xref: /linux/crypto/algif_aead.c (revision 5bdd5fbb35ab0fe21bf2263106f51c5bee466a07)
1 /*
2  * algif_aead: User-space interface for AEAD algorithms
3  *
4  * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
5  *
6  * This file provides the user-space API for AEAD ciphers.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * The following concept of the memory management is used:
14  *
15  * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
16  * filled by user space with the data submitted via sendpage/sendmsg. Filling
17  * up the TX SGL does not cause a crypto operation -- the data will only be
18  * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
19  * provide a buffer which is tracked with the RX SGL.
20  *
21  * During the processing of the recvmsg operation, the cipher request is
22  * allocated and prepared. As part of the recvmsg operation, the processed
23  * TX buffers are extracted from the TX SGL into a separate SGL.
24  *
25  * After the completion of the crypto operation, the RX SGL and the cipher
26  * request is released. The extracted TX SGL parts are released together with
27  * the RX SGL release.
28  */
29 
30 #include <crypto/internal/aead.h>
31 #include <crypto/scatterwalk.h>
32 #include <crypto/if_alg.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/null.h>
35 #include <linux/init.h>
36 #include <linux/list.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/module.h>
40 #include <linux/net.h>
41 #include <net/sock.h>
42 
43 struct aead_tfm {
44 	struct crypto_aead *aead;
45 	struct crypto_skcipher *null_tfm;
46 };
47 
48 static inline bool aead_sufficient_data(struct sock *sk)
49 {
50 	struct alg_sock *ask = alg_sk(sk);
51 	struct sock *psk = ask->parent;
52 	struct alg_sock *pask = alg_sk(psk);
53 	struct af_alg_ctx *ctx = ask->private;
54 	struct aead_tfm *aeadc = pask->private;
55 	struct crypto_aead *tfm = aeadc->aead;
56 	unsigned int as = crypto_aead_authsize(tfm);
57 
58 	/*
59 	 * The minimum amount of memory needed for an AEAD cipher is
60 	 * the AAD and in case of decryption the tag.
61 	 */
62 	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
63 }
64 
65 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
66 {
67 	struct sock *sk = sock->sk;
68 	struct alg_sock *ask = alg_sk(sk);
69 	struct sock *psk = ask->parent;
70 	struct alg_sock *pask = alg_sk(psk);
71 	struct aead_tfm *aeadc = pask->private;
72 	struct crypto_aead *tfm = aeadc->aead;
73 	unsigned int ivsize = crypto_aead_ivsize(tfm);
74 
75 	return af_alg_sendmsg(sock, msg, size, ivsize);
76 }
77 
78 static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm,
79 				struct scatterlist *src,
80 				struct scatterlist *dst, unsigned int len)
81 {
82 	SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
83 
84 	skcipher_request_set_tfm(skreq, null_tfm);
85 	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG,
86 				      NULL, NULL);
87 	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
88 
89 	return crypto_skcipher_encrypt(skreq);
90 }
91 
92 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
93 			 size_t ignored, int flags)
94 {
95 	struct sock *sk = sock->sk;
96 	struct alg_sock *ask = alg_sk(sk);
97 	struct sock *psk = ask->parent;
98 	struct alg_sock *pask = alg_sk(psk);
99 	struct af_alg_ctx *ctx = ask->private;
100 	struct aead_tfm *aeadc = pask->private;
101 	struct crypto_aead *tfm = aeadc->aead;
102 	struct crypto_skcipher *null_tfm = aeadc->null_tfm;
103 	unsigned int i, as = crypto_aead_authsize(tfm);
104 	struct af_alg_async_req *areq;
105 	struct af_alg_tsgl *tsgl, *tmp;
106 	struct scatterlist *rsgl_src, *tsgl_src = NULL;
107 	int err = 0;
108 	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
109 	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
110 	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
111 	size_t processed = 0;		/* [in]  TX bufs to be consumed */
112 
113 	if (!ctx->used) {
114 		err = af_alg_wait_for_data(sk, flags);
115 		if (err)
116 			return err;
117 	}
118 
119 	/*
120 	 * Data length provided by caller via sendmsg/sendpage that has not
121 	 * yet been processed.
