1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* X.509 certificate parser 3 * 4 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #define pr_fmt(fmt) "X.509: "fmt 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/slab.h> 12 #include <linux/err.h> 13 #include <linux/oid_registry.h> 14 #include <crypto/public_key.h> 15 #include "x509_parser.h" 16 #include "x509.asn1.h" 17 #include "x509_akid.asn1.h" 18 19 struct x509_parse_context { 20 struct x509_certificate *cert; /* Certificate being constructed */ 21 unsigned long data; /* Start of data */ 22 const void *key; /* Key data */ 23 size_t key_size; /* Size of key data */ 24 const void *params; /* Key parameters */ 25 size_t params_size; /* Size of key parameters */ 26 enum OID key_algo; /* Algorithm used by the cert's key */ 27 enum OID last_oid; /* Last OID encountered */ 28 enum OID sig_algo; /* Algorithm used to sign the cert */ 29 u8 o_size; /* Size of organizationName (O) */ 30 u8 cn_size; /* Size of commonName (CN) */ 31 u8 email_size; /* Size of emailAddress */ 32 u16 o_offset; /* Offset of organizationName (O) */ 33 u16 cn_offset; /* Offset of commonName (CN) */ 34 u16 email_offset; /* Offset of emailAddress */ 35 unsigned raw_akid_size; 36 const void *raw_akid; /* Raw authorityKeyId in ASN.1 */ 37 const void *akid_raw_issuer; /* Raw directoryName in authorityKeyId */ 38 unsigned akid_raw_issuer_size; 39 }; 40 41 /* 42 * Free an X.509 certificate 43 */ 44 void x509_free_certificate(struct x509_certificate *cert) 45 { 46 if (cert) { 47 public_key_free(cert->pub); 48 public_key_signature_free(cert->sig); 49 kfree(cert->issuer); 50 kfree(cert->subject); 51 kfree(cert->id); 52 kfree(cert->skid); 53 kfree(cert); 54 } 55 } 56 EXPORT_SYMBOL_GPL(x509_free_certificate); 57 58 /* 59 * Parse an X.509 certificate 60 */ 61 struct x509_certificate *x509_cert_parse(const void *data, size_t datalen) 62 { 63 struct x509_certificate *cert; 64 struct x509_parse_context *ctx; 65 struct asymmetric_key_id *kid; 66 long ret; 67 68 ret = -ENOMEM; 69 cert = kzalloc(sizeof(struct x509_certificate), GFP_KERNEL); 70 if (!cert) 71 goto error_no_cert; 72 cert->pub = kzalloc(sizeof(struct public_key), GFP_KERNEL); 73 if (!cert->pub) 74 goto error_no_ctx; 75 cert->sig = kzalloc(sizeof(struct public_key_signature), GFP_KERNEL); 76 if (!cert->sig) 77 goto error_no_ctx; 78 ctx = kzalloc(sizeof(struct x509_parse_context), GFP_KERNEL); 79 if (!ctx) 80 goto error_no_ctx; 81 82 ctx->cert = cert; 83 ctx->data = (unsigned long)data; 84 85 /* Attempt to decode the certificate */ 86 ret = asn1_ber_decoder(&x509_decoder, ctx, data, datalen); 87 if (ret < 0) 88 goto error_decode; 89 90 /* Decode the AuthorityKeyIdentifier */ 91 if (ctx->raw_akid) { 92 pr_devel("AKID: %u %*phN\n", 93 ctx->raw_akid_size, ctx->raw_akid_size, ctx->raw_akid); 94 ret = asn1_ber_decoder(&x509_akid_decoder, ctx, 95 ctx->raw_akid, ctx->raw_akid_size); 96 if (ret < 0) { 97 pr_warn("Couldn't decode AuthKeyIdentifier\n"); 98 goto error_decode; 99 } 100 } 101 102 ret = -ENOMEM; 103 cert->pub->key = kmemdup(ctx->key, ctx->key_size, GFP_KERNEL); 104 if (!cert->pub->key) 105 goto error_decode; 106 107 cert->pub->keylen = ctx->key_size; 108 109 cert->pub->params = kmemdup(ctx->params, ctx->params_size, GFP_KERNEL); 110 if (!cert->pub->params) 111 goto error_decode; 112 113 cert->pub->paramlen = ctx->params_size; 114 cert->pub->algo = ctx->key_algo; 115 116 /* Grab the signature bits */ 117 ret = x509_get_sig_params(cert); 118 if (ret < 0) 119 goto error_decode; 120 121 /* Generate cert issuer + serial number key ID */ 122 kid = asymmetric_key_generate_id(cert->raw_serial, 123 cert->raw_serial_size, 124 cert->raw_issuer, 125 cert->raw_issuer_size); 126 if (IS_ERR(kid)) { 127 ret = PTR_ERR(kid); 128 goto error_decode; 129 } 130 cert->id = kid; 131 132 /* Detect self-signed certificates */ 133 ret = x509_check_for_self_signed(cert); 134 if (ret < 0) 135 goto error_decode; 136 137 kfree(ctx); 138 return cert; 139 140 error_decode: 141 kfree(ctx); 142 error_no_ctx: 143 x509_free_certificate(cert); 144 error_no_cert: 145 return ERR_PTR(ret); 146 } 147 EXPORT_SYMBOL_GPL(x509_cert_parse); 148 149 /* 150 * Note an OID when we find one for later processing when we know how 151 * to interpret it. 152 */ 153 int x509_note_OID(void *context, size_t hdrlen, 154 unsigned char tag, 155 const void *value, size_t vlen) 156 { 157 struct x509_parse_context *ctx = context; 158 159 ctx->last_oid = look_up_OID(value, vlen); 160 if (ctx->last_oid == OID__NR) { 161 char buffer[50]; 162 sprint_oid(value, vlen, buffer, sizeof(buffer)); 163 pr_debug("Unknown OID: [%lu] %s\n", 164 (unsigned long)value - ctx->data, buffer); 165 } 166 return 0; 167 } 168 169 /* 170 * Save the position of the TBS data so that we can check the signature over it 171 * later. 172 */ 173 int x509_note_tbs_certificate(void *context, size_t hdrlen, 174 unsigned char tag, 175 const void *value, size_t vlen) 176 { 177 struct x509_parse_context *ctx = context; 178 179 pr_debug("x509_note_tbs_certificate(,%zu,%02x,%ld,%zu)!\n", 180 hdrlen, tag, (unsigned long)value - ctx->data, vlen); 181 182 ctx->cert->tbs = value - hdrlen; 183 ctx->cert->tbs_size = vlen + hdrlen; 184 return 0; 185 } 186 187 /* 188 * Record the algorithm that was used to sign this certificate. 189 */ 190 int x509_note_sig_algo(void *context, size_t hdrlen, unsigned char tag, 191 const void *value, size_t vlen) 192 { 193 struct x509_parse_context *ctx = context; 194 195 pr_debug("PubKey Algo: %u\n", ctx->last_oid); 196 197 switch (ctx->last_oid) { 198 default: 199 return -ENOPKG; /* Unsupported combination */ 200 201 case OID_sha1WithRSAEncryption: 202 ctx->cert->sig->hash_algo = "sha1"; 203 goto rsa_pkcs1; 204 205 case OID_sha256WithRSAEncryption: 206 ctx->cert->sig->hash_algo = "sha256"; 207 goto rsa_pkcs1; 208 209 case OID_sha384WithRSAEncryption: 210 ctx->cert->sig->hash_algo = "sha384"; 211 goto rsa_pkcs1; 212 213 case OID_sha512WithRSAEncryption: 214 ctx->cert->sig->hash_algo = "sha512"; 215 goto rsa_pkcs1; 216 217 case OID_sha224WithRSAEncryption: 218 ctx->cert->sig->hash_algo = "sha224"; 219 goto rsa_pkcs1; 220 221 case OID_id_ecdsa_with_sha1: 222 ctx->cert->sig->hash_algo = "sha1"; 223 goto ecdsa; 224 225 case OID_id_ecdsa_with_sha224: 226 ctx->cert->sig->hash_algo = "sha224"; 227 goto ecdsa; 228 229 case OID_id_ecdsa_with_sha256: 230 ctx->cert->sig->hash_algo = "sha256"; 231 goto ecdsa; 232 233 case