1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* X.509 certificate parser 3 * 4 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #define pr_fmt(fmt) "X.509: "fmt 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/slab.h> 12 #include <linux/err.h> 13 #include <linux/oid_registry.h> 14 #include <crypto/public_key.h> 15 #include "x509_parser.h" 16 #include "x509.asn1.h" 17 #include "x509_akid.asn1.h" 18 19 struct x509_parse_context { 20 struct x509_certificate *cert; /* Certificate being constructed */ 21 unsigned long data; /* Start of data */ 22 const void *key; /* Key data */ 23 size_t key_size; /* Size of key data */ 24 const void *params; /* Key parameters */ 25 size_t params_size; /* Size of key parameters */ 26 enum OID key_algo; /* Algorithm used by the cert's key */ 27 enum OID last_oid; /* Last OID encountered */ 28 enum OID sig_algo; /* Algorithm used to sign the cert */ 29 u8 o_size; /* Size of organizationName (O) */ 30 u8 cn_size; /* Size of commonName (CN) */ 31 u8 email_size; /* Size of emailAddress */ 32 u16 o_offset; /* Offset of organizationName (O) */ 33 u16 cn_offset; /* Offset of commonName (CN) */ 34 u16 email_offset; /* Offset of emailAddress */ 35 unsigned raw_akid_size; 36 const void *raw_akid; /* Raw authorityKeyId in ASN.1 */ 37 const void *akid_raw_issuer; /* Raw directoryName in authorityKeyId */ 38 unsigned akid_raw_issuer_size; 39 }; 40 41 /* 42 * Free an X.509 certificate 43 */ 44 void x509_free_certificate(struct x509_certificate *cert) 45 { 46 if (cert) { 47 public_key_free(cert->pub); 48 public_key_signature_free(cert->sig); 49 kfree(cert->issuer); 50 kfree(cert->subject); 51 kfree(cert->id); 52 kfree(cert->skid); 53 kfree(cert); 54 } 55 } 56 EXPORT_SYMBOL_GPL(x509_free_certificate); 57 58 /* 59 * Parse an X.509 certificate 60 */ 61 struct x509_certificate *x509_cert_parse(const void *data, size_t datalen) 62 { 63 struct x509_certificate *cert; 64 struct x509_parse_context *ctx; 65 struct asymmetric_key_id *kid; 66 long ret; 67 68 ret = -ENOMEM; 69 cert = kzalloc(sizeof(struct x509_certificate), GFP_KERNEL); 70 if (!cert) 71 goto error_no_cert; 72 cert->pub = kzalloc(sizeof(struct public_key), GFP_KERNEL); 73 if (!cert->pub) 74 goto error_no_ctx; 75 cert->sig = kzalloc(sizeof(struct public_key_signature), GFP_KERNEL); 76 if (!cert->sig) 77 goto error_no_ctx; 78 ctx = kzalloc(sizeof(struct x509_parse_context), GFP_KERNEL); 79 if (!ctx) 80 goto error_no_ctx; 81 82 ctx->cert = cert; 83 ctx->data = (unsigned long)data; 84 85 /* Attempt to decode the certificate */ 86 ret = asn1_ber_decoder(&x509_decoder, ctx, data, datalen); 87 if (ret < 0) 88 goto error_decode; 89 90 /* Decode the AuthorityKeyIdentifier */ 91 if (ctx->raw_akid) { 92 pr_devel("AKID: %u %*phN\n", 93 ctx->raw_akid_size, ctx->raw_akid_size, ctx->raw_akid); 94 ret = asn1_ber_decoder(&x509_akid_decoder, ctx, 95 ctx->raw_akid, ctx->raw_akid_size); 96 if (ret < 0) { 97 pr_warn("Couldn't decode AuthKeyIdentifier\n"); 98 goto error_decode; 99 } 100 } 101 102 ret = -ENOMEM; 103 cert->pub->key = kmemdup(ctx->key, ctx->key_size, GFP_KERNEL); 104 if (!cert->pub->key) 105 goto error_decode; 106 107 cert->pub->keylen = ctx->key_size; 108 109 cert->pub->params = kmemdup(ctx->params, ctx->params_size, GFP_KERNEL); 110 if (!cert->pub->params) 111 goto