122 	 */
123 	used = ctx->used;
124 
125 	/*
126 	 * Make sure sufficient data is present -- note, the same check is
127 	 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
128 	 * shall provide an information to the data sender that something is
129 	 * wrong, but they are irrelevant to maintain the kernel integrity.
130 	 * We need this check here too in case user space decides to not honor
131 	 * the error message in sendmsg/sendpage and still call recvmsg. This
132 	 * check here protects the kernel integrity.
133 	 */
134 	if (!aead_sufficient_data(sk))
135 		return -EINVAL;
136 
137 	/*
138 	 * Calculate the minimum output buffer size holding the result of the
139 	 * cipher operation. When encrypting data, the receiving buffer is
140 	 * larger by the tag length compared to the input buffer as the
141 	 * encryption operation generates the tag. For decryption, the input
142 	 * buffer provides the tag which is consumed resulting in only the
143 	 * plaintext without a buffer for the tag returned to the caller.
144 	 */
145 	if (ctx->enc)
146 		outlen = used + as;
147 	else
148 		outlen = used - as;
149 
150 	/*
151 	 * The cipher operation input data is reduced by the associated data
152 	 * length as this data is processed separately later on.
153 	 */
154 	used -= ctx->aead_assoclen;
155 
156 	/* Allocate cipher request for current operation. */
157 	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
158 				     crypto_aead_reqsize(tfm));
159 	if (IS_ERR(areq))
160 		return PTR_ERR(areq);
161 
162 	/* convert iovecs of output buffers into RX SGL */
163 	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
164 	if (err)
165 		goto free;
166 
167 	/*
168 	 * Ensure output buffer is sufficiently large. If the caller provides
169 	 * less buffer space, only use the relative required input size. This
170 	 * allows AIO operation where the caller sent all data to be processed
171 	 * and the AIO operation performs the operation on the different chunks
172 	 * of the input data.
173 	 */
174 	if (usedpages < outlen) {
175 		size_t less = outlen - usedpages;
176 
177 		if (used < less) {
178 			err = -EINVAL;
179 			goto free;
180 		}
181 		used -= less;
182 		outlen -= less;
183 	}
184 
185 	processed = used + ctx->aead_assoclen;
186 	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
187 		for (i = 0; i < tsgl->cur; i++) {
188 			struct scatterlist *process_sg = tsgl->sg + i;
189 
190 			if (!(process_sg->length) || !sg_page(process_sg))
191 				continue;
192 			tsgl_src = process_sg;
193 			break;
194 		}
195 		if (tsgl_src)
196 			break;
197 	}
198 	if (processed && !tsgl_src) {
199 		err = -EFAULT;
200 		goto free;
201 	}
202 
203 	/*
204 	 * Copy of AAD from source to destination
205 	 *
206 	 * The AAD is copied to the destination buffer without change. Even
207 	 * when user space uses an in-place cipher operation, the kernel
208 	 * will copy the data as it does not see whether such in-place operation
209 	 * is initiated.
210 	 *
211 	 * To ensure efficiency, the following implementation ensure that the
212 	 * ciphers are invoked to perform a crypto operation in-place. This
213 	 * is achieved by memory management specified as follows.
214 	 */
215 
216 	/* Use the RX SGL as source (and destination) for crypto op. */
217 	rsgl_src = areq->first_rsgl.sgl.sg;
218 
219 	if (ctx->enc) {
220 		/*
221 		 * Encryption operation - The in-place cipher operation is
222 		 * achieved by the following operation:
223 		 *
224 		 * TX SGL: AAD || PT
225 		 *	    |	   |
226 		 *	    | copy |
227 		 *	    v	   v
228 		 * RX SGL: AAD || PT || Tag
229 		 */
230 		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
231 					   areq->first_rsgl.sgl.sg, processed);
232 		if (err)
233 			goto free;
234 		af_alg_pull_tsgl(sk, processed, NULL, 0);
235 	} else {
236 		/*
237 		 * Decryption operation - To achieve an in-place cipher
238 		 * operation, the following  SGL structure is used:
239 		 *
240 		 * TX SGL: AAD || CT || Tag
241 		 *	    |	   |	 ^
242 		 *	    | copy |	 | Create SGL link.
