xref: /linux/crypto/asymmetric_keys/pkcs7_trust.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /* Validate the trust chain of a PKCS#7 message.
2  *
3  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public Licence
8  * as published by the Free Software Foundation; either version
9  * 2 of the Licence, or (at your option) any later version.
10  */
11 
12 #define pr_fmt(fmt) "PKCS7: "fmt
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/asn1.h>
18 #include <linux/key.h>
19 #include <keys/asymmetric-type.h>
20 #include "public_key.h"
21 #include "pkcs7_parser.h"
22 
23 /**
24  * Check the trust on one PKCS#7 SignedInfo block.
25  */
26 static int pkcs7_validate_trust_one(struct pkcs7_message *pkcs7,
27 				    struct pkcs7_signed_info *sinfo,
28 				    struct key *trust_keyring)
29 {
30 	struct public_key_signature *sig = &sinfo->sig;
31 	struct x509_certificate *x509, *last = NULL, *p;
32 	struct key *key;
33 	bool trusted;
34 	int ret;
35 
36 	kenter(",%u,", sinfo->index);
37 
38 	if (sinfo->unsupported_crypto) {
39 		kleave(" = -ENOPKG [cached]");
40 		return -ENOPKG;
41 	}
42 
43 	for (x509 = sinfo->signer; x509; x509 = x509->signer) {
44 		if (x509->seen) {
45 			if (x509->verified) {
46 				trusted = x509->trusted;
47 				goto verified;
48 			}
49 			kleave(" = -ENOKEY [cached]");
50 			return -ENOKEY;
51 		}
52 		x509->seen = true;
53 
54 		/* Look to see if this certificate is present in the trusted
55 		 * keys.
56 		 */
57 		key = x509_request_asymmetric_key(trust_keyring, x509->id,
58 						  false);
59 		if (!IS_ERR(key)) {
60 			/* One of the X.509 certificates in the PKCS#7 message
61 			 * is apparently the same as one we already trust.
62 			 * Verify that the trusted variant can also validate
63 			 * the signature on the descendant.
64 			 */
65 			pr_devel("sinfo %u: Cert %u as key %x\n",
66 				 sinfo->index, x509->index, key_serial(key));
67 			goto matched;
68 		}
69 		if (key == ERR_PTR(-ENOMEM))
70 			return -ENOMEM;
71 
72 		 /* Self-signed certificates form roots of their own, and if we
73 		  * don't know them, then we can't accept them.
74 		  */
75 		if (x509->next == x509) {
76 			kleave(" = -ENOKEY [unknown self-signed]");
77 			return -ENOKEY;
78 		}
79 
80 		might_sleep();
81 		last = x509;
82 		sig = &last->sig;
83 	}
84 
85 	/* No match - see if the root certificate has a signer amongst the
86 	 * trusted keys.
87 	 */
88 	if (last && last->authority) {
89 		key = x509_request_asymmetric_key(trust_keyring, last->authority,
90 						  false);
91 		if (!IS_ERR(key)) {
92 			x509 = last;
93 			pr_devel("sinfo %u: Root cert %u signer is key %x\n",
94 				 sinfo->index, x509->index, key_serial(key));
95 			goto matched;
96 		}
97 		if (PTR_ERR(key) != -ENOKEY)
98 			return PTR_ERR(key);
99 	}
100 
101 	/* As a last resort, see if we have a trusted public key that matches
102 	 * the signed info directly.
103 	 */
104 	key = x509_request_asymmetric_key(trust_keyring,
105 					  sinfo->signing_cert_id,
106 					  false);
107 	if (!IS_ERR(key)) {
108 		pr_devel("sinfo %u: Direct signer is key %x\n",
109 			 sinfo->index, key_serial(key));
110 		x509 = NULL;
111 		goto matched;
112 	}
113 	if (PTR_ERR(key) != -ENOKEY)
114 		return PTR_ERR(key);
115 
116 	kleave(" = -ENOKEY [no backref]");
117 	return -ENOKEY;
118 
119 matched:
120 	ret = verify_signature(key, sig);
121 	trusted = test_bit(KEY_FLAG_TRUSTED, &key->flags);
122 	key_put(key);
123 	if (ret < 0) {
124 		if (ret == -ENOMEM)
125 			return ret;
126 		kleave(" = -EKEYREJECTED [verify %d]", ret);
127 		return -EKEYREJECTED;
128 	}
129 
130 verified:
131 	if (x509) {
132 		x509->verified = true;
133 		for (p = sinfo->signer; p != x509; p = p->signer) {
134 			p->verified = true;
135 			p->trusted = trusted;
136 		}
137 	}
138 	sinfo->trusted = trusted;
139 	kleave(" = 0");
140 	return 0;
141 }
142 
143 /**
144  * pkcs7_validate_trust - Validate PKCS#7 trust chain
145  * @pkcs7: The PKCS#7 certificate to validate
146  * @trust_keyring: Signing certificates to use as starting points
147  * @_trusted: Set to true if trustworth, false otherwise
148  *
149  * Validate that the certificate chain inside the PKCS#7 message intersects
150  * keys we already know and trust.
151  *
152  * Returns, in order of descending priority:
153  *
154  *  (*) -EKEYREJECTED if a signature failed to match for which we have a valid
155  *	key, or:
156  *
157  *  (*) 0 if at least one signature chain intersects with the keys in the trust
158  *	keyring, or:
159  *
160  *  (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
161  *	chain.
162  *
163  *  (*) -ENOKEY if we couldn't find a match for any of the signature chains in
164  *	the message.
165  *
166  * May also return -ENOMEM.
167  */
168 int pkcs7_validate_trust(struct pkcs7_message *pkcs7,
169 			 struct key *trust_keyring,
170 			 bool *_trusted)
171 {
172 	struct pkcs7_signed_info *sinfo;
173 	struct x509_certificate *p;
174 	int cached_ret = -ENOKEY;
175 	int ret;
176 
177 	for (p = pkcs7->certs; p; p = p->next)
178 		p->seen = false;
179 
180 	for (sinfo = pkcs7->signed_infos; sinfo; sinfo = sinfo->next) {
181 		ret = pkcs7_validate_trust_one(pkcs7, sinfo, trust_keyring);
182 		switch (ret) {
183 		case -ENOKEY:
184 			continue;
185 		case -ENOPKG:
186 			if (cached_ret == -ENOKEY)
187 				cached_ret = -ENOPKG;
188 			continue;
189 		case 0:
190 			*_trusted |= sinfo->trusted;
191 			cached_ret = 0;
192 			continue;
193 		default:
194 			return ret;
195 		}
196 	}
197 
198 	return cached_ret;
199 }
200 EXPORT_SYMBOL_GPL(pkcs7_validate_trust);
201