OID_id_ecdsa_with_sha384: 234 ctx->cert->sig->hash_algo = "sha384"; 235 goto ecdsa; 236 237 case OID_id_ecdsa_with_sha512: 238 ctx->cert->sig->hash_algo = "sha512"; 239 goto ecdsa; 240 241 case OID_gost2012Signature256: 242 ctx->cert->sig->hash_algo = "streebog256"; 243 goto ecrdsa; 244 245 case OID_gost2012Signature512: 246 ctx->cert->sig->hash_algo = "streebog512"; 247 goto ecrdsa; 248 249 case OID_SM2_with_SM3: 250 ctx->cert->sig->hash_algo = "sm3"; 251 goto sm2; 252 } 253 254 rsa_pkcs1: 255 ctx->cert->sig->pkey_algo = "rsa"; 256 ctx->cert->sig->encoding = "pkcs1"; 257 ctx->sig_algo = ctx->last_oid; 258 return 0; 259 ecrdsa: 260 ctx->cert->sig->pkey_algo = "ecrdsa"; 261 ctx->cert->sig->encoding = "raw"; 262 ctx->sig_algo = ctx->last_oid; 263 return 0; 264 sm2: 265 ctx->cert->sig->pkey_algo = "sm2"; 266 ctx->cert->sig->encoding = "raw"; 267 ctx->sig_algo = ctx->last_oid; 268 return 0; 269 ecdsa: 270 ctx->cert->sig->pkey_algo = "ecdsa"; 271 ctx->cert->sig->encoding = "x962"; 272 ctx->sig_algo = ctx->last_oid; 273 return 0; 274 } 275 276 /* 277 * Note the whereabouts and type of the signature. 278 */ 279 int x509_note_signature(void *context, size_t hdrlen, 280 unsigned char tag, 281 const void *value, size_t vlen) 282 { 283 struct x509_parse_context *ctx = context; 284 285 pr_debug("Signature: alg=%u, size=%zu\n", ctx->last_oid, vlen); 286 287 /* 288 * In X.509 certificates, the signature's algorithm is stored in two 289 * places: inside the TBSCertificate (the data that is signed), and 290 * alongside the signature. These *must* match. 291 */ 292 if (ctx->last_oid != ctx->sig_algo) { 293 pr_warn("signatureAlgorithm (%u) differs from tbsCertificate.signature (%u)\n", 294 ctx->last_oid, ctx->sig_algo); 295 return -EINVAL; 296 } 297 298 if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0 || 299 strcmp(ctx->cert->sig->pkey_algo, "ecrdsa") == 0 || 300 strcmp(ctx->cert->sig->pkey_algo, "sm2") == 0 || 301 strcmp(ctx->cert->sig->pkey_algo, "ecdsa") == 0) { 302 /* Discard the BIT STRING metadata */ 303 if (vlen < 1 || *(const u8 *)value != 0) 304 return -EBADMSG; 305 306 value++; 307 vlen--; 308 } 309 310 ctx->cert->raw_sig = value; 311 ctx->cert->raw_sig_size = vlen; 312 return 0; 313 } 314 315 /* 316 * Note the certificate serial number 317 */ 318 int x509_note_serial(void *context, size_t hdrlen, 319 unsigned char tag, 320 const void *value, size_t vlen) 321 { 322 struct x509_parse_context *ctx = context; 323 ctx->cert->raw_serial = value; 324 ctx->cert->raw_serial_size = vlen; 325 return 0; 326 } 327 328 /* 329 * Note some of the name segments from which we'll fabricate a name. 330 */ 331 int x509_extract_name_segment(void *context, size_t hdrlen, 332 unsigned char tag, 333 const void *value, size_t vlen) 334 { 335 struct x509_parse_context *ctx = context; 336 337 switch (ctx->last_oid) { 338 case OID_commonName: 339 ctx->cn_size = vlen; 340 ctx->cn_offset = (unsigned long)value - ctx->data; 341 break; 342 case OID_organizationName: 343 ctx->o_size = vlen; 344 ctx->o_offset = (unsigned long)value - ctx->data; 345 break; 346 case OID_email_address: 347 ctx->email_size = vlen; 348 ctx->email_offset = (unsigned long)value - ctx->data; 349 break; 350 default: 