243 		 *	    v	   v	 |
244 		 * RX SGL: AAD || CT ----+
245 		 */
246 
247 		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
248 		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
249 					   areq->first_rsgl.sgl.sg, outlen);
250 		if (err)
251 			goto free;
252 
253 		/* Create TX SGL for tag and chain it to RX SGL. */
254 		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
255 						       processed - as);
256 		if (!areq->tsgl_entries)
257 			areq->tsgl_entries = 1;
258 		areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
259 							 areq->tsgl_entries),
260 					  GFP_KERNEL);
261 		if (!areq->tsgl) {
262 			err = -ENOMEM;
263 			goto free;
264 		}
265 		sg_init_table(areq->tsgl, areq->tsgl_entries);
266 
267 		/* Release TX SGL, except for tag data and reassign tag data. */
268 		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
269 
270 		/* chain the areq TX SGL holding the tag with RX SGL */
271 		if (usedpages) {
272 			/* RX SGL present */
273 			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
274 
275 			sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
276 			sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
277 				 areq->tsgl);
278 		} else
279 			/* no RX SGL present (e.g. authentication only) */
280 			rsgl_src = areq->tsgl;
281 	}
282 
283 	/* Initialize the crypto operation */
284 	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
285 			       areq->first_rsgl.sgl.sg, used, ctx->iv);
286 	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
287 	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
288 
289 	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
290 		/* AIO operation */
291 		sock_hold(sk);
292 		areq->iocb = msg->msg_iocb;
293 
294 		/* Remember output size that will be generated. */
295 		areq->outlen = outlen;
296 
297 		aead_request_set_callback(&areq->cra_u.aead_req,
298 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
299 					  af_alg_async_cb, areq);
300 		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
301 				 crypto_aead_decrypt(&areq->cra_u.aead_req);
302 
303 		/* AIO operation in progress */
304 		if (err == -EINPROGRESS || err == -EBUSY)
305 			return -EIOCBQUEUED;
306 
307 		sock_put(sk);
308 	} else {
309 		/* Synchronous operation */
310 		aead_request_set_callback(&areq->cra_u.aead_req,
311 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
312 					  crypto_req_done, &ctx->wait);
313 		err = crypto_wait_req(ctx->enc ?
314 				crypto_aead_encrypt(&areq->cra_u.aead_req) :
315 				crypto_aead_decrypt(&areq->cra_u.aead_req),
316 				&ctx->wait);
317 	}
318 
319 
320 free:
321 	af_alg_free_resources(areq);
322 
323 	return err ? err : outlen;
324 }
325 
326 static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
327 			size_t ignored, int flags)
328 {
329 	struct sock *sk = sock->sk;
330 	int ret = 0;
331 
332 	lock_sock(sk);
333 	while (msg_data_left(msg)) {
334 		int err = _aead_recvmsg(sock, msg, ignored, flags);
335 
336 		/*
337 		 * This error covers -EIOCBQUEUED which implies that we can
338 		 * only handle one AIO request. If the caller wants to have
339 		 * multiple AIO requests in parallel, he must make multiple
340 		 * separate AIO calls.
341 		 *
342 		 * Also return the error if no data has been processed so far.