error_decode; 112 113 cert->pub->paramlen = ctx->params_size; 114 cert->pub->algo = ctx->key_algo; 115 116 /* Grab the signature bits */ 117 ret = x509_get_sig_params(cert); 118 if (ret < 0) 119 goto error_decode; 120 121 /* Generate cert issuer + serial number key ID */ 122 kid = asymmetric_key_generate_id(cert->raw_serial, 123 cert->raw_serial_size, 124 cert->raw_issuer, 125 cert->raw_issuer_size); 126 if (IS_ERR(kid)) { 127 ret = PTR_ERR(kid); 128 goto error_decode; 129 } 130 cert->id = kid; 131 132 /* Detect self-signed certificates */ 133 ret = x509_check_for_self_signed(cert); 134 if (ret < 0) 135 goto error_decode; 136 137 kfree(ctx); 138 return cert; 139 140 error_decode: 141 kfree(ctx); 142 error_no_ctx: 143 x509_free_certificate(cert); 144 error_no_cert: 145 return ERR_PTR(ret); 146 } 147 EXPORT_SYMBOL_GPL(x509_cert_parse); 148 149 /* 150 * Note an OID when we find one for later processing when we know how 151 * to interpret it. 152 */ 153 int x509_note_OID(void *context, size_t hdrlen, 154 unsigned char tag, 155 const void *value, size_t vlen) 156 { 157 struct x509_parse_context *ctx = context; 158 159 ctx->last_oid = look_up_OID(value, vlen); 160 if (ctx->last_oid == OID__NR) { 161 char buffer[50]; 162 sprint_oid(value, vlen, buffer, sizeof(buffer)); 163 pr_debug("Unknown OID: [%lu] %s\n", 164 (unsigned long)value - ctx->data, buffer); 165 } 166 return 0; 167 } 168 169 /* 170 * Save the position of the TBS data so that we can check the signature over it 171 * later. 172 */ 173 int x509_note_tbs_certificate(void *context, size_t hdrlen, 174 unsigned char tag, 175 const void *value, size_t vlen) 176 { 177 struct x509_parse_context *ctx = context; 178 179 pr_debug("x509_note_tbs_certificate(,%zu,%02x,%ld,%zu)!\n", 180 hdrlen, tag, (unsigned long)value - ctx->data, vlen); 181 182 ctx->cert->tbs = value - hdrlen; 183 ctx->cert->tbs_size = vlen + hdrlen; 184 return 0; 185 } 186 187 /* 188 * Record the algorithm that was used to sign this certificate. 189 */ 190 int x509_note_sig_algo(void *context, size_t hdrlen, unsigned char tag, 191 const void *value, size_t vlen) 192 { 193 struct x509_parse_context *ctx = context; 194 195 pr_debug("PubKey Algo: %u\n", ctx->last_oid); 196 197 switch (ctx->last_oid) { 198 default: 199 return -ENOPKG; /* Unsupported combination */ 200 201 case OID_sha1WithRSAEncryption: 202 ctx->cert->sig->hash_algo = "sha1"; 203 goto rsa_pkcs1; 204 205 case OID_sha256WithRSAEncryption: 206 ctx->cert->sig->hash_algo = "sha256"; 207 goto rsa_pkcs1; 208 209 case OID_sha384WithRSAEncryption: 210 ctx->cert->sig->hash_algo = "sha384"; 211 goto rsa_pkcs1; 212 213 case OID_sha512WithRSAEncryption: 214 ctx->cert->sig->hash_algo = "sha512"; 215 goto rsa_pkcs1; 216 217 case OID_sha224WithRSAEncryption: 218 ctx->cert->sig->hash_algo = "sha224"; 219 goto rsa_pkcs1; 220 221 case OID_id_ecdsa_with_sha1: 222 ctx->cert->sig->hash_algo = "sha1"; 223 goto ecdsa; 224 225 case OID_id_rsassa_pkcs1_v1_5_with_sha3_256: 226 ctx->cert->sig->hash_algo = "sha3-256"; 227 goto rsa_pkcs1; 228 229 case OID_id_rsassa_pkcs1_v1_5_with_sha3_384: 230 ctx->cert->sig->hash_algo = "sha3-384"; 231 goto rsa_pkcs1; 232 233 case OID_id_rsassa_pkcs1_v1_5_with_sha3_512: 234 ctx->cert->sig->hash_algo = "sha3-512"; 235 goto rsa_pkcs1; 236 237 case OID_id_ecdsa_with_sha224: 238 