xref: /linux/crypto/ahash.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Asynchronous Cryptographic Hash operations.
3  *
4  * This is the asynchronous version of hash.c with notification of
5  * completion via a callback.
6  *
7  * Copyright (c) 2008 Loc Ho <lho@amcc.com>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  */
15 
16 #include <crypto/internal/hash.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/bug.h>
19 #include <linux/err.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/seq_file.h>
25 #include <linux/cryptouser.h>
26 #include <net/netlink.h>
27 
28 #include "internal.h"
29 
30 struct ahash_request_priv {
31 	crypto_completion_t complete;
32 	void *data;
33 	u8 *result;
34 	void *ubuf[] CRYPTO_MINALIGN_ATTR;
35 };
36 
37 static inline struct ahash_alg *crypto_ahash_alg(struct crypto_ahash *hash)
38 {
39 	return container_of(crypto_hash_alg_common(hash), struct ahash_alg,
40 			    halg);
41 }
42 
43 static int hash_walk_next(struct crypto_hash_walk *walk)
44 {
45 	unsigned int alignmask = walk->alignmask;
46 	unsigned int offset = walk->offset;
47 	unsigned int nbytes = min(walk->entrylen,
48 				  ((unsigned int)(PAGE_SIZE)) - offset);
49 
50 	if (walk->flags & CRYPTO_ALG_ASYNC)
51 		walk->data = kmap(walk->pg);
52 	else
53 		walk->data = kmap_atomic(walk->pg);
54 	walk->data += offset;
55 
56 	if (offset & alignmask) {
57 		unsigned int unaligned = alignmask + 1 - (offset & alignmask);
58 
59 		if (nbytes > unaligned)
60 			nbytes = unaligned;
61 	}
62 
63 	walk->entrylen -= nbytes;
64 	return nbytes;
65 }
66 
67 static int hash_walk_new_entry(struct crypto_hash_walk *walk)
68 {
69 	struct scatterlist *sg;
70 
71 	sg = walk->sg;
72 	walk->offset = sg->offset;
73 	walk->pg = sg_page(walk->sg) + (walk->offset >> PAGE_SHIFT);
74 	walk->offset = offset_in_page(walk->offset);
75 	walk->entrylen = sg->length;
76 
77 	if (walk->entrylen > walk->total)
78 		walk->entrylen = walk->total;
79 	walk->total -= walk->entrylen;
80 
81 	return hash_walk_next(walk);
82 }
83 
84 int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err)
85 {
86 	unsigned int alignmask = walk->alignmask;
87 	unsigned int nbytes = walk->entrylen;
88 
89 	walk->data -= walk->offset;
90 
91 	if (nbytes && walk->offset & alignmask && !err) {
92 		walk->offset = ALIGN(walk->offset, alignmask + 1);
93 		walk->data += walk->offset;
94 
95 		nbytes = min(nbytes,
96 			     ((unsigned int)(PAGE_SIZE)) - walk->offset);
97 		walk->entrylen -= nbytes;
98 
99 		return nbytes;
100 	}
101 
102 	if (walk->flags & CRYPTO_ALG_ASYNC)
103 		kunmap(walk->pg);
104 	else {
105 		kunmap_atomic(walk->data);
106 		/*
107 		 * The may sleep test only makes sense for sync users.
108 		 * Async users don't need to sleep here anyway.
