial number
319  */
320 int x509_note_serial(void *context, size_t hdrlen,
321 		     unsigned char tag,
322 		     const void *value, size_t vlen)
323 {
324 	struct x509_parse_context *ctx = context;
325 	ctx->cert->raw_serial = value;
326 	ctx->cert->raw_serial_size = vlen;
327 	return 0;
328 }
329 
330 /*
331  * Note some of the name segments from which we'll fabricate a name.
332  */
333 int x509_extract_name_segment(void *context, size_t hdrlen,
334 			      unsigned char tag,
335 			      const void *value, size_t vlen)
336 {
337 	struct x509_parse_context *ctx = context;
338 
339 	switch (ctx->last_oid) {
340 	case OID_commonName:
341 		ctx->cn_size = vlen;
342 		ctx->cn_offset = (unsigned long)value - ctx->data;
343 		break;
344 	case OID_organizationName:
345 		ctx->o_size = vlen;
346 		ctx->o_offset = (unsigned long)value - ctx->data;
347 		break;
348 	case OID_email_address:
349 		ctx->email_size = vlen;
350 		ctx->email_offset = (unsigned long)value - ctx->data;
351 		break;
352 	default:
353 		break;
354 	}
355 
356 	return 0;
357 }
358 
359 /*
360  * Fabricate and save the issuer and subject names
361  */
362 static int x509_fabricate_name(struct x509_parse_context *ctx, size_t hdrlen,
363 			       unsigned char tag,
364 			       char **_name, size_t vlen)
365 {
366 	const void *name, *data = (const void *)ctx->data;
367 	size_t namesize;
368 	char *buffer;
369 
370 	if (*_name)
371 		return -EINVAL;
372 
373 	/* Empty name string if no material */
374 	if (!ctx->cn_size && !ctx->o_size && !ctx->email_size) {
375 		buffer = kmalloc(1, GFP_KERNEL);
376 		if (!buffer)
377 			return -ENOMEM;
378 		buffer[0] = 0;
379 		goto done;
380 	}
381 
382 	if (ctx->cn_size && ctx->o_size) {
383 		/* Consider combining O and CN, but use only the CN if it is
384 		 * prefixed by the O, or a significant portion thereof.
385 		 */
386 		namesize = ctx->cn_size;
387 		name = data + ctx->cn_offset;
388 		if (ctx->cn_size >= ctx->o_size &&
389 		    memcmp(data + ctx->cn_offset, data + ctx->o_offset,
390 			   ctx->o_size) == 0)
391 			goto single_component;
392 		if (ctx->cn_size >= 7 &&
393 		    ctx->o_size >= 7 &&
394 		    memcmp(data + ctx->cn_offset, data + ctx->o_offset, 7) == 0)
395 			goto single_component;
396 
397 		buffer = kmalloc(ctx->o_size + 2 + ctx->cn_size + 1,
398 				 GFP_KERNEL);
399 		if (!buffer)
400 			return -ENOMEM;
401 
402 		memcpy(buffer,
403 		       data + ctx->o_offset, ctx->o_size);
404 		buffer[ctx->o_size + 0] = ':';
405 		buffer[ctx->o_size + 1] = ' ';
406 		memcpy(buffer + ctx->o_size + 2,
407 		       data + ctx->cn_offset, ctx->cn_size);
408 		buffer[ctx->o_size + 2 + ctx->cn_size] = 0;
409 		goto done;
410 
411 	} else if (ctx->cn_size) {
412 		namesize = ctx->cn_size;
413 		name = data + ctx->cn_offset;
414 	} else if (ctx->o_size) {
415 		namesize = ctx->o_size;
416 		name = data + ctx->o_offset;
417 	} else {
418 		namesize = ctx->email_size;
419 		name = data + ctx->email_offset;
420 	}
421 
422 single_component:
423 	buffer = kmalloc(namesize + 1, GFP_KERNEL);
424 	if (!buffer)
425 		return -ENOMEM;
426 	memcpy(buffer, name, namesize);
427 	buffer[namesize] = 0;
428 
429 done:
430 	*_name = buffer;
431 	ctx->cn_size = 0;
432 	ctx->o_size = 0;
433 	ctx->email_size = 0;
434 	return 0;
435 }
436 
437 int x509_note_issuer(void *context, size_t hdrlen,
438 		     unsigned char tag,
439 		     const void *value, size_t vlen)
440 {
441 	struct x509_parse_context *ctx = context;
442 	struct asymmetric_key_id *kid;
443 
444 	ctx->cert->raw_issuer = value;
445 	ctx->cert->raw_issuer_size = vlen;
446 
447 	if (!ctx->cert->sig->auth_ids[2]) {
448 		kid = asymmetric_key_generate_id(value, vlen, "", 0);
449 		if (IS_ERR(kid))
450 			return PTR_ERR(kid);
451 		ctx->cert->sig->auth_ids[2] = kid;
452 	}
453 
454 	return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->issuer, vlen);
455 }
456 
457 int x509_note_subject(void *context, size_t hdrlen,
458 		      unsigned char tag,
459 		      const void *value, size_t vlen)
460 {
461 	struct x509_parse_context *ctx = context;
462 	ctx->cert->raw_subject = value;
463 	ctx->cert->raw_subject_size = vlen;
464 	return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->subject, vlen);
465 }
466 
467 /*
468  * Extract the parameters for the public key
469  */
470 int x509_note_params(void *context, size_t hdrlen,
471 		     unsigned char tag,
472 		     const void *value, size_t vlen)
473 {
474 	struct x509_parse_context *ctx = context;
475 
476 	/*
477 	 * AlgorithmIdentifier is used three times in the x509, we should skip
478 	 * first and ignore third, using second one which is after subject and
479 	 * before subjectPublicKey.
