1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PRNG: Pseudo Random Number Generator 4 * Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using 5 * AES 128 cipher 6 * 7 * (C) Neil Horman <nhorman@tuxdriver.com> 8 */ 9 10 #include <crypto/internal/cipher.h> 11 #include <crypto/internal/rng.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/string.h> 17 18 #define DEFAULT_PRNG_KEY "0123456789abcdef" 19 #define DEFAULT_PRNG_KSZ 16 20 #define DEFAULT_BLK_SZ 16 21 #define DEFAULT_V_SEED "zaybxcwdveuftgsh" 22 23 /* 24 * Flags for the prng_context flags field 25 */ 26 27 #define PRNG_FIXED_SIZE 0x1 28 #define PRNG_NEED_RESET 0x2 29 30 /* 31 * Note: DT is our counter value 32 * I is our intermediate value 33 * V is our seed vector 34 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf 35 * for implementation details 36 */ 37 38 39 struct prng_context { 40 spinlock_t prng_lock; 41 unsigned char rand_data[DEFAULT_BLK_SZ]; 42 unsigned char last_rand_data[DEFAULT_BLK_SZ]; 43 unsigned char DT[DEFAULT_BLK_SZ]; 44 unsigned char I[DEFAULT_BLK_SZ]; 45 unsigned char V[DEFAULT_BLK_SZ]; 46 u32 rand_data_valid; 47 struct crypto_cipher *tfm; 48 u32 flags; 49 }; 50 51 static int dbg; 52 53 static void hexdump(char *note, unsigned char *buf, unsigned int len) 54 { 55 if (dbg) { 56 printk(KERN_CRIT "%s", note); 57 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 58 16, 1, 59 buf, len, false); 60 } 61 } 62 63 #define dbgprint(format, args...) do {\ 64 if (dbg)\ 65 printk(format, ##args);\ 66 } while (0) 67 68 static void xor_vectors(unsigned char *in1, unsigned char *in2, 69 unsigned char *out, unsigned int size) 70 { 71 int i; 72 73 for (i = 0; i < size; i++) 74 out[i] = in1[i] ^ in2[i]; 75 76 } 77 /* 78 * Returns DEFAULT_BLK_SZ bytes of random data per call 79 * returns 0 if generation succeeded, <0 if something went wrong 80 */ 81 static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test) 82 { 83 int i; 84 unsigned char tmp[DEFAULT_BLK_SZ]; 85 unsigned char *output = NULL; 86 87 88 dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n", 89 ctx); 90 91 hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ); 92 hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ); 93 hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ); 94 95 /* 96 * This algorithm is a 3 stage state machine 97 */ 98 for (i = 0; i < 3; i++) { 99 100 switch (i) { 101 case 0: 102 /* 103 * Start by encrypting the counter value 104 * This gives us an intermediate value I 105 */ 106 memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ); 107 output = ctx->I; 108 hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ); 109 break; 110 case 1: 111 112 /* 113 * Next xor I with our secret vector V 114 * encrypt that result to obtain our 115 * pseudo random data which we output 116 */ 117 xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ); 118 hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ); 119 output = ctx->rand_data; 120 break; 121 case 2: 122 /* 123 * First check that we didn't produce the same 124 * random data that we did last time around through this 125 */ 126 if (!memcmp(ctx->rand_data, ctx->last_rand_data, 127 DEFAULT_BLK_SZ)) { 128 if (cont_test) { 129 panic("cprng %p Failed repetition check!\n", 130 ctx); 131 } 132 133 printk(KERN_ERR 134 "ctx %p Failed repetition check!\n", 135 ctx); 136 137 ctx->flags |= PRNG_NEED_RESET; 138 return -EINVAL; 139 } 140 memcpy(ctx->last_rand_data, ctx->rand_data, 141 DEFAULT_BLK_SZ); 142 143 /* 144 * Lastly xor the random data with I 145 * and encrypt that to obtain a new secret vector V 146 */ 147 xor_vectors(ctx->rand_data, ctx->I, tmp, 148 DEFAULT_BLK_SZ); 149 output = ctx->V; 150 hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ); 151 break; 152 } 153 154 155 /* do the encryption */ 156 crypto_cipher_encrypt_one(ctx->tfm, output, tmp); 157 158 } 159 160 /* 161 * Now update our DT value 162 */ 163 for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) { 164 ctx->DT[i] += 1; 165 if (ctx->DT[i] != 0) 166 break; 167 } 168 169 dbgprint("Returning new