xref: /linux/crypto/ansi_cprng.c (revision 63307d015b91e626c97bb82e88054af3d0b74643)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PRNG: Pseudo Random Number Generator
4  *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
5  *       AES 128 cipher
6  *
7  *  (C) Neil Horman <nhorman@tuxdriver.com>
8  */
9 
10 #include <crypto/internal/rng.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/string.h>
16 
17 #define DEFAULT_PRNG_KEY "0123456789abcdef"
18 #define DEFAULT_PRNG_KSZ 16
19 #define DEFAULT_BLK_SZ 16
20 #define DEFAULT_V_SEED "zaybxcwdveuftgsh"
21 
22 /*
23  * Flags for the prng_context flags field
24  */
25 
26 #define PRNG_FIXED_SIZE 0x1
27 #define PRNG_NEED_RESET 0x2
28 
29 /*
30  * Note: DT is our counter value
31  *	 I is our intermediate value
32  *	 V is our seed vector
33  * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
34  * for implementation details
35  */
36 
37 
38 struct prng_context {
39 	spinlock_t prng_lock;
40 	unsigned char rand_data[DEFAULT_BLK_SZ];
41 	unsigned char last_rand_data[DEFAULT_BLK_SZ];
42 	unsigned char DT[DEFAULT_BLK_SZ];
43 	unsigned char I[DEFAULT_BLK_SZ];
44 	unsigned char V[DEFAULT_BLK_SZ];
45 	u32 rand_data_valid;
46 	struct crypto_cipher *tfm;
47 	u32 flags;
48 };
49 
50 static int dbg;
51 
52 static void hexdump(char *note, unsigned char *buf, unsigned int len)
53 {
54 	if (dbg) {
55 		printk(KERN_CRIT "%s", note);
56 		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
57 				16, 1,
58 				buf, len, false);
59 	}
60 }
61 
62 #define dbgprint(format, args...) do {\
63 if (dbg)\
64 	printk(format, ##args);\
65 } while (0)
66 
67 static void xor_vectors(unsigned char *in1, unsigned char *in2,
68 			unsigned char *out, unsigned int size)
69 {
70 	int i;
71 
72 	for (i = 0; i < size; i++)
73 		out[i] = in1[i] ^ in2[i];
74 
75 }
76 /*
77  * Returns DEFAULT_BLK_SZ bytes of random data per call
78  * returns 0 if generation succeeded, <0 if something went wrong
79  */
80 static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
81 {
82 	int i;
83 	unsigned char tmp[DEFAULT_BLK_SZ];
84 	unsigned char *output = NULL;
85 
86 
87 	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
88 		ctx);
89 
90 	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
91 	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
92 	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
93 
94 	/*
95 	 * This algorithm is a 3 stage state machine
96 	 */
97 	for (i = 0; i < 3; i++) {
98 
99 		switch (i) {
100 		case 0:
101 			/*
102 			 * Start by encrypting the counter value
103 			 * This gives us an intermediate value I
104 			 */
105 			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
106 			output = ctx->I;
107 			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
108 			break;
109 		case 1:
110 
111 			/*
112 			 * Next xor I with our secret vector V
113 			 * encrypt that result to obtain our
114 			 * pseudo random data which we output
115 			 */
116 			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
117 			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
118 			output = ctx->rand_data;
119 			break;
120 		case 2:
121 			/*
122 			 * First check that we didn't produce the same
123 			 * random data that we did last time around through this
124 			 */
125 			if (!memcmp(ctx->rand_data, ctx->last_rand_data,
126 					DEFAULT_BLK_SZ)) {
127 				if (cont_test) {
128 					panic("cprng %p Failed repetition check!\n",
129 						ctx);
130 				}
131 
132 				printk(KERN_ERR
133 					"ctx %p Failed repetition check!\n",
134 					ctx);
135 
136 				ctx->flags |= PRNG_NEED_RESET;
137 				return -EINVAL;
138 			}
139 			memcpy(ctx->last_rand_data, ctx->rand_data,
140 				DEFAULT_BLK_SZ);
141 
142 			/*
143 			 * Lastly xor the random data with I
144 			 * and encrypt that to obtain a new secret vector V
145 			 */
146 			xor_vectors(ctx->rand_data, ctx->I, tmp,
147 				DEFAULT_BLK_SZ);
148 			output = ctx->V;
149 			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
150 			break;
151 		}
152 
153 
154 		/* do the encryption */
155 		crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
156 
157 	}
158 
159 	/*
160 	 * Now update our DT value
161 	 */
162 	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
163 		ctx->DT[i] += 1;
164 		if (ctx->DT[i] != 0)
165 			break;
166 	}
167 
168 	dbgprint("Returning new block for context %p\n", ctx);
169 	ctx->rand_data_valid = 0;
170 
171 	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
172 	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
173 	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
174 	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
175 
176 	return 0;
177 }
178 
179 /* Our exported functions */
180 static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
181 				int do_cont_test)
182 {
183 	unsigned char *ptr = buf;
184 	unsigned int byte_count = (unsigned int)nbytes;
185 	int err;
186 
187 
188 	spin_lock_bh(&ctx->prng_lock);
189 
190 	err = -EINVAL;
191 	if (ctx->flags & PRNG_NEED_RESET)
192 		goto done;
193 
194 	/*
195 	 * If the FIXED_SIZE flag is on, only return whole blocks of
196 	 * pseudo random data
197 	 */
198 	err = -EINVAL;
199 	if (ctx->flags & PRNG_FIXED_SIZE) {
200 		if (nbytes < DEFAULT_BLK_SZ)
201 			goto done;
202 		byte_count = DEFAULT_BLK_SZ;
203 	}
204 
205 	/*
206 	 * Return 0 in case of success as mandated by the kernel
207 	 * crypto API interface definition.