ctx->cert->sig->hash_algo = "sha224"; 239 goto ecdsa; 240 241 case OID_id_ecdsa_with_sha256: 242 ctx->cert->sig->hash_algo = "sha256"; 243 goto ecdsa; 244 245 case OID_id_ecdsa_with_sha384: 246 ctx->cert->sig->hash_algo = "sha384"; 247 goto ecdsa; 248 249 case OID_id_ecdsa_with_sha512: 250 ctx->cert->sig->hash_algo = "sha512"; 251 goto ecdsa; 252 253 case OID_id_ecdsa_with_sha3_256: 254 ctx->cert->sig->hash_algo = "sha3-256"; 255 goto ecdsa; 256 257 case OID_id_ecdsa_with_sha3_384: 258 ctx->cert->sig->hash_algo = "sha3-384"; 259 goto ecdsa; 260 261 case OID_id_ecdsa_with_sha3_512: 262 ctx->cert->sig->hash_algo = "sha3-512"; 263 goto ecdsa; 264 265 case OID_gost2012Signature256: 266 ctx->cert->sig->hash_algo = "streebog256"; 267 goto ecrdsa; 268 269 case OID_gost2012Signature512: 270 ctx->cert->sig->hash_algo = "streebog512"; 271 goto ecrdsa; 272 273 case OID_SM2_with_SM3: 274 ctx->cert->sig->hash_algo = "sm3"; 275 goto sm2; 276 } 277 278 rsa_pkcs1: 279 ctx->cert->sig->pkey_algo = "rsa"; 280 ctx->cert->sig->encoding = "pkcs1"; 281 ctx->sig_algo = ctx->last_oid; 282 return 0; 283 ecrdsa: 284 ctx->cert->sig->pkey_algo = "ecrdsa"; 285 ctx->cert->sig->encoding = "raw"; 286 ctx->sig_algo = ctx->last_oid; 287 return 0; 288 sm2: 289 ctx->cert->sig->pkey_algo = "sm2"; 290 ctx->cert->sig->encoding = "raw"; 291 ctx->sig_algo = ctx->last_oid; 292 return 0; 293 ecdsa: 294 ctx->cert->sig->pkey_algo = "ecdsa"; 295 ctx->cert->sig->encoding = "x962"; 296 ctx->sig_algo = ctx->last_oid; 297 return 0; 298 } 299 300 /* 301 * Note the whereabouts and type of the signature. 302 */ 303 int x509_note_signature(void *context, size_t hdrlen, 304 unsigned char tag, 305 const void *value, size_t vlen) 306 { 307 struct x509_parse_context *ctx = context; 308 309 pr_debug("Signature: alg=%u, size=%zu\n", ctx->last_oid, vlen); 310 311 /* 312 * In X.509 certificates, the signature's algorithm is stored in two 313 * places: inside the TBSCertificate (the data that is signed), and 314 * alongside the signature. These *must* match. 315 */ 316 if (ctx->last_oid != ctx->sig_algo) { 317 pr_warn("signatureAlgorithm (%u) differs from tbsCertificate.signature (%u)\n", 318 ctx->last_oid, ctx->sig_algo); 319 return -EINVAL; 320 } 321 322 if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0 || 323 strcmp(ctx->cert->sig->pkey_algo, "ecrdsa") == 0 || 324 strcmp(ctx->cert->sig->pkey_algo, "sm2") == 0 || 325 strcmp(ctx->cert->sig->pkey_algo, "ecdsa") == 0) { 326 /* Discard the BIT STRING metadata */ 327 if (vlen < 1 || *(const u8 *)value != 0) 328 return -EBADMSG; 329 330 value++; 331 vlen--; 332 } 333 334 ctx->cert->raw_sig = value; 335 ctx->cert->raw_sig_size = vlen; 336 return 0; 337 } 338 339 /* 340 * Note the certificate serial number 341 */ 342 int x509_note_serial(void *context, size_t hdrlen, 343 unsigned char tag, 344 const void *value, size_t vlen) 345 { 346 struct x509_parse_context *ctx = context; 347 ctx->cert->raw_serial = value; 348 ctx->cert->raw_serial_size = vlen; 349 return 0; 350 } 351 352 /* 353 * Note some of the name segments from which we'll fabricate a name. 354 */ 355 int x509_extract_name_segment(void *context, size_t hdrlen, 356 unsigned char tag, 357 const void *value, size_t vlen) 358 { 359 struct x509_parse_context *ctx = context; 360 361 switch (ctx->last_oid) { 