block for context %p\n", ctx); 170 ctx->rand_data_valid = 0; 171 172 hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ); 173 hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ); 174 hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ); 175 hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ); 176 177 return 0; 178 } 179 180 /* Our exported functions */ 181 static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx, 182 int do_cont_test) 183 { 184 unsigned char *ptr = buf; 185 unsigned int byte_count = (unsigned int)nbytes; 186 int err; 187 188 189 spin_lock_bh(&ctx->prng_lock); 190 191 err = -EINVAL; 192 if (ctx->flags & PRNG_NEED_RESET) 193 goto done; 194 195 /* 196 * If the FIXED_SIZE flag is on, only return whole blocks of 197 * pseudo random data 198 */ 199 err = -EINVAL; 200 if (ctx->flags & PRNG_FIXED_SIZE) { 201 if (nbytes < DEFAULT_BLK_SZ) 202 goto done; 203 byte_count = DEFAULT_BLK_SZ; 204 } 205 206 /* 207 * Return 0 in case of success as mandated by the kernel 208 * crypto API interface definition. 209 */ 210 err = 0; 211 212 dbgprint(KERN_CRIT "getting %d random bytes for context %p\n", 213 byte_count, ctx); 214 215 216 remainder: 217 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) { 218 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) { 219 memset(buf, 0, nbytes); 220 err = -EINVAL; 221 goto done; 222 } 223 } 224 225 /* 226 * Copy any data less than an entire block 227 */ 228 if (byte_count < DEFAULT_BLK_SZ) { 229 empty_rbuf: 230 while (ctx->rand_data_valid < DEFAULT_BLK_SZ) { 231 *ptr = ctx->rand_data[ctx->rand_data_valid]; 232 ptr++; 233 byte_count--; 234 ctx->rand_data_valid++; 235 if (byte_count == 0) 236 goto done; 237 } 238 } 239 240 /* 241 * Now copy whole blocks 242 */ 243 for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) { 244 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) { 245 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) { 246 memset(buf, 0, nbytes); 247 err = -EINVAL; 248 goto done; 249 } 250 } 251 if (ctx->rand_data_valid > 0) 252 goto empty_rbuf; 253 memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ); 254 ctx->rand_data_valid += DEFAULT_BLK_SZ; 255 ptr += DEFAULT_BLK_SZ; 256 } 257 258 /* 259 * Now go back and get any remaining partial block 260 */ 261 if (byte_count) 262 goto remainder; 263 264 done: 265 spin_unlock_bh(&ctx->prng_lock); 266 dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n", 267 err, ctx); 268 return err; 269 } 270 271 static void free_prng_context(struct prng_context *ctx) 272 { 273 crypto_free_cipher(ctx->tfm); 274 } 275 276 static int reset_prng_context(struct prng_context *ctx, 277 const unsigned char *key, size_t klen, 278 const unsigned char *V, const unsigned char *DT) 279 { 280 int ret; 281 const unsigned char *prng_key; 282 283 spin_lock_bh(&ctx->prng_lock); 284 ctx->flags |= PRNG_NEED_RESET; 285 286 prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY; 287 288 if (!key) 289 klen = DEFAULT_PRNG_KSZ; 290 291 if (V) 292 memcpy(ctx->V, V, DEFAULT_BLK_SZ); 293 else 294 memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ); 295 296 if (DT) 297 memcpy(ctx->DT, DT, DEFAULT_BLK_SZ); 298 else 299 memset(ctx->DT, 0, DEFAULT_BLK_SZ); 300 301 memset(ctx->rand_data, 0, DEFAULT_BLK_SZ); 302 memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ); 303 304 ctx->rand_data_valid = DEFAULT_BLK_SZ; 305 306 ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen); 307 if (ret) { 308 dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n", 309 crypto_cipher_get_flags(ctx->tfm)); 310 goto out; 311 } 312 313 ret = 0; 314 ctx->flags &= ~PRNG_NEED_RESET; 315 out: 316 spin_unlock_bh(&ctx->prng_lock); 317 return ret; 318 } 319 320 static int cprng_init(struct crypto_tfm *tfm) 321 { 322 struct prng_context *ctx = crypto_tfm_ctx(tfm); 323 324 spin_lock_init(&ctx->prng_lock); 325 ctx->tfm = crypto_alloc_cipher("aes", 0, 0); 326 if (IS_ERR(ctx->tfm)) { 327 dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n", 328 ctx); 329 return PTR_ERR(ctx->tfm); 330 } 331 332 