480 	 */
481 	if (!ctx->cert->raw_subject || ctx->key)
482 		return 0;
483 	ctx->params = value - hdrlen;
484 	ctx->params_size = vlen + hdrlen;
485 	return 0;
486 }
487 
488 /*
489  * Extract the data for the public key algorithm
490  */
491 int x509_extract_key_data(void *context, size_t hdrlen,
492 			  unsigned char tag,
493 			  const void *value, size_t vlen)
494 {
495 	struct x509_parse_context *ctx = context;
496 	enum OID oid;
497 
498 	ctx->key_algo = ctx->last_oid;
499 	switch (ctx->last_oid) {
500 	case OID_rsaEncryption:
501 		ctx->cert->pub->pkey_algo = "rsa";
502 		break;
503 	case OID_gost2012PKey256:
504 	case OID_gost2012PKey512:
505 		ctx->cert->pub->pkey_algo = "ecrdsa";
506 		break;
507 	case OID_id_ecPublicKey:
508 		if (parse_OID(ctx->params, ctx->params_size, &oid) != 0)
509 			return -EBADMSG;
510 
511 		switch (oid) {
512 		case OID_id_prime192v1:
513 			ctx->cert->pub->pkey_algo = "ecdsa-nist-p192";
514 			break;
515 		case OID_id_prime256v1:
516 			ctx->cert->pub->pkey_algo = "ecdsa-nist-p256";
517 			break;
518 		case OID_id_ansip384r1:
519 			ctx->cert->pub->pkey_algo = "ecdsa-nist-p384";
520 			break;
521 		case OID_id_ansip521r1:
522 			ctx->cert->pub->pkey_algo = "ecdsa-nist-p521";
523 			break;
524 		default:
525 			return -ENOPKG;
526 		}
527 		break;
528 	default:
529 		return -ENOPKG;
530 	}
531 
532 	/* Discard the BIT STRING metadata */
533 	if (vlen < 1 || *(const u8 *)value != 0)
534 		return -EBADMSG;
535 	ctx->key = value + 1;
536 	ctx->key_size = vlen - 1;
537 	return 0;
538 }
539 
540 /* The keyIdentifier in AuthorityKeyIdentifier SEQUENCE is tag(CONT,PRIM,0) */
541 #define SEQ_TAG_KEYID (ASN1_CONT << 6)
542 
543 /*
544  * Process certificate extensions that are used to qualify the certificate.