362 case OID_commonName: 363 ctx->cn_size = vlen; 364 ctx->cn_offset = (unsigned long)value - ctx->data; 365 break; 366 case OID_organizationName: 367 ctx->o_size = vlen; 368 ctx->o_offset = (unsigned long)value - ctx->data; 369 break; 370 case OID_email_address: 371 ctx->email_size = vlen; 372 ctx->email_offset = (unsigned long)value - ctx->data; 373 break; 374 default: 375 break; 376 } 377 378 return 0; 379 } 380 381 /* 382 * Fabricate and save the issuer and subject names 383 */ 384 static int x509_fabricate_name(struct x509_parse_context *ctx, size_t hdrlen, 385 unsigned char tag, 386 char **_name, size_t vlen) 387 { 388 const void *name, *data = (const void *)ctx->data; 389 size_t namesize; 390 char *buffer; 391 392 if (*_name) 393 return -EINVAL; 394 395 /* Empty name string if no material */ 396 if (!ctx->cn_size && !ctx->o_size && !ctx->email_size) { 397 buffer = kmalloc(1, GFP_KERNEL); 398 if (!buffer) 399 return -ENOMEM; 400 buffer[0] = 0; 401 goto done; 402 } 403 404 if (ctx->cn_size && ctx->o_size) { 405 /* Consider combining O and CN, but use only the CN if it is 406 * prefixed by the O, or a significant portion thereof. 407 */ 408 namesize = ctx->cn_size; 409 name = data + ctx->cn_offset; 410 if (ctx->cn_size >= ctx->o_size && 411 memcmp(data + ctx->cn_offset, data + ctx->o_offset, 412 ctx->o_size) == 0) 413 goto single_component; 414 if (ctx->cn_size >= 7 && 415 ctx->o_size >= 7 && 416 memcmp(data + ctx->cn_offset, data + ctx->o_offset, 7) == 0) 417 goto single_component; 418 419 buffer = kmalloc(ctx->o_size + 2 + ctx->cn_size + 1, 420 GFP_KERNEL); 421 if (!buffer) 422 return -ENOMEM; 423 424 memcpy(buffer, 425 data + ctx->o_offset, ctx->o_size); 426 buffer[ctx->o_size + 0] = ':'; 427 buffer[ctx->o_size + 1] = ' '; 428 memcpy(buffer + ctx->o_size + 2, 429 data + ctx->cn_offset, ctx->cn_size); 430 buffer[ctx->o_size + 2 + ctx->cn_size] = 0; 431 goto done; 432 433 } else if (ctx->cn_size) { 434 namesize = ctx->cn_size; 435 name = data + ctx->cn_offset; 436 } else if (ctx->o_size) { 437 namesize = ctx->o_size; 438 name = data + ctx->o_offset; 439 } else { 440 namesize = ctx->email_size; 441 name = data + ctx->email_offset; 442 } 443 444 single_component: 445 buffer = kmalloc(namesize + 1, GFP_KERNEL); 446 if (!buffer) 447 return -ENOMEM; 448 memcpy(buffer, name, namesize); 449 buffer[namesize] = 0; 450 451 done: 452 *_name = buffer; 453 ctx->cn_size = 0; 454 ctx->o_size = 0; 455 ctx->email_size = 0; 456 return 0; 457 } 458 459 int x509_note_issuer(void *context, size_t hdrlen, 460 unsigned char tag, 461 const void *value, size_t vlen) 462 { 463 struct x509_parse_context *ctx = context; 464 struct asymmetric_key_id *kid; 465 466 ctx->cert->raw_issuer = value; 467 ctx->cert->raw_issuer_size = vlen; 468 469 if (!ctx->cert->sig->auth_ids[2]) { 470 kid = asymmetric_key_generate_id(value, vlen, "", 0); 471 if (IS_ERR(kid)) 472 return PTR_ERR(kid); 473 ctx->cert->sig->auth_ids[2] = kid; 474 } 475 476 return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->issuer, vlen); 477 } 478 479 int x509_note_subject(void *context, size_t hdrlen, 480 unsigned char tag, 481 const void *value, size_t vlen) 482 { 483 struct x509_parse_context *ctx = context; 484 ctx->cert->raw_subject = value; 485 ctx->cert->raw_subject_size = vlen; 486 return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->subject, vlen); 487 } 488 489 /* 490 * Extract the parameters for the public key 491 */ 492 int x509_note_params(void *context, size_t hdrlen, 493 unsigned char tag, 494 const void *value, size_t vlen) 495 { 496 struct x509_parse_context *ctx = context; 497 498 /* 499 * AlgorithmIdentifier is used three times in the x509, we should skip 500 * first and ignore third, using second one which is after subject and 501 * before subjectPublicKey. 