351 break; 352 } 353 354 return 0; 355 } 356 357 /* 358 * Fabricate and save the issuer and subject names 359 */ 360 static int x509_fabricate_name(struct x509_parse_context *ctx, size_t hdrlen, 361 unsigned char tag, 362 char **_name, size_t vlen) 363 { 364 const void *name, *data = (const void *)ctx->data; 365 size_t namesize; 366 char *buffer; 367 368 if (*_name) 369 return -EINVAL; 370 371 /* Empty name string if no material */ 372 if (!ctx->cn_size && !ctx->o_size && !ctx->email_size) { 373 buffer = kmalloc(1, GFP_KERNEL); 374 if (!buffer) 375 return -ENOMEM; 376 buffer[0] = 0; 377 goto done; 378 } 379 380 if (ctx->cn_size && ctx->o_size) { 381 /* Consider combining O and CN, but use only the CN if it is 382 * prefixed by the O, or a significant portion thereof. 383 */ 384 namesize = ctx->cn_size; 385 name = data + ctx->cn_offset; 386 if (ctx->cn_size >= ctx->o_size && 387 memcmp(data + ctx->cn_offset, data + ctx->o_offset, 388 ctx->o_size) == 0) 389 goto single_component; 390 if (ctx->cn_size >= 7 && 391 ctx->o_size >= 7 && 392 memcmp(data + ctx->cn_offset, data + ctx->o_offset, 7) == 0) 393 goto single_component; 394 395 buffer = kmalloc(ctx->o_size + 2 + ctx->cn_size + 1, 396 GFP_KERNEL); 397 if (!buffer) 398 return -ENOMEM; 399 400 memcpy(buffer, 401 data + ctx->o_offset, ctx->o_size); 402 buffer[ctx->o_size + 0] = ':'; 403 buffer[ctx->o_size + 1] = ' '; 404 memcpy(buffer + ctx->o_size + 2, 405 data + ctx->cn_offset, ctx->cn_size); 406 buffer[ctx->o_size + 2 + ctx->cn_size] = 0; 407 goto done; 408 409 } else if (ctx->cn_size) { 410 namesize = ctx->cn_size; 411 name = data + ctx->cn_offset; 412 } else if (ctx->o_size) { 413 namesize = ctx->o_size; 414 name = data + ctx->o_offset; 415 } else { 416 namesize = ctx->email_size; 417 name = data + ctx->email_offset; 418 } 419 420 single_component: 421 buffer = kmalloc(namesize + 1, GFP_KERNEL); 422 if (!buffer) 423 return -ENOMEM; 424 memcpy(buffer, name, namesize); 425 buffer[namesize] = 0; 426 427 done: 428 *_name = buffer; 429 ctx->cn_size = 0; 430 ctx->o_size = 0; 431 ctx->email_size = 0; 432 return 0; 433 } 434 435 int x509_note_issuer(void *context, size_t hdrlen, 436 unsigned char tag, 437 const void *value, size_t vlen) 438 { 439 struct x509_parse_context *ctx = context; 440 struct asymmetric_key_id *kid; 441 442 ctx->cert->raw_issuer = value; 443 ctx->cert->raw_issuer_size = vlen; 444 445 if (!ctx->cert->sig->auth_ids[2]) { 446 kid = asymmetric_key_generate_id(value, vlen, "", 0); 447 if (IS_ERR(kid)) 448 return PTR_ERR(kid); 449 ctx->cert->sig->auth_ids[2] = kid; 450 } 451 452 return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->issuer, vlen); 453 } 454 455 int x509_note_subject(void *context, size_t hdrlen, 456 unsigned char tag, 457 const void *value, size_t vlen) 458 { 459 struct x509_parse_context *ctx = context; 460 ctx->cert->raw_subject = value; 461 ctx->cert->raw_subject_size = vlen; 462 return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->subject, vlen); 463 } 464 465 /* 466 * Extract the parameters for the public key 467 */ 468 int x509_note_params(void *context, size_t hdrlen, 469 unsigned char tag, 470 const void *value, size_t vlen) 471 { 472 struct x509_parse_context *ctx = context; 473 474 /* 475 * AlgorithmIdentifier is used three times in the x509, we should skip 476 * first and ignore third, using second one which is after subject and 477 * before subjectPublicKey. 