if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0) 333 return -EINVAL; 334 335 /* 336 * after allocation, we should always force the user to reset 337 * so they don't inadvertently use the insecure default values 338 * without specifying them intentially 339 */ 340 ctx->flags |= PRNG_NEED_RESET; 341 return 0; 342 } 343 344 static void cprng_exit(struct crypto_tfm *tfm) 345 { 346 free_prng_context(crypto_tfm_ctx(tfm)); 347 } 348 349 static int cprng_get_random(struct crypto_rng *tfm, 350 const u8 *src, unsigned int slen, 351 u8 *rdata, unsigned int dlen) 352 { 353 struct prng_context *prng = crypto_rng_ctx(tfm); 354 355 return get_prng_bytes(rdata, dlen, prng, 0); 356 } 357 358 /* 359 * This is the cprng_registered reset method the seed value is 360 * interpreted as the tuple { V KEY DT} 361 * V and KEY are required during reset, and DT is optional, detected 362 * as being present by testing the length of the seed 363 */ 364 static int cprng_reset(struct crypto_rng *tfm, 365 const u8 *seed, unsigned int slen) 366 { 367 struct prng_context *prng = crypto_rng_ctx(tfm); 368 const u8 *key = seed + DEFAULT_BLK_SZ; 369 const u8 *dt = NULL; 370 371 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ) 372 return -EINVAL; 373 374 if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ)) 375 dt = key + DEFAULT_PRNG_KSZ; 376 377 reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt); 378 379 if (prng->flags & PRNG_NEED_RESET) 380 return -EINVAL; 381 return 0; 382 } 383 384 #ifdef CONFIG_CRYPTO_FIPS 385 static int fips_cprng_get_random(struct crypto_rng *tfm, 386 const u8 *src, unsigned int slen, 387 u8 *rdata, unsigned int dlen) 388 { 389 struct prng_context *prng = crypto_rng_ctx(tfm); 390 391 return get_prng_bytes(rdata, dlen, prng, 1); 392 } 393 394 static int fips_cprng_reset(struct crypto_rng *tfm, 395 const u8 *seed, unsigned int slen) 396 { 397 u8 rdata[DEFAULT_BLK_SZ]; 398 const u8 *key = seed + DEFAULT_BLK_SZ; 399 int rc; 400 401 struct prng_context *prng = crypto_rng_ctx(tfm); 402 403 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ) 404 return -EINVAL; 405 406 /* fips strictly requires seed != key */ 407 if (!memcmp(seed, key, DEFAULT_PRNG_KSZ)) 408 return -EINVAL; 409 410 rc = cprng_reset(tfm, seed, slen); 411 412 if (!rc) 413 goto out; 414 415 /* this primes our continuity test */ 416 rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0); 417 prng->rand_data_valid = DEFAULT_BLK_SZ; 418 419 out: 420 return rc; 421 } 422 #endif 423 424 static struct rng_alg rng_algs[] = { { 425 .generate = cprng_get_random, 426 .seed = cprng_reset, 427 .seedsize = DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ, 428 .base = { 429 .cra_name = "stdrng", 430 .cra_driver_name = "ansi_cprng", 431 .cra_priority = 100, 432 .cra_ctxsize = sizeof(struct prng_context), 433 .cra_module = THIS_MODULE, 434 .cra_init = cprng_init, 435 .cra_exit = cprng_exit, 436 } 437 #ifdef CONFIG_CRYPTO_FIPS 438 }, { 439 .generate = fips_cprng_get_random, 440 .seed = fips_cprng_reset, 441 .seedsize = DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ, 442 .base = { 443 .cra_name = "fips(ansi_cprng)", 444 .cra_driver_name = "fips_ansi_cprng", 445 .cra_priority = 300, 446 .cra_ctxsize = sizeof(struct prng_context), 447 .cra_module = THIS_MODULE, 448 .cra_init = cprng_init, 449 .cra_exit = cprng_exit, 450 } 451 #endif 452 } }; 453 454 /* Module initalization */ 455 static int __init prng_mod_init(void) 456 { 457 return crypto_register_rngs(rng_algs, ARRAY_SIZE(rng_algs)); 458 } 459 460 static void __exit prng_mod_fini(void) 461 { 462 crypto_unregister_rngs(rng_algs, ARRAY_SIZE(rng_algs)); 463 } 464 465 MODULE_LICENSE("GPL"); 466 MODULE_DESCRIPTION("Software Pseudo Random Number Generator"); 467 MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>"); 468 module_param(dbg, int, 0); 469 MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)"); 470 subsys_initcall(prng_mod_init); 471 module_exit(prng_mod_fini); 472 MODULE_ALIAS_CRYPTO("stdrng"); 473 MODULE_ALIAS_CRYPTO("ansi_cprng"); 474 MODULE_IMPORT_NS("CRYPTO_INTERNAL"); 475