502 */ 503 if (!ctx->cert->raw_subject || ctx->key) 504 return 0; 505 ctx->params = value - hdrlen; 506 ctx->params_size = vlen + hdrlen; 507 return 0; 508 } 509 510 /* 511 * Extract the data for the public key algorithm 512 */ 513 int x509_extract_key_data(void *context, size_t hdrlen, 514 unsigned char tag, 515 const void *value, size_t vlen) 516 { 517 struct x509_parse_context *ctx = context; 518 enum OID oid; 519 520 ctx->key_algo = ctx->last_oid; 521 switch (ctx->last_oid) { 522 case OID_rsaEncryption: 523 ctx->cert->pub->pkey_algo = "rsa"; 524 break; 525 case OID_gost2012PKey256: 526 case OID_gost2012PKey512: 527 ctx->cert->pub->pkey_algo = "ecrdsa"; 528 break; 529 case OID_sm2: 530 ctx->cert->pub->pkey_algo = "sm2"; 531 break; 532 case OID_id_ecPublicKey: 533 if (parse_OID(ctx->params, ctx->params_size, &oid) != 0) 534 return -EBADMSG; 535 536 switch (oid) { 537 case OID_sm2: 538 ctx->cert->pub->pkey_algo = "sm2"; 539 break; 540 case OID_id_prime192v1: 541 ctx->cert->pub->pkey_algo = "ecdsa-nist-p192"; 542 break; 543 case OID_id_prime256v1: 544 ctx->cert->pub->pkey_algo = "ecdsa-nist-p256"; 545 break; 546 case OID_id_ansip384r1: 547 ctx->cert->pub->pkey_algo = "ecdsa-nist-p384"; 548 break; 549 default: 550 return -ENOPKG; 551 } 552 break; 553 default: 554 return -ENOPKG; 555 } 556 557 /* Discard the BIT STRING metadata */ 558 if (vlen < 1 || *(const u8 *)value != 0) 559 return -EBADMSG; 560 ctx->key = value + 1; 561 ctx->key_size = vlen - 1; 562 return 0; 563 } 564 565 /* The keyIdentifier in AuthorityKeyIdentifier SEQUENCE is tag(CONT,PRIM,0) */ 566 #define SEQ_TAG_KEYID (ASN1_CONT << 6) 567 568 /* 569 * Process certificate extensions that are used to qualify the certificate. 570 */ 571 int x509_process_extension(void *context, size_t hdrlen, 572 unsigned char tag, 573 const void *value, size_t vlen) 574 { 575 struct x509_parse_context *ctx = context; 576 struct asymmetric_key_id *kid; 577 const unsigned char *v = value; 578 579 pr_debug("Extension: %u\n", ctx->last_oid); 580 581 if (ctx->last_oid == OID_subjectKeyIdentifier) { 582 /* Get hold of the key fingerprint */ 583 if (ctx->cert->skid || vlen < 3) 584 return -EBADMSG; 585 if (v[0] != ASN1_OTS || v[1] != vlen - 2) 586 return -EBADMSG; 587 v += 2; 588 vlen -= 2; 589 590 ctx->cert->raw_skid_size = vlen; 591 ctx->cert->raw_skid = v; 592 kid = asymmetric_key_generate_id(v, vlen, "", 0); 593 if (IS_ERR(kid)) 594 return PTR_ERR(kid); 595 ctx->cert->skid = kid; 596 pr_debug("subjkeyid %*phN\n", kid->len, kid->data); 597 return 0; 598 } 599 600 if (ctx->last_oid == OID_keyUsage) { 601 /* 602 * Get hold of the keyUsage bit string 603 * v[1] is the encoding size 604 * (Expect either 0x02 or 0x03, making it 1 or 2 bytes) 605 * v[2] is the number of unused bits in the bit string 606 * (If >= 3 keyCertSign is missing