1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * algif_aead: User-space interface for AEAD algorithms 4 * 5 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de> 6 * 7 * This file provides the user-space API for AEAD ciphers. 8 * 9 * The following concept of the memory management is used: 10 * 11 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is 12 * filled by user space with the data submitted via sendmsg (maybe with 13 * MSG_SPLICE_PAGES). Filling up the TX SGL does not cause a crypto operation 14 * -- the data will only be tracked by the kernel. Upon receipt of one recvmsg 15 * call, the caller must provide a buffer which is tracked with the RX SGL. 16 * 17 * During the processing of the recvmsg operation, the cipher request is 18 * allocated and prepared. As part of the recvmsg operation, the processed 19 * TX buffers are extracted from the TX SGL into a separate SGL. 20 * 21 * After the completion of the crypto operation, the RX SGL and the cipher 22 * request is released. The extracted TX SGL parts are released together with 23 * the RX SGL release. 24 */ 25 26 #include <crypto/internal/aead.h> 27 #include <crypto/scatterwalk.h> 28 #include <crypto/if_alg.h> 29 #include <crypto/skcipher.h> 30 #include <linux/init.h> 31 #include <linux/list.h> 32 #include <linux/kernel.h> 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/net.h> 36 #include <net/sock.h> 37 38 static inline bool aead_sufficient_data(struct sock *sk) 39 { 40 struct alg_sock *ask = alg_sk(sk); 41 struct sock *psk = ask->parent; 42 struct alg_sock *pask = alg_sk(psk); 43 struct af_alg_ctx *ctx = ask->private; 44 struct crypto_aead *tfm = pask->private; 45 unsigned int as = crypto_aead_authsize(tfm); 46 47 /* 48 * The minimum amount of memory needed for an AEAD cipher is 49 * the AAD and in case of decryption the tag. 50 */ 51 return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as); 52 } 53 54 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 55 { 56 struct sock *sk = sock->sk; 57 struct alg_sock *ask = alg_sk(sk); 58 struct sock *psk = ask->parent; 59 struct alg_sock *pask = alg_sk(psk); 60 struct crypto_aead *tfm = pask->private; 61 unsigned int ivsize = crypto_aead_ivsize(tfm); 62 63 return af_alg_sendmsg(sock, msg, size, ivsize); 64 } 65 66 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg, 67 size_t ignored, int flags) 68 { 69 struct sock *sk = sock->sk; 70 struct alg_sock *ask = alg_sk(sk); 71 struct sock *psk = ask->parent; 72 struct alg_sock *pask = alg_sk(psk); 73 struct af_alg_ctx *ctx = ask->private; 74 struct crypto_aead *tfm = pask->private; 75 unsigned int i, as = crypto_aead_authsize(tfm); 76 struct af_alg_async_req *areq; 77 struct af_alg_tsgl *tsgl, *tmp; 78 struct scatterlist *rsgl_src, *tsgl_src = NULL; 79 int err = 0; 80 size_t used = 0; /* [in] TX bufs to be en/decrypted */ 81 size_t outlen = 0; /* [out] RX bufs produced by kernel */ 82 size_t usedpages = 0; /* [in] RX bufs to be used from user */ 83 size_t processed = 0; /* [in] TX bufs to be consumed */ 84 85 if (!ctx->init || ctx->more) { 86 err = af_alg_wait_for_data(sk, flags, 0); 87 if (err) 88 return err; 89 } 90 91 /* 92 * Data length provided by caller via sendmsg that has not yet been 93 * processed. 94 */ 95 used = ctx->used; 96 97 /* 98 * Make sure sufficient data is present -- note, the same check is also 99 * present in sendmsg. The checks in sendmsg shall provide an 100 * information to the data sender that something is wrong, but they are 101 * irrelevant to maintain the kernel integrity. We need this check 102 * here too in case user space decides to not honor the error message 103 * in sendmsg and still call recvmsg. This check here protects the 104 * kernel integrity. 