109 		 */
110 		crypto_yield(walk->flags);
111 	}
112 
113 	if (err)
114 		return err;
115 
116 	if (nbytes) {
117 		walk->offset = 0;
118 		walk->pg++;
119 		return hash_walk_next(walk);
120 	}
121 
122 	if (!walk->total)
123 		return 0;
124 
125 	walk->sg = sg_next(walk->sg);
126 
127 	return hash_walk_new_entry(walk);
128 }
129 EXPORT_SYMBOL_GPL(crypto_hash_walk_done);
130 
131 int crypto_hash_walk_first(struct ahash_request *req,
132 			   struct crypto_hash_walk *walk)
133 {
134 	walk->total = req->nbytes;
135 
136 	if (!walk->total) {
137 		walk->entrylen = 0;
138 		return 0;
139 	}
140 
141 	walk->alignmask = crypto_ahash_alignmask(crypto_ahash_reqtfm(req));
142 	walk->sg = req->src;
143 	walk->flags = req->base.flags & CRYPTO_TFM_REQ_MASK;
144 
145 	return hash_walk_new_entry(walk);
146 }
147 EXPORT_SYMBOL_GPL(crypto_hash_walk_first);
148 
149 int crypto_ahash_walk_first(struct ahash_request *req,
150 			    struct crypto_hash_walk *walk)
151 {
152 	walk->total = req->nbytes;
153 
154 	if (!walk->total) {
155 		walk->entrylen = 0;
156 		return 0;
157 	}
158 
159 	walk->alignmask = crypto_ahash_alignmask(crypto_ahash_reqtfm(req));
160 	walk->sg = req->src;
161 	walk->flags = req->base.flags & CRYPTO_TFM_REQ_MASK;
162 	walk->flags |= CRYPTO_ALG_ASYNC;
163 
164 	BUILD_BUG_ON(CRYPTO_TFM_REQ_MASK & CRYPTO_ALG_ASYNC);
165 
166 	return hash_walk_new_entry(walk);
167 }
168 EXPORT_SYMBOL_GPL(crypto_ahash_walk_first);
169 
170 static int ahash_setkey_unaligned(struct crypto_ahash *tfm, const u8 *key,
171 				unsigned int keylen)
172 {
173 	unsigned long alignmask = crypto_ahash_alignmask(tfm);
174 	int ret;
175 	u8 *buffer, *alignbuffer;
176 	unsigned long absize;
177 
178 	absize = keylen + alignmask;
179 	buffer = kmalloc(absize, GFP_KERNEL);
180 	if (!buffer)
181 		return -ENOMEM;
182 
183 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
184 	memcpy(alignbuffer, key, keylen);
185 	ret = tfm->setkey(tfm, alignbuffer, keylen);
186 	kzfree(buffer);
187 	return ret;
188 }
189 
190 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
191 			unsigned int keylen)
192 {
193 	unsigned long alignmask = crypto_ahash_alignmask(tfm);
194 
195 	if ((unsigned long)key & alignmask)
196 		return ahash_setkey_unaligned(tfm, key, keylen);
197 
198 	return tfm->setkey(tfm, key, keylen);
199 }
200 EXPORT_SYMBOL_GPL(crypto_ahash_setkey);
201 
202 static int ahash_nosetkey(struct crypto_ahash *tfm, const u8 *key,
203 			  unsigned int keylen)
204 {
205 	return -ENOSYS;
206 }
207 
208 static inline unsigned int ahash_align_buffer_size(unsigned len,
209 						   unsigned long mask)
210 {
211 	return len + (mask & ~(crypto_tfm_ctx_alignment() - 1));
212 }
213 
214 static int ahash_save_req(struct ahash_request *req, crypto_completion_t cplt)
215 {
216 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
217 	unsigned long alignmask = crypto_ahash_alignmask(tfm);
218 	unsigned int ds = crypto_ahash_digestsize(tfm);
219 	struct ahash_request_priv *priv;
220 
221 	priv = kmalloc(sizeof(*priv) + ahash_align_buffer_size(ds, alignmask),
222 		       (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
223 		       GFP_KERNEL : GFP_ATOMIC);
224 	if (!priv)
225 		return -ENOMEM;
226 
227 	/*
228 	 * WARNING: Voodoo programming below!
229 	 *
230 	 * The code below is obscure and hard to understand, thus explanation
231 	 * is necessary. See include/crypto/hash.h and include/linux/crypto.h
232 	 * to understand the layout of structures used here!
233 	 *
234 	 * The code here will replace portions of the ORIGINAL request with
235 	 * pointers to new code and buffers so the hashing operation can store
236 	 * the result in aligned buffer. We will call the modified request
237 	 * an ADJUSTED request.
238 	 *
239 	 * The newly mangled request will look as such:
240 	 *
241 	 * req {
242 	 *   .result        = ADJUSTED[new aligned buffer]
243 	 *   .base.complete = ADJUSTED[pointer to completion function]
244 	 *   .base.data     = ADJUSTED[*req (pointer to self)]
245 	 *   .priv          = ADJUSTED[new priv] {
246 	 *           .result   = ORIGINAL(result)
247 	 *           .complete = ORIGINAL(base.complete)
248 	 *           .data     = ORIGINAL(base.data)
249 	 *   }
250 	 */
251 
252 	priv->result = req->result;
253 	priv->complete = req->base.complete;
254 	priv->data = req->base.data;
255 	/*
256 	 * WARNING: We do not backup req->priv here! The req->priv
257 	 *          is for internal use of the Crypto API and the
258 	 *          user must _NOT_ _EVER_ depend on it's content!