545  */
546 int x509_process_extension(void *context, size_t hdrlen,
547 			   unsigned char tag,
548 			   const void *value, size_t vlen)
549 {
550 	struct x509_parse_context *ctx = context;
551 	struct asymmetric_key_id *kid;
552 	const unsigned char *v = value;
553 
554 	pr_debug("Extension: %u\n", ctx->last_oid);
555 
556 	if (ctx->last_oid == OID_subjectKeyIdentifier) {
557 		/* Get hold of the key fingerprint */
558 		if (ctx->cert->skid || vlen < 3)
559 			return -EBADMSG;
560 		if (v[0] != ASN1_OTS || v[1] != vlen - 2)
561 			return -EBADMSG;
562 		v += 2;
563 		vlen -= 2;
564 
565 		ctx->cert->raw_skid_size = vlen;
566 		ctx->cert->raw_skid = v;
567 		kid = asymmetric_key_generate_id(v, vlen, "", 0);
568 		if (IS_ERR(kid))
569 			return PTR_ERR(kid);
570 		ctx->cert->skid = kid;
571 		pr_debug("subjkeyid %*phN\n", kid->len, kid->data);
572 		return 0;
573 	}
574 
575 	if (ctx->last_oid == OID_keyUsage) {
576 		/*
577 		 * Get hold of the keyUsage bit string
578 		 * v[1] is the encoding size
579 		 *       (Expect either 0x02 or 0x03, making it 1 or 2 bytes)
580 		 * v[2] is the number of unused bits in the bit string
581 		 *       (If >= 3 keyCertSign is missing when v[1] = 0x02)
582 		 * v[3] and possibly v[4] contain the bit string
583 		 *
584 		 * From RFC 5280 4.2.1.3:
585 		 *   0x04 is where keyCertSign lands in this bit string
586 		 *   0x80 is where digitalSignature lands in this bit string
587 		 */
588 		if (v[0] != ASN1_BTS)
589 			return -EBADMSG;
590 		if (vlen < 4)
591 			return -EBADMSG;
592 		if (v[2] >= 8)
593 			return -EBADMSG;
594 		if (v[3] & 0x80)
595 			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_DIGITALSIG;
596 		if (v[1] == 0x02 && v[2] <= 2 && (v[3] & 0x04))
597 			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN;
598 		else if (vlen > 4 && v[1] == 0x03 && (v[3] & 0x04))
599 			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN;
600 		return 0;
601 	}
602 
603 	if (ctx->last_oid == OID_authorityKeyIdentifier) {
604 		/* Get hold of the CA key fingerprint */
605 		ctx->raw_akid = v;
606 		ctx->raw_akid_size = vlen;
607 		return 0;
608 	}
609 
610 	if (ctx->last_oid == OID_basicConstraints) {
611 		/*
612 		 * Get hold of the basicConstraints
613 		 * v[1] is the encoding size
614 		 *	(Expect 0x2 or greater, making it 1 or more bytes)
615 		 * v[2] is the encoding type
616 		 *	(Expect an ASN1_BOOL for the CA)
617 		 * v[3] is the contents of the ASN1_BOOL
618 		 *      (Expect 1 if the CA is TRUE)
619 		 * vlen should match the entire extension size
620 		 */
621 		if (v[0] != (ASN1_CONS_BIT | ASN1_SEQ))
622 			return -EBADMSG;
623 		if (vlen < 2)
624 			return -EBADMSG;
625 		if (v[1] != vlen - 2)
626 			return -EBADMSG;
627 		if (vlen >= 4 && v[1] != 0 && v[2] == ASN1_BOOL && v[3] == 1)
628 			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_CA;
629 		return 0;
630 	}
631 
632 	return 0;
633 }
634 
635 /**
636  * x509_decode_time - Decode an X.509 time ASN.1 object
637  * @_t: The time to fill in
638  * @hdrlen: The length of the object header
639  * @tag: The object tag
640  * @value: The object value
641  * @vlen: The size of the object value
642  *
643  * Decode an ASN.1 universal time or generalised time field into a struct the
644  * kernel can handle and check it for validity.  The time is decoded thus:
645  *
646  *	[RFC5280 §4.1.2.5]
647  *	CAs conforming to this profile MUST always encode certificate validity
648  *	dates through the year 2049 as UTCTime; certificate validity dates in
649  *	2050 or later MUST be encoded as GeneralizedTime.  Conforming
650  *	applications MUST be able to process validity dates that are encoded in
651  *	either UTCTime or GeneralizedTime.