478 */ 479 if (!ctx->cert->raw_subject || ctx->key) 480 return 0; 481 ctx->params = value - hdrlen; 482 ctx->params_size = vlen + hdrlen; 483 return 0; 484 } 485 486 /* 487 * Extract the data for the public key algorithm 488 */ 489 int x509_extract_key_data(void *context, size_t hdrlen, 490 unsigned char tag, 491 const void *value, size_t vlen) 492 { 493 struct x509_parse_context *ctx = context; 494 enum OID oid; 495 496 ctx->key_algo = ctx->last_oid; 497 switch (ctx->last_oid) { 498 case OID_rsaEncryption: 499 ctx->cert->pub->pkey_algo = "rsa"; 500 break; 501 case OID_gost2012PKey256: 502 case OID_gost2012PKey512: 503 ctx->cert->pub->pkey_algo = "ecrdsa"; 504 break; 505 case OID_sm2: 506 ctx->cert->pub->pkey_algo = "sm2"; 507 break; 508 case OID_id_ecPublicKey: 509 if (parse_OID(ctx->params, ctx->params_size, &oid) != 0) 510 return -EBADMSG; 511 512 switch (oid) { 513 case OID_sm2: 514 ctx->cert->pub->pkey_algo = "sm2"; 515 break; 516 case OID_id_prime192v1: 517 ctx->cert->pub->pkey_algo = "ecdsa-nist-p192"; 518 break; 519 case OID_id_prime256v1: 520 ctx->cert->pub->pkey_algo = "ecdsa-nist-p256"; 521 break; 522 case OID_id_ansip384r1: 523 ctx->cert->pub->pkey_algo = "ecdsa-nist-p384"; 524 break; 525 default: 526 return -ENOPKG; 527 } 528 break; 529 default: 530 return -ENOPKG; 531 } 532 533 /* Discard the BIT STRING metadata */ 534 if (vlen < 1 || *(const u8 *)value != 0) 535 return -EBADMSG; 536 ctx->key = value + 1; 537 ctx->key_size = vlen - 1; 538 return 0; 539 } 540 541 /* The keyIdentifier in AuthorityKeyIdentifier SEQUENCE is tag(CONT,PRIM,0) */ 542 #define SEQ_TAG_KEYID (ASN1_CONT << 6) 543 544 /* 545 * Process certificate extensions that are used to qualify the certificate. 546 */ 547 int x509_process_extension(void *context, size_t hdrlen, 548 unsigned char tag, 549 const void *value, size_t vlen) 550 { 551 struct x509_parse_context *ctx = context; 552 struct asymmetric_key_id *kid; 553 const unsigned char *v = value; 554 555 pr_debug("Extension: %u\n", ctx->last_oid); 556 557 if (ctx->last_oid == OID_subjectKeyIdentifier) { 558 /* Get hold of the key fingerprint */ 559 if (ctx->cert->skid || vlen < 3) 560 return -EBADMSG; 561 if (v[0] != ASN1_OTS || v[1] != vlen - 2) 562 return -EBADMSG; 563 v += 2; 564 vlen -= 2; 565 566 ctx->cert->raw_skid_size = vlen; 567 ctx->cert->raw_skid = v; 568 kid = asymmetric_key_generate_id(v, vlen, "", 0); 569 if (IS_ERR(kid)) 570 return PTR_ERR(kid); 571 ctx->cert->skid = kid; 572 pr_debug("subjkeyid %*phN\n", kid->len, kid->data); 573 return 0; 574 } 575 576 if (ctx->last_oid == OID_keyUsage) { 577 /* 578 * Get hold of the keyUsage bit string 579 * v[1] is the encoding size 580 * (Expect either 0x02 or 0x03, making it 1 or 2 bytes) 581 * v[2] is the number of unused bits in the bit string 582 * (If >= 3 keyCertSign is missing when v[1] = 0x02) 583 * v[3] and possibly v[4] contain the bit string 584 * 585 * From RFC 5280 4.2.1.3: 586 * 0x04 is where keyCertSign lands in this bit string 587 * 0x80 is where