208 	 */
209 	err = 0;
210 
211 	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
212 		byte_count, ctx);
213 
214 
215 remainder:
216 	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
217 		if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
218 			memset(buf, 0, nbytes);
219 			err = -EINVAL;
220 			goto done;
221 		}
222 	}
223 
224 	/*
225 	 * Copy any data less than an entire block
226 	 */
227 	if (byte_count < DEFAULT_BLK_SZ) {
228 empty_rbuf:
229 		while (ctx->rand_data_valid < DEFAULT_BLK_SZ) {
230 			*ptr = ctx->rand_data[ctx->rand_data_valid];
231 			ptr++;
232 			byte_count--;
233 			ctx->rand_data_valid++;
234 			if (byte_count == 0)
235 				goto done;
236 		}
237 	}
238 
239 	/*
240 	 * Now copy whole blocks
241 	 */
242 	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
243 		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
244 			if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
245 				memset(buf, 0, nbytes);
246 				err = -EINVAL;
247 				goto done;
248 			}
249 		}
250 		if (ctx->rand_data_valid > 0)
251 			goto empty_rbuf;
252 		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
253 		ctx->rand_data_valid += DEFAULT_BLK_SZ;
254 		ptr += DEFAULT_BLK_SZ;
255 	}
256 
257 	/*
258 	 * Now go back and get any remaining partial block
259 	 */
260 	if (byte_count)
261 		goto remainder;
262 
263 done:
264 	spin_unlock_bh(&ctx->prng_lock);
265 	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
266 		err, ctx);
267 	return err;
268 }
269 
270 static void free_prng_context(struct prng_context *ctx)
271 {
272 	crypto_free_cipher(ctx->tfm);
273 }
274 
275 static int reset_prng_context(struct prng_context *ctx,
276 			      const unsigned char *key, size_t klen,
277 			      const unsigned char *V, const unsigned char *DT)
278 {
279 	int ret;
280 	const unsigned char *prng_key;
281 
282 	spin_lock_bh(&ctx->prng_lock);
283 	ctx->flags |= PRNG_NEED_RESET;
284 
285 	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
286 
287 	if (!key)
288 		klen = DEFAULT_PRNG_KSZ;
289 
290 	if (V)
291 		memcpy(ctx->V, V, DEFAULT_BLK_SZ);
292 	else
293 		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
294 
295 	if (DT)
296 		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
297 	else
298 		memset(ctx->DT, 0, DEFAULT_BLK_SZ);
299 
300 	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
301 	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
302 
303 	ctx->rand_data_valid = DEFAULT_BLK_SZ;
304 
305 	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
306 	if (ret) {
307 		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
308 			crypto_cipher_get_flags(ctx->tfm));
309 		goto out;
310 	}
311 
312 	ret = 0;
313 	ctx->flags &= ~PRNG_NEED_RESET;
314 out:
315 	spin_unlock_bh(&ctx->prng_lock);
316 	return ret;
317 }
318 
319 static int cprng_init(struct crypto_tfm *tfm)
320 {
321 	struct prng_context *ctx = crypto_tfm_ctx(tfm);
322 
323 	spin_lock_init(&ctx->prng_lock);
324 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
325 	if (IS_ERR(ctx->tfm)) {
326 		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
327 				ctx);
328 		return PTR_ERR(ctx->tfm);
329 	}
330 
331 	if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
332 		return -EINVAL;
333 
334 	/*
335 	 * after allocation, we should always force the user to reset
336 	 * so they don't inadvertently use the insecure default values
337 	 * without specifying them intentially
338 	 */
339 	ctx->flags |= PRNG_NEED_RESET;
340 	return 0;
341 }
342 
343 static void cprng_exit(struct crypto_tfm *tfm)
344 {
345 	free_prng_context(crypto_tfm_ctx(tfm));
346 }
347 
348 static int cprng_get_random(struct crypto_rng *tfm,