652  */
653 int x509_decode_time(time64_t *_t,  size_t hdrlen,
654 		     unsigned char tag,
655 		     const unsigned char *value, size_t vlen)
656 {
657 	static const unsigned char month_lengths[] = { 31, 28, 31, 30, 31, 30,
658 						       31, 31, 30, 31, 30, 31 };
659 	const unsigned char *p = value;
660 	unsigned year, mon, day, hour, min, sec, mon_len;
661 
662 #define dec2bin(X) ({ unsigned char x = (X) - '0'; if (x > 9) goto invalid_time; x; })
663 #define DD2bin(P) ({ unsigned x = dec2bin(P[0]) * 10 + dec2bin(P[1]); P += 2; x; })
664 
665 	if (tag == ASN1_UNITIM) {
666 		/* UTCTime: YYMMDDHHMMSSZ */
667 		if (vlen != 13)
668 			goto unsupported_time;
669 		year = DD2bin(p);
670 		if (year >= 50)
671 			year += 1900;
672 		else
673 			year += 2000;
674 	} else if (tag == ASN1_GENTIM) {
675 		/* GenTime: YYYYMMDDHHMMSSZ */
676 		if (vlen != 15)
677 			goto unsupported_time;
678 		year = DD2bin(p) * 100 + DD2bin(p);
679 		if (year >= 1950 && year <= 2049)
680 			goto invalid_time;
681 	} else {
682 		goto unsupported_time;
683 	}
684 
685 	mon  = DD2bin(p);
686 	day = DD2bin(p);
687 	hour = DD2bin(p);
688 	min  = DD2bin(p);
689 	sec  = DD2bin(p);
690 
691 	if (*p != 'Z')
692 		goto unsupported_time;
693 
694 	if (year < 1970 ||
695 	    mon < 1 || mon > 12)
696 		goto invalid_time;
697 
698 	mon_len = month_lengths[mon - 1];
699 	if (mon == 2) {
700 		if (year % 4 == 0) {
701 			mon_len = 29;
702 			if (year % 100 == 0) {
703 				mon_len = 28;
704 				if (year % 400 == 0)
705 					mon_len = 29;
706 			}
707 		}
708 	}
709 
710 	if (day < 1 || day > mon_len ||
711 	    hour > 24 || /* ISO 8601 permits 24:00:00 as midnight tomorrow */
712 	    min > 59 ||
713 	    sec > 60) /* ISO 8601 permits leap seconds [X.680 46.3] */
714 		goto invalid_time;
715 
716 	*_t = mktime64(year, mon, day, hour, min, sec);
717 	return 0;
718 
719 unsupported_time:
720 	pr_debug("Got unsupported time [tag %02x]: '%*phN'\n",
721 		 tag, (int)vlen, value);
722 	return -EBADMSG;
723 invalid_time:
724 	pr_debug("Got invalid time [tag %02x]: '%*phN'\n",
725 		 tag, (int)vlen, value);
726 	return -EBADMSG;
727 }
728 EXPORT_SYMBOL_GPL(x509_decode_time);
729 
730 int x509_note_not_before(void *context, size_t hdrlen,
731 			 unsigned char tag,
732 			 const void *value, size_t vlen)
733 {
734 	struct x509_parse_context *ctx = context;
735 	return x509_decode_time(&ctx->cert->valid_from, hdrlen, tag, value, vlen);
736 }
737 
738 int x509_note_not_after(void *context, size_t hdrlen,
739 			unsigned char tag,
740 			const void *value, size_t vlen)
741 {
742 	struct x509_parse_context *ctx = context;
743 	return x509_decode_time(&ctx->cert->valid_to, hdrlen, tag, value, vlen);
744 }
745 
746 /*
747  * Note a key identifier-based AuthorityKeyIdentifier
748  */
749 int x509_akid_note_kid(void *context, size_t hdrlen,
750 		       unsigned char tag,
751 		       const void *value, size_t vlen)
752 {
753 	struct x509_parse_context *ctx = context;
754 	struct asymmetric_key_id *kid;
755 
756 	pr_debug("AKID: keyid: %*phN\n", (int)vlen, value);
757 
758 	if (ctx->cert->sig->auth_ids[1])
759 		return 0;
760 
761 	kid = asymmetric_key_generate_id(value, vlen, "", 0);
762 	if (IS_ERR(kid))
763 		return PTR_ERR(kid);
764 	pr_debug("authkeyid %*phN\n", kid->len, kid->data);
765 	ctx->cert->sig->auth_ids[1] = kid;
766 	return 0;
767 }
768 
769 /*
770  * Note a directoryName in an AuthorityKeyIdentifier
771  */
772 int x509_akid_note_name(void *context, size_t hdrlen,
773 			unsigned char tag,
774 			const void *value, size_t vlen)
775 {
776 	struct x509_parse_context *ctx = context;
777 
778 	pr_debug("AKID: name: %*phN\n", (int)vlen, value);
779 
780 	ctx->akid_raw_issuer = value;
781 	ctx->akid_raw_issuer_size = vlen;
782 	return 0;
783 }
784 
785 /*
786  * Note a serial number in an AuthorityKeyIdentifier
787  */
788 int x509_akid_note_serial(void *context, size_t hdrlen,
789 			  unsigned char tag,
790 			  const void *value, size_t vlen)
791 {
792 	struct x509_parse_context *ctx = context;
793 	struct asymmetric_key_id *kid;
794 
795 	pr_debug("AKID: serial: %*phN\n", (int)vlen, value);
796 
797 	if (!ctx->akid_raw_issuer || ctx->cert->sig->auth_ids[0])
798 		return 0;
799 
800 	kid = asymmetric_key_generate_id(value,
801 					 vlen,
802 					 ctx->akid_raw_issuer,
803 					 ctx->akid_raw_issuer_size);
804 	if (IS_ERR(kid))
805 		return PTR_ERR(kid);
806 
807 	pr_debug("authkeyid %*phN\n", kid->len, kid->data);
808 	ctx->cert->sig->auth_ids[0] = kid;
809 	return 0;
810 }
811