digitalSignature lands in this bit string 588 */ 589 if (v[0] != ASN1_BTS) 590 return -EBADMSG; 591 if (vlen < 4) 592 return -EBADMSG; 593 if (v[2] >= 8) 594 return -EBADMSG; 595 if (v[3] & 0x80) 596 ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_DIGITALSIG; 597 if (v[1] == 0x02 && v[2] <= 2 && (v[3] & 0x04)) 598 ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN; 599 else if (vlen > 4 && v[1] == 0x03 && (v[3] & 0x04)) 600 ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN; 601 return 0; 602 } 603 604 if (ctx->last_oid == OID_authorityKeyIdentifier) { 605 /* Get hold of the CA key fingerprint */ 606 ctx->raw_akid = v; 607 ctx->raw_akid_size = vlen; 608 return 0; 609 } 610 611 if (ctx->last_oid == OID_basicConstraints) { 612 /* 613 * Get hold of the basicConstraints 614 * v[1] is the encoding size 615 * (Expect 0x2 or greater, making it 1 or more bytes) 616 * v[2] is the encoding type 617 * (Expect an ASN1_BOOL for the CA) 618 * v[3] is the contents of the ASN1_BOOL 619 * (Expect 1 if the CA is TRUE) 620 * vlen should match the entire extension size 621 */ 622 if (v[0] != (ASN1_CONS_BIT | ASN1_SEQ)) 623 return -EBADMSG; 624 if (vlen < 2) 625 return -EBADMSG; 626 if (v[1] != vlen - 2) 627 return -EBADMSG; 628 if (vlen >= 4 && v[1] != 0 && v[2] == ASN1_BOOL && v[3] == 1) 629 ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_CA; 630 return 0; 631 } 632 633 return 0; 634 } 635 636 /** 637 * x509_decode_time - Decode an X.509 time ASN.1 object 638 * @_t: The time to fill in 639 * @hdrlen: The length of the object header 640 * @tag: The object tag 641 * @value: The object value 642 * @vlen: The size of the object value 643 * 644 * Decode an ASN.1 universal time or generalised time field into a struct the 645 * kernel can handle and check it for validity. The time is decoded thus: 646 * 647 * [RFC5280 §4.1.2.5] 648 * CAs conforming to this profile MUST always encode certificate validity 649 * dates through the year 2049 as UTCTime; certificate validity dates in 650 * 2050 or later MUST be encoded as GeneralizedTime. Conforming 651 * applications MUST be able to process validity dates that are encoded in 652 * either UTCTime or GeneralizedTime. 653 */ 654 int x509_decode_time(time64_t *_t, size_t hdrlen, 655 unsigned char tag, 656 const unsigned char *value, size_t vlen) 657 { 658 static const unsigned char month_lengths[] = { 31, 28, 31, 30, 31, 30, 659 31, 31, 30, 31, 30, 31 }; 660 const unsigned char *p = value; 661 unsigned year, mon, day, hour, min, sec, mon_len; 662 663 #define dec2bin(X) ({ unsigned char x = (X) - '0'; if (x > 9) goto invalid_time; x; }) 664 #define DD2bin(P) ({ unsigned x = dec2bin(P[0]) * 10 + dec2bin(P[1]); P += 2; x; }) 665 666 if (tag == ASN1_UNITIM) { 667 /* UTCTime: YYMMDDHHMMSSZ */ 668 if (vlen != 13) 669 goto unsupported_time; 670 year = DD2bin(p); 671 if (year >= 50) 672 year += 1900; 673 else 674 year += 2000; 675 } else if (tag == ASN1_GENTIM) { 676 /* GenTime: YYYYMMDDHHMMSSZ */ 677 if (vlen != 15) 678 goto unsupported_time; 679 year = DD2bin(p) * 100 + DD2bin(p); 680 if (year >= 1950 && year <= 2049) 681 goto invalid_time; 682 } else { 683 goto unsupported_time; 684 } 685 686 mon = DD2bin(p); 687 day = DD2bin(p); 688 