349 			    const u8 *src, unsigned int slen,
350 			    u8 *rdata, unsigned int dlen)
351 {
352 	struct prng_context *prng = crypto_rng_ctx(tfm);
353 
354 	return get_prng_bytes(rdata, dlen, prng, 0);
355 }
356 
357 /*
358  *  This is the cprng_registered reset method the seed value is
359  *  interpreted as the tuple { V KEY DT}
360  *  V and KEY are required during reset, and DT is optional, detected
361  *  as being present by testing the length of the seed
362  */
363 static int cprng_reset(struct crypto_rng *tfm,
364 		       const u8 *seed, unsigned int slen)
365 {
366 	struct prng_context *prng = crypto_rng_ctx(tfm);
367 	const u8 *key = seed + DEFAULT_BLK_SZ;
368 	const u8 *dt = NULL;
369 
370 	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
371 		return -EINVAL;
372 
373 	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
374 		dt = key + DEFAULT_PRNG_KSZ;
375 
376 	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
377 
378 	if (prng->flags & PRNG_NEED_RESET)
379 		return -EINVAL;
380 	return 0;
381 }
382 
383 #ifdef CONFIG_CRYPTO_FIPS
384 static int fips_cprng_get_random(struct crypto_rng *tfm,
385 				 const u8 *src, unsigned int slen,
386 				 u8 *rdata, unsigned int dlen)
387 {
388 	struct prng_context *prng = crypto_rng_ctx(tfm);
389 
390 	return get_prng_bytes(rdata, dlen, prng, 1);
391 }
392 
393 static int fips_cprng_reset(struct crypto_rng *tfm,
394 			    const u8 *seed, unsigned int slen)
395 {
396 	u8 rdata[DEFAULT_BLK_SZ];
397 	const u8 *key = seed + DEFAULT_BLK_SZ;
398 	int rc;
399 
400 	struct prng_context *prng = crypto_rng_ctx(tfm);
401 
402 	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
403 		return -EINVAL;
404 
405 	/* fips strictly requires seed != key */
406 	if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
407 		return -EINVAL;
408 
409 	rc = cprng_reset(tfm, seed, slen);
410 
411 	if (!rc)
412 		goto out;
413 
414 	/* this primes our continuity test */
415 	rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
416 	prng->rand_data_valid = DEFAULT_BLK_SZ;
417 
418 out:
419 	return rc;
420 }
421 #endif
422 
423 static struct rng_alg rng_algs[] = { {
424 	.generate		= cprng_get_random,
425 	.seed			= cprng_reset,
426 	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
427 	.base			=	{
428 		.cra_name		= "stdrng",
429 		.cra_driver_name	= "ansi_cprng",
430 		.cra_priority		= 100,
431 		.cra_ctxsize		= sizeof(struct prng_context),
432 		.cra_module		= THIS_MODULE,
433 		.cra_init		= cprng_init,
434 		.cra_exit		= cprng_exit,
435 	}
436 #ifdef CONFIG_CRYPTO_FIPS
437 }, {
438 	.generate		= fips_cprng_get_random,
439 	.seed			= fips_cprng_reset,
440 	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
441 	.base			=	{
442 		.cra_name		= "fips(ansi_cprng)",
443 		.cra_driver_name	= "fips_ansi_cprng",
444 		.cra_priority		= 300,
445 		.cra_ctxsize		= sizeof(struct prng_context),
446 		.cra_module		= THIS_MODULE,
447 		.cra_init		= cprng_init,
448 		.cra_exit		= cprng_exit,
449 	}
450 #endif
451 } };
452 
453 /* Module initalization */
454 static int __init prng_mod_init(void)
455 {
456 	return crypto_register_rngs(rng_algs, ARRAY_SIZE(rng_algs));
457 }
458 
459 static void __exit prng_mod_fini(void)
460 {
461 	crypto_unregister_rngs(rng_algs, ARRAY_SIZE(rng_algs));
462 }
463 
464 MODULE_LICENSE("GPL");
465 MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
466 MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
467 module_param(dbg, int, 0);
468 MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
469 subsys_initcall(prng_mod_init);
470 module_exit(prng_mod_fini);
471 MODULE_ALIAS_CRYPTO("stdrng");
472 MODULE_ALIAS_CRYPTO("ansi_cprng");
473