105 */ 106 if (!aead_sufficient_data(sk)) 107 return -EINVAL; 108 109 /* 110 * Calculate the minimum output buffer size holding the result of the 111 * cipher operation. When encrypting data, the receiving buffer is 112 * larger by the tag length compared to the input buffer as the 113 * encryption operation generates the tag. For decryption, the input 114 * buffer provides the tag which is consumed resulting in only the 115 * plaintext without a buffer for the tag returned to the caller. 116 */ 117 if (ctx->enc) 118 outlen = used + as; 119 else 120 outlen = used - as; 121 122 /* 123 * The cipher operation input data is reduced by the associated data 124 * length as this data is processed separately later on. 125 */ 126 used -= ctx->aead_assoclen; 127 128 /* Allocate cipher request for current operation. */ 129 areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) + 130 crypto_aead_reqsize(tfm)); 131 if (IS_ERR(areq)) 132 return PTR_ERR(areq); 133 134 /* convert iovecs of output buffers into RX SGL */ 135 err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages); 136 if (err) 137 goto free; 138 139 /* 140 * Ensure output buffer is sufficiently large. If the caller provides 141 * less buffer space, only use the relative required input size. This 142 * allows AIO operation where the caller sent all data to be processed 143 * and the AIO operation performs the operation on the different chunks 144 * of the input data. 145 */ 146 if (usedpages < outlen) { 147 size_t less = outlen - usedpages; 148 149 if (used < less) { 150 err = -EINVAL; 151 goto free; 152 } 153 used -= less; 154 outlen -= less; 155 } 156 157 processed = used + ctx->aead_assoclen; 158 list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) { 159 for (i = 0; i < tsgl->cur; i++) { 160 struct scatterlist *process_sg = tsgl->sg + i; 161 162 if (!(process_sg->length) || !sg_page(process_sg)) 163 continue; 164 tsgl_src = process_sg; 165 break; 166 } 167 if (tsgl_src) 168 break; 169 } 170 if (processed && !tsgl_src) { 171 err = -EFAULT; 172 goto free; 173 } 174 175 /* 176 * Copy of AAD from source to destination 177 * 178 * The AAD is copied to the destination buffer without change. Even 179 * when user space uses an in-place cipher operation, the kernel 180 * will copy the data as it does not see whether such in-place operation 181 * is initiated. 182 * 183 * To ensure efficiency, the following implementation ensure that the 184 * ciphers are invoked to perform a crypto operation in-place. This 185 * is achieved by memory management specified as follows. 186 */ 187 188 /* Use the RX SGL as source (and destination) for crypto op. */ 189 rsgl_src = areq->first_rsgl.sgl.sgt.sgl; 190 191 if (ctx->enc) { 192 /* 193 * Encryption operation - The in-place cipher operation is 194 * achieved by the following operation: 195 * 196 * TX SGL: AAD || PT 197 * | | 198 * | copy | 199 * v v 200 * RX SGL: AAD || PT || Tag 201 */ 202 memcpy_sglist(areq->first_rsgl.sgl.sgt.sgl, tsgl_src, 203 processed); 204 af_alg_pull_tsgl(sk, processed, NULL, 0); 205 } else { 206 /* 207 * Decryption operation - To achieve an in-place cipher 208 * operation, the following SGL structure is used: 209 * 210 * TX SGL: AAD || CT || Tag 211 * | | ^ 212 * | copy | | Create SGL link. 213 * v v | 214 * RX SGL: AAD || CT ----+ 215 */ 216 217 /* Copy AAD || CT to RX SGL buffer for in-place operation. */ 218 memcpy_sglist(areq->first_rsgl.sgl.sgt.sgl, tsgl_src, outlen); 219 220 /* Create TX SGL for tag and chain it to RX SGL. */ 221 areq->tsgl_entries = af_alg_count_tsgl(sk, processed, 222 processed - as); 223 if (!areq->tsgl_entries) 224 areq->tsgl_entries = 1; 225 areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl), 226 areq->tsgl_entries), 227 GFP_KERNEL); 228 if (!areq->tsgl) { 229 err = -ENOMEM; 230 goto free; 231 } 232 sg_init_table(areq->tsgl, areq->tsgl_entries); 233 234 /* Release TX SGL, except for tag data and reassign