343 		 */
344 		if (err <= 0) {
345 			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
346 				ret = err;
347 			goto out;
348 		}
349 
350 		ret += err;
351 	}
352 
353 out:
354 	af_alg_wmem_wakeup(sk);
355 	release_sock(sk);
356 	return ret;
357 }
358 
359 static struct proto_ops algif_aead_ops = {
360 	.family		=	PF_ALG,
361 
362 	.connect	=	sock_no_connect,
363 	.socketpair	=	sock_no_socketpair,
364 	.getname	=	sock_no_getname,
365 	.ioctl		=	sock_no_ioctl,
366 	.listen		=	sock_no_listen,
367 	.shutdown	=	sock_no_shutdown,
368 	.getsockopt	=	sock_no_getsockopt,
369 	.mmap		=	sock_no_mmap,
370 	.bind		=	sock_no_bind,
371 	.accept		=	sock_no_accept,
372 	.setsockopt	=	sock_no_setsockopt,
373 
374 	.release	=	af_alg_release,
375 	.sendmsg	=	aead_sendmsg,
376 	.sendpage	=	af_alg_sendpage,
377 	.recvmsg	=	aead_recvmsg,
378 	.poll_mask	=	af_alg_poll_mask,
379 };
380 
381 static int aead_check_key(struct socket *sock)
382 {
383 	int err = 0;
384 	struct sock *psk;
385 	struct alg_sock *pask;
386 	struct aead_tfm *tfm;
387 	struct sock *sk = sock->sk;
388 	struct alg_sock *ask = alg_sk(sk);
389 
390 	lock_sock(sk);
391 	if (ask->refcnt)
392 		goto unlock_child;
393 
394 	psk = ask->parent;
395 	pask = alg_sk(ask->parent);
396 	tfm = pask->private;
397 
398 	err = -ENOKEY;
399 	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
400 	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
401 		goto unlock;
402 
403 	if (!pask->refcnt++)
404 		sock_hold(psk);
405 
406 	ask->refcnt = 1;
407 	sock_put(psk);
408 
409 	err = 0;
410 
411 unlock:
412 	release_sock(psk);
413 unlock_child:
414 	release_sock(sk);
415 
416 	return err;
417 }
418 
419 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
420 				  size_t size)
421 {
422 	int err;
423 
424 	err = aead_check_key(sock);
425 	if (err)
426 		return err;
427 
428 	return aead_sendmsg(sock, msg, size);
429 }
430 
431 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
432 				       int offset, size_t size, int flags)
433 {
434 	int err;
435 
436 	err = aead_check_key(sock);
437 	if (err)
438 		return err;
439 
440 	return af_alg_sendpage(sock, page, offset, size, flags);
441 }
442 
443 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
444 				  size_t ignored, int flags)
445 {
446 	int err;
447 
448 	err = aead_check_key(sock);
449 	if (err)
450 		return err;
451 
452 	return aead_recvmsg(sock, msg, ignored, flags);
453 }
454 
455 static struct proto_ops algif_aead_ops_nokey = {
456 	.family		=	PF_ALG,
457 
458 	.connect	=	sock_no_connect,
459 	.socketpair	=	sock_no_socketpair,
460 	.getname	=	sock_no_getname,
461 	.ioctl		=	sock_no_ioctl,
462 	.listen		=	sock_no_listen,
463 	.shutdown	=	sock_no_shutdown,
464 	.getsockopt	=	sock_no_getsockopt,
465 	.mmap		=	sock_no_mmap,
466 	.bind		=	sock_no_bind,
467 	.accept		=	sock_no_accept,
468 	.setsockopt	=	sock_no_setsockopt,
469 
470 	.release	=	af_alg_release,
471 	.sendmsg	=	aead_sendmsg_nokey,
472 	.sendpage	=	aead_sendpage_nokey,
473 	.recvmsg	=	aead_recvmsg_nokey,
474 	.poll_mask	=	af_alg_poll_mask,
475 };
476 
477 static void *aead_bind(const char *name, u32 type, u32 mask)
478 {
479 	struct aead_tfm *tfm;
480 	struct crypto_aead *aead;
481 	struct crypto_skcipher *null_tfm;
482 
483 	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
484 	if (!tfm)
485 		return ERR_PTR(-ENOMEM);
486 
487 	aead = crypto_alloc_aead(name, type, mask);
488 	if (IS_ERR(aead)) {
489 		kfree(tfm);
490 		return ERR_CAST(aead);