when v[1] = 0x02) 607 * v[3] and possibly v[4] contain the bit string 608 * 609 * From RFC 5280 4.2.1.3: 610 * 0x04 is where keyCertSign lands in this bit string 611 * 0x80 is where digitalSignature lands in this bit string 612 */ 613 if (v[0] != ASN1_BTS) 614 return -EBADMSG; 615 if (vlen < 4) 616 return -EBADMSG; 617 if (v[2] >= 8) 618 return -EBADMSG; 619 if (v[3] & 0x80) 620 ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_DIGITALSIG; 621 if (v[1] == 0x02 && v[2] <= 2 && (v[3] & 0x04)) 622 ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN; 623 else if (vlen > 4 && v[1] == 0x03 && (v[3] & 0x04)) 624 ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN; 625 return 0; 626 } 627 628 if (ctx->last_oid == OID_authorityKeyIdentifier) { 629 /* Get hold of the CA key fingerprint */ 630 ctx->raw_akid = v; 631 ctx->raw_akid_size = vlen; 632 return 0; 633 } 634 635 if (ctx->last_oid == OID_basicConstraints) { 636 /* 637 * Get hold of the basicConstraints 638 * v[1] is the encoding size 639 * (Expect 0x2 or greater, making it 1 or more bytes) 640 * v[2] is the encoding type 641 * (Expect an ASN1_BOOL for the CA) 642 * v[3] is the contents of the ASN1_BOOL 643 * (Expect 1 if the CA is TRUE) 644 * vlen should match the entire extension size 645 */ 646 if (v[0] != (ASN1_CONS_BIT | ASN1_SEQ)) 647 return -EBADMSG; 648 if (vlen < 2) 649 return -EBADMSG; 650 if (v[1] != vlen - 2) 651 return -EBADMSG; 652 if (vlen >= 4 && v[1] != 0 && v[2] == ASN1_BOOL && v[3] == 1) 653 ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_CA; 654 return 0; 655 } 656 657 return 0; 658 } 659 660 /** 661 * x509_decode_time - Decode an X.509 time ASN.1 object 662 * @_t: The time to fill in 663 * @hdrlen: The length of the object header 664 * @tag: The object tag 665 * @value: The object value 666 * @vlen: The size of the object value 667 * 668 * Decode an ASN.1 universal time or generalised time field into a struct the 669 * kernel can handle and check it for validity. The time is decoded thus: 670 * 671 * [RFC5280 §4.1.2.5] 672 * CAs conforming to this profile MUST always encode certificate validity 673 * dates through the year 2049 as UTCTime; certificate validity dates in 674 * 2050 or later MUST be encoded as GeneralizedTime. Conforming 675 * applications MUST be able to process validity dates that are encoded in 676 * either UTCTime or GeneralizedTime. 677 */ 678 int x509_decode_time(time64_t *_t, size_t hdrlen, 679 unsigned char tag, 680 const unsigned char *value, size_t vlen) 681 { 682 static const unsigned char month_lengths[] = { 31, 28, 31, 30, 31, 30, 683 31, 31, 30, 31, 30, 31 }; 684 const unsigned char *p = value; 685 unsigned year, mon, day, hour, min, sec, mon_len; 686 687 #define dec2bin(X) ({ unsigned char x = (X) - '0'; if (x > 9) goto invalid_time; x; }) 688 #define DD2bin(P) ({ unsigned x = dec2bin(P[0]) * 10 + dec2bin(P[1]); P += 2; x; }) 689 690 if (tag == ASN1_UNITIM) { 691 /* UTCTime: YYMMDDHHMMSSZ */ 692 if (vlen != 13) 693 goto unsupported_time; 694 year = DD2bin(p); 695 if (year >= 50) 696 year += 1900; 697 else 698 year += 2000; 699 } else if (tag == ASN1_GENTIM) { 700 /* GenTime: YYYYMMDDHHMMSSZ */ 701 if (vlen != 15) 702 goto unsupported_time; 703 year = DD2bin(p) * 100 + DD2bin(p); 704 if (year >= 1950 && year <= 2049) 705 goto invalid_time; 