tag data. */ 235 af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as); 236 237 /* chain the areq TX SGL holding the tag with RX SGL */ 238 if (usedpages) { 239 /* RX SGL present */ 240 struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl; 241 struct scatterlist *sg = sgl_prev->sgt.sgl; 242 243 sg_unmark_end(sg + sgl_prev->sgt.nents - 1); 244 sg_chain(sg, sgl_prev->sgt.nents + 1, areq->tsgl); 245 } else 246 /* no RX SGL present (e.g. authentication only) */ 247 rsgl_src = areq->tsgl; 248 } 249 250 /* Initialize the crypto operation */ 251 aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src, 252 areq->first_rsgl.sgl.sgt.sgl, used, ctx->iv); 253 aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen); 254 aead_request_set_tfm(&areq->cra_u.aead_req, tfm); 255 256 if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) { 257 /* AIO operation */ 258 sock_hold(sk); 259 areq->iocb = msg->msg_iocb; 260 261 /* Remember output size that will be generated. */ 262 areq->outlen = outlen; 263 264 aead_request_set_callback(&areq->cra_u.aead_req, 265 CRYPTO_TFM_REQ_MAY_SLEEP, 266 af_alg_async_cb, areq); 267 err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) : 268 crypto_aead_decrypt(&areq->cra_u.aead_req); 269 270 /* AIO operation in progress */ 271 if (err == -EINPROGRESS) 272 return -EIOCBQUEUED; 273 274 sock_put(sk); 275 } else { 276 /* Synchronous operation */ 277 aead_request_set_callback(&areq->cra_u.aead_req, 278 CRYPTO_TFM_REQ_MAY_SLEEP | 279 CRYPTO_TFM_REQ_MAY_BACKLOG, 280 crypto_req_done, &ctx->wait); 281 err = crypto_wait_req(ctx->enc ? 282 crypto_aead_encrypt(&areq->cra_u.aead_req) : 283 crypto_aead_decrypt(&areq->cra_u.aead_req), 284 &ctx->wait); 285 } 286 287 288 free: 289 af_alg_free_resources(areq); 290 291 return err ? err : outlen; 292 } 293 294 static int aead_recvmsg(struct socket *sock, struct msghdr *msg, 295 size_t ignored, int flags) 296 { 297 struct sock *sk = sock->sk; 298 int ret = 0; 299 300 lock_sock(sk); 301 while (msg_data_left(msg)) { 302 int err = _aead_recvmsg(sock, msg, ignored, flags); 303 304 /* 305 * This error covers -EIOCBQUEUED which implies that we can 306 * only handle one AIO request. If the caller wants to have 307 * multiple AIO requests in parallel, he must make multiple 308 * separate AIO calls. 309 * 310 * Also return the error if no data has been processed so far. 311 */ 312 if (err <= 0) { 313 if (err == -EIOCBQUEUED || err == -EBADMSG || !ret) 314 ret = err; 315 goto out; 316 } 317 318 ret += err; 319 } 320 321 out: 322 af_alg_wmem_wakeup(sk); 323 release_sock(sk); 324 return ret; 325 } 326 327 static struct proto_ops algif_aead_ops = { 328 .family = PF_ALG, 329 330 .connect = sock_no_connect, 331 .socketpair = sock_no_socketpair, 332 .getname = sock_no_getname, 333 .ioctl = sock_no_ioctl, 334 .listen = sock_no_listen, 335 .shutdown = sock_no_shutdown, 336 .mmap = sock_no_mmap, 337 .bind = sock_no_bind, 338 .accept = sock_no_accept, 339 340 .release = af_alg_release, 341 .sendmsg = aead_sendmsg, 342 .recvmsg = aead_recvmsg, 343 .poll = af_alg_poll, 344 }; 345 346 static int aead_check_key(struct socket *sock) 347 { 348 int err = 0; 349 struct sock *psk; 350 struct alg_sock *pask; 351 struct crypto_aead *tfm; 352 struct sock *sk = sock->sk; 353 struct alg_sock *ask = alg_sk(sk); 354 355 lock_sock(sk); 356 if (!atomic_read(&ask->nokey_refcnt)) 357 goto unlock_child; 358 359 psk = ask->parent; 360 pask = alg_sk(ask->parent); 361 tfm = pask->private; 362 363 err = -ENOKEY; 364 lock_sock_nested(psk, SINGLE_DEPTH_NESTING); 365 if (crypto_aead_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 366 goto unlock; 367 368 atomic_dec(&pask->nokey_refcnt); 369 atomic_set(&ask->nokey_refcnt, 0); 370 371 err = 0; 372 373 unlock: 374 release_sock(psk); 375 unlock_child: 376 release_sock(sk); 377 378 return