491 	}
492 
493 	null_tfm = crypto_get_default_null_skcipher();
494 	if (IS_ERR(null_tfm)) {
495 		crypto_free_aead(aead);
496 		kfree(tfm);
497 		return ERR_CAST(null_tfm);
498 	}
499 
500 	tfm->aead = aead;
501 	tfm->null_tfm = null_tfm;
502 
503 	return tfm;
504 }
505 
506 static void aead_release(void *private)
507 {
508 	struct aead_tfm *tfm = private;
509 
510 	crypto_free_aead(tfm->aead);
511 	crypto_put_default_null_skcipher();
512 	kfree(tfm);
513 }
514 
515 static int aead_setauthsize(void *private, unsigned int authsize)
516 {
517 	struct aead_tfm *tfm = private;
518 
519 	return crypto_aead_setauthsize(tfm->aead, authsize);
520 }
521 
522 static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
523 {
524 	struct aead_tfm *tfm = private;
525 
526 	return crypto_aead_setkey(tfm->aead, key, keylen);
527 }
528 
529 static void aead_sock_destruct(struct sock *sk)
530 {
531 	struct alg_sock *ask = alg_sk(sk);
532 	struct af_alg_ctx *ctx = ask->private;
533 	struct sock *psk = ask->parent;
534 	struct alg_sock *pask = alg_sk(psk);
535 	struct aead_tfm *aeadc = pask->private;
536 	struct crypto_aead *tfm = aeadc->aead;
537 	unsigned int ivlen = crypto_aead_ivsize(tfm);
538 
539 	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
540 	sock_kzfree_s(sk, ctx->iv, ivlen);
541 	sock_kfree_s(sk, ctx, ctx->len);
542 	af_alg_release_parent(sk);
543 }
544 
545 static int aead_accept_parent_nokey(void *private, struct sock *sk)
546 {
547 	struct af_alg_ctx *ctx;
548 	struct alg_sock *ask = alg_sk(sk);
549 	struct aead_tfm *tfm = private;
550 	struct crypto_aead *aead = tfm->aead;
551 	unsigned int len = sizeof(*ctx);
552 	unsigned int ivlen = crypto_aead_ivsize(aead);
553 
554 	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
555 	if (!ctx)
556 		return -ENOMEM;
557 	memset(ctx, 0, len);
558 
559 	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
560 	if (!ctx->iv) {
561 		sock_kfree_s(sk, ctx, len);
562 		return -ENOMEM;
563 	}
564 	memset(ctx->iv, 0, ivlen);
565 
566 	INIT_LIST_HEAD(&ctx->tsgl_list);
567 	ctx->len = len;
568 	ctx->used = 0;
569 	atomic_set(&ctx->rcvused, 0);
570 	ctx->more = 0;
571 	ctx->merge = 0;
572 	ctx->enc = 0;
573 	ctx->aead_assoclen = 0;
574 	crypto_init_wait(&ctx->wait);
575 
576 	ask->private = ctx;
577 
578 	sk->sk_destruct = aead_sock_destruct;
579 
580 	return 0;
581 }
582 
583 static int aead_accept_parent(void *private, struct sock *sk)
584 {
585 	struct aead_tfm *tfm = private;
586 
587 	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
588 		return -ENOKEY;
589 
590 	return aead_accept_parent_nokey(private, sk);
591 }
592 
593 static const struct af_alg_type algif_type_aead = {
594 	.bind		=	aead_bind,
595 	.release	=	aead_release,
596 	.setkey		=	aead_setkey,
597 	.setauthsize	=	aead_setauthsize,
598 	.accept		=	aead_accept_parent,
599 	.accept_nokey	=	aead_accept_parent_nokey,
600 	.ops		=	&algif_aead_ops,
601 	.ops_nokey	=	&algif_aead_ops_nokey,
602 	.name		=	"aead",
603 	.owner		=	THIS_MODULE
604 };
605 
606 static int __init algif_aead_init(void)
607 {
608 	return af_alg_register_type(&algif_type_aead);
609 }
610 
611 static void __exit algif_aead_exit(void)
612 {
613 	int err = af_alg_unregister_type(&algif_type_aead);
614 	BUG_ON(err);
615 }
616 
617 module_init(algif_aead_init);
618 module_exit(algif_aead_exit);
619 MODULE_LICENSE("GPL");
620 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
621 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");
622