706 } else { 707 goto unsupported_time; 708 } 709 710 mon = DD2bin(p); 711 day = DD2bin(p); 712 hour = DD2bin(p); 713 min = DD2bin(p); 714 sec = DD2bin(p); 715 716 if (*p != 'Z') 717 goto unsupported_time; 718 719 if (year < 1970 || 720 mon < 1 || mon > 12) 721 goto invalid_time; 722 723 mon_len = month_lengths[mon - 1]; 724 if (mon == 2) { 725 if (year % 4 == 0) { 726 mon_len = 29; 727 if (year % 100 == 0) { 728 mon_len = 28; 729 if (year % 400 == 0) 730 mon_len = 29; 731 } 732 } 733 } 734 735 if (day < 1 || day > mon_len || 736 hour > 24 || /* ISO 8601 permits 24:00:00 as midnight tomorrow */ 737 min > 59 || 738 sec > 60) /* ISO 8601 permits leap seconds [X.680 46.3] */ 739 goto invalid_time; 740 741 *_t = mktime64(year, mon, day, hour, min, sec); 742 return 0; 743 744 unsupported_time: 745 pr_debug("Got unsupported time [tag %02x]: '%*phN'\n", 746 tag, (int)vlen, value); 747 return -EBADMSG; 748 invalid_time: 749 pr_debug("Got invalid time [tag %02x]: '%*phN'\n", 750 tag, (int)vlen, value); 751 return -EBADMSG; 752 } 753 EXPORT_SYMBOL_GPL(x509_decode_time); 754 755 int x509_note_not_before(void *context, size_t hdrlen, 756 unsigned char tag, 757 const void *value, size_t vlen) 758 { 759 struct x509_parse_context *ctx = context; 760 return x509_decode_time(&ctx->cert->valid_from, hdrlen, tag, value, vlen); 761 } 762 763 int x509_note_not_after(void *context, size_t hdrlen, 764 unsigned char tag, 765 const void *value, size_t vlen) 766 { 767 struct x509_parse_context *ctx = context; 768 return x509_decode_time(&ctx->cert->valid_to, hdrlen, tag, value, vlen); 769 } 770 771 /* 772 * Note a key identifier-based AuthorityKeyIdentifier 773 */ 774 int x509_akid_note_kid(void *context, size_t hdrlen, 775 unsigned char tag, 776 const void *value, size_t vlen) 777 { 778 struct x509_parse_context *ctx = context; 779 struct asymmetric_key_id *kid; 780 781 pr_debug("AKID: keyid: %*phN\n", (int)vlen, value); 782 783 if (ctx->cert->sig->auth_ids[1]) 784 return 0; 785 786 kid = asymmetric_key_generate_id(value, vlen, "", 0); 787 if (IS_ERR(kid)) 788 return PTR_ERR(kid); 789 pr_debug("authkeyid %*phN\n", kid->len, kid->data); 790 ctx->cert->sig->auth_ids[1] = kid; 791 return 0; 792 } 793 794 /* 795 * Note a directoryName in an AuthorityKeyIdentifier 796 */ 797 int x509_akid_note_name(void *context, size_t hdrlen, 798 unsigned char tag, 799 const void *value, size_t vlen) 800 { 801 struct x509_parse_context *ctx = context; 802 803 pr_debug("AKID: name: %*phN\n", (int)vlen, value); 804 805 ctx->akid_raw_issuer = value; 806 ctx->akid_raw_issuer_size = vlen; 807 return 0; 808 } 809 810 /* 811 * Note a serial number in an AuthorityKeyIdentifier 812 */ 813 int x509_akid_note_serial(void *context, size_t hdrlen, 814 unsigned char tag, 815 const void *value, size_t vlen) 816 { 817 struct x509_parse_context *ctx = context; 818 struct asymmetric_key_id *kid; 819 820 pr_debug("AKID: serial: %*phN\n", (int)vlen, value); 821 822 if (!ctx->akid_raw_issuer || ctx->cert->sig->auth_ids[0]) 823 return 0; 824 825 kid = asymmetric_key_generate_id(value, 826 vlen, 827 ctx->akid_raw_issuer, 828 ctx->akid_raw_issuer_size); 829 if (IS_ERR(kid)) 830 return PTR_ERR(kid); 831 832 pr_debug("authkeyid %*phN\n", kid->len, kid->data); 833 ctx->cert->sig->auth_ids[0] = kid; 834 return 0; 835 } 836