err; 379 } 380 381 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg, 382 size_t size) 383 { 384 int err; 385 386 err = aead_check_key(sock); 387 if (err) 388 return err; 389 390 return aead_sendmsg(sock, msg, size); 391 } 392 393 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg, 394 size_t ignored, int flags) 395 { 396 int err; 397 398 err = aead_check_key(sock); 399 if (err) 400 return err; 401 402 return aead_recvmsg(sock, msg, ignored, flags); 403 } 404 405 static struct proto_ops algif_aead_ops_nokey = { 406 .family = PF_ALG, 407 408 .connect = sock_no_connect, 409 .socketpair = sock_no_socketpair, 410 .getname = sock_no_getname, 411 .ioctl = sock_no_ioctl, 412 .listen = sock_no_listen, 413 .shutdown = sock_no_shutdown, 414 .mmap = sock_no_mmap, 415 .bind = sock_no_bind, 416 .accept = sock_no_accept, 417 418 .release = af_alg_release, 419 .sendmsg = aead_sendmsg_nokey, 420 .recvmsg = aead_recvmsg_nokey, 421 .poll = af_alg_poll, 422 }; 423 424 static void *aead_bind(const char *name, u32 type, u32 mask) 425 { 426 return crypto_alloc_aead(name, type, mask); 427 } 428 429 static void aead_release(void *private) 430 { 431 crypto_free_aead(private); 432 } 433 434 static int aead_setauthsize(void *private, unsigned int authsize) 435 { 436 return crypto_aead_setauthsize(private, authsize); 437 } 438 439 static int aead_setkey(void *private, const u8 *key, unsigned int keylen) 440 { 441 return crypto_aead_setkey(private, key, keylen); 442 } 443 444 static void aead_sock_destruct(struct sock *sk) 445 { 446 struct alg_sock *ask = alg_sk(sk); 447 struct af_alg_ctx *ctx = ask->private; 448 struct sock *psk = ask->parent; 449 struct alg_sock *pask = alg_sk(psk); 450 struct crypto_aead *tfm = pask->private; 451 unsigned int ivlen = crypto_aead_ivsize(tfm); 452 453 af_alg_pull_tsgl(sk, ctx->used, NULL, 0); 454 sock_kzfree_s(sk, ctx->iv, ivlen); 455 sock_kfree_s(sk, ctx, ctx->len); 456 af_alg_release_parent(sk); 457 } 458 459 static int aead_accept_parent_nokey(void *private, struct sock *sk) 460 { 461 struct af_alg_ctx *ctx; 462 struct alg_sock *ask = alg_sk(sk); 463 struct crypto_aead *tfm = private; 464 unsigned int len = sizeof(*ctx); 465 unsigned int ivlen = crypto_aead_ivsize(tfm); 466 467 ctx = sock_kmalloc(sk, len, GFP_KERNEL); 468 if (!ctx) 469 return -ENOMEM; 470 memset(ctx, 0, len); 471 472 ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL); 473 if (!ctx->iv) { 474 sock_kfree_s(sk, ctx, len); 475 return -ENOMEM; 476 } 477 memset(ctx->iv, 0, ivlen); 478 479 INIT_LIST_HEAD(&ctx->tsgl_list); 480 ctx->len = len; 481 crypto_init_wait(&ctx->wait); 482 483 ask->private = ctx; 484 485 sk->sk_destruct = aead_sock_destruct; 486 487 return 0; 488 } 489 490 static int aead_accept_parent(void *private, struct sock *sk) 491 { 492 struct crypto_aead *tfm = private; 493 494 if (crypto_aead_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) 495 return -ENOKEY; 496 497 return aead_accept_parent_nokey(private, sk); 498 } 499 500 static const struct af_alg_type algif_type_aead = { 501 .bind = aead_bind, 502 .release = aead_release, 503 .setkey = aead_setkey, 504 .setauthsize = aead_setauthsize, 505 .accept = aead_accept_parent, 506 .accept_nokey = aead_accept_parent_nokey, 507 .ops = &algif_aead_ops, 508 .ops_nokey = &algif_aead_ops_nokey, 509 .name = "aead", 510 .owner = THIS_MODULE 511 }; 512 513 static int __init algif_aead_init(void) 514 { 515 return af_alg_register_type(&algif_type_aead); 516 } 517 518 static void __exit algif_aead_exit(void) 519 { 520 int err = af_alg_unregister_type(&algif_type_aead); 521 BUG_ON(err); 522 } 523 524 module_init(algif_aead_init); 525 module_exit(algif_aead_exit); 526 MODULE_LICENSE("GPL"); 527 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); 528 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface"); 529