hour = DD2bin(p); 689 min = DD2bin(p); 690 sec = DD2bin(p); 691 692 if (*p != 'Z') 693 goto unsupported_time; 694 695 if (year < 1970 || 696 mon < 1 || mon > 12) 697 goto invalid_time; 698 699 mon_len = month_lengths[mon - 1]; 700 if (mon == 2) { 701 if (year % 4 == 0) { 702 mon_len = 29; 703 if (year % 100 == 0) { 704 mon_len = 28; 705 if (year % 400 == 0) 706 mon_len = 29; 707 } 708 } 709 } 710 711 if (day < 1 || day > mon_len || 712 hour > 24 || /* ISO 8601 permits 24:00:00 as midnight tomorrow */ 713 min > 59 || 714 sec > 60) /* ISO 8601 permits leap seconds [X.680 46.3] */ 715 goto invalid_time; 716 717 *_t = mktime64(year, mon, day, hour, min, sec); 718 return 0; 719 720 unsupported_time: 721 pr_debug("Got unsupported time [tag %02x]: '%*phN'\n", 722 tag, (int)vlen, value); 723 return -EBADMSG; 724 invalid_time: 725 pr_debug("Got invalid time [tag %02x]: '%*phN'\n", 726 tag, (int)vlen, value); 727 return -EBADMSG; 728 } 729 EXPORT_SYMBOL_GPL(x509_decode_time); 730 731 int x509_note_not_before(void *context, size_t hdrlen, 732 unsigned char tag, 733 const void *value, size_t vlen) 734 { 735 struct x509_parse_context *ctx = context; 736 return x509_decode_time(&ctx->cert->valid_from, hdrlen, tag, value, vlen); 737 } 738 739 int x509_note_not_after(void *context, size_t hdrlen, 740 unsigned char tag, 741 const void *value, size_t vlen) 742 { 743 struct x509_parse_context *ctx = context; 744 return x509_decode_time(&ctx->cert->valid_to, hdrlen, tag, value, vlen); 745 } 746 747 /* 748 * Note a key identifier-based AuthorityKeyIdentifier 749 */ 750 int x509_akid_note_kid(void *context, size_t hdrlen, 751 unsigned char tag, 752 const void *value, size_t vlen) 753 { 754 struct x509_parse_context *ctx = context; 755 struct asymmetric_key_id *kid; 756 757 pr_debug("AKID: keyid: %*phN\n", (int)vlen, value); 758 759 if (ctx->cert->sig->auth_ids[1]) 760 return 0; 761 762 kid = asymmetric_key_generate_id(value, vlen, "", 0); 763 if (IS_ERR(kid)) 764 return PTR_ERR(kid); 765 pr_debug("authkeyid %*phN\n", kid->len, kid->data); 766 ctx->cert->sig->auth_ids[1] = kid; 767 return 0; 768 } 769 770 /* 771 * Note a directoryName in an AuthorityKeyIdentifier 772 */ 773 int x509_akid_note_name(void *context, size_t hdrlen, 774 unsigned char tag, 775 const void *value, size_t vlen) 776 { 777 struct x509_parse_context *ctx = context; 778 779 pr_debug("AKID: name: %*phN\n", (int)vlen, value); 780 781 ctx->akid_raw_issuer = value; 782 ctx->akid_raw_issuer_size = vlen; 783 return 0; 784 } 785 786 /* 787 * Note a serial number in an AuthorityKeyIdentifier 788 */ 789 int x509_akid_note_serial(void *context, size_t hdrlen, 790 unsigned char tag, 791 const void *value, size_t vlen) 792 { 793 struct x509_parse_context *ctx = context; 794 struct asymmetric_key_id *kid; 795 796 pr_debug("AKID: serial: %*phN\n", (int)vlen, value); 797 798 if (!ctx->akid_raw_issuer || ctx->cert->sig->auth_ids[0]) 799 return 0; 800 801 kid = asymmetric_key_generate_id(value, 802 vlen, 803 ctx->akid_raw_issuer, 804 ctx->akid_raw_issuer_size); 805 if (IS_ERR(kid)) 806 return PTR_ERR(kid); 807 808 pr_debug("authkeyid %*phN\n", kid->len, kid->data); 809 ctx->cert->sig->auth_ids[0] = kid; 810 return 0; 811 } 812