259 	 */
260 
261 	req->result = PTR_ALIGN((u8 *)priv->ubuf, alignmask + 1);
262 	req->base.complete = cplt;
263 	req->base.data = req;
264 	req->priv = priv;
265 
266 	return 0;
267 }
268 
269 static void ahash_restore_req(struct ahash_request *req)
270 {
271 	struct ahash_request_priv *priv = req->priv;
272 
273 	/* Restore the original crypto request. */
274 	req->result = priv->result;
275 	req->base.complete = priv->complete;
276 	req->base.data = priv->data;
277 	req->priv = NULL;
278 
279 	/* Free the req->priv.priv from the ADJUSTED request. */
280 	kzfree(priv);
281 }
282 
283 static void ahash_op_unaligned_finish(struct ahash_request *req, int err)
284 {
285 	struct ahash_request_priv *priv = req->priv;
286 
287 	if (err == -EINPROGRESS)
288 		return;
289 
290 	if (!err)
291 		memcpy(priv->result, req->result,
292 		       crypto_ahash_digestsize(crypto_ahash_reqtfm(req)));
293 
294 	ahash_restore_req(req);
295 }
296 
297 static void ahash_op_unaligned_done(struct crypto_async_request *req, int err)
298 {
299 	struct ahash_request *areq = req->data;
300 
301 	/*
302 	 * Restore the original request, see ahash_op_unaligned() for what
303 	 * goes where.
304 	 *
305 	 * The "struct ahash_request *req" here is in fact the "req.base"
306 	 * from the ADJUSTED request from ahash_op_unaligned(), thus as it
307 	 * is a pointer to self, it is also the ADJUSTED "req" .
308 	 */
309 
310 	/* First copy req->result into req->priv.result */
311 	ahash_op_unaligned_finish(areq, err);
312 
313 	/* Complete the ORIGINAL request. */
314 	areq->base.complete(&areq->base, err);
315 }
316 
317 static int ahash_op_unaligned(struct ahash_request *req,
318 			      int (*op)(struct ahash_request *))
319 {
320 	int err;
321 
322 	err = ahash_save_req(req, ahash_op_unaligned_done);
323 	if (err)
324 		return err;
325 
326 	err = op(req);
327 	ahash_op_unaligned_finish(req, err);
328 
329 	return err;
330 }
331 
332 static int crypto_ahash_op(struct ahash_request *req,
333 			   int (*op)(struct ahash_request *))
334 {
335 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
336 	unsigned long alignmask = crypto_ahash_alignmask(tfm);
337 
338 	if ((unsigned long)req->result & alignmask)
339 		return ahash_op_unaligned(req, op);
340 
341 	return op(req);
342 }
343 
344 int crypto_ahash_final(struct ahash_request *req)
345 {
346 	return crypto_ahash_op(req, crypto_ahash_reqtfm(req)->final);
347 }
348 EXPORT_SYMBOL_GPL(crypto_ahash_final);
349 
350 int crypto_ahash_finup(struct ahash_request *req)
351 {
352 	return crypto_ahash_op(req, crypto_ahash_reqtfm(req)->finup);
353 }
354 EXPORT_SYMBOL_GPL(crypto_ahash_finup);
355 
356 int crypto_ahash_digest(struct ahash_request *req)
357 {
358 	return crypto_ahash_op(req, crypto_ahash_reqtfm(req)->digest);
359 }
360 EXPORT_SYMBOL_GPL(crypto_ahash_digest);
361 
362 static void ahash_def_finup_finish2(struct ahash_request *req, int err)
363 {
364 	struct ahash_request_priv *priv = req->priv;
365 
366 	if (err == -EINPROGRESS)
367 		return;
368 
369 	if (!err)
370 		memcpy(priv->result, req->result,
371 		       crypto_ahash_digestsize(crypto_ahash_reqtfm(req)));
372 
373 	ahash_restore_req(req);
374 }
375 
376 static void ahash_def_finup_done2(struct crypto_async_request *req, int err)
377 {
378 	struct ahash_request *areq = req->data;
379 
380 	ahash_def_finup_finish2(areq, err);
381 
382 	areq->base.complete(&areq->base, err);
383 }
384 
385 static int ahash_def_finup_finish1(struct ahash_request *req, int err)
386 {
387 	if (err)
388 		goto out;
389 
390 	req->base.complete = ahash_def_finup_done2;
391 	req->base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
392 	err = crypto_ahash_reqtfm(req)->final(req);
393 
394 out:
395 	ahash_def_finup_finish2(req, err);
396 	return err;
397 }
398 
399 static void ahash_def_finup_done1(struct crypto_async_request *req, int err)
400 {
401 	struct ahash_request *areq = req->data;
402 
403 	err = ahash_def_finup_finish1(areq, err);
404 
405 	areq->base.complete(&areq->base, err);
406 }
407 
408 static int ahash_def_finup(struct ahash_request *req)
409 {
410 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
411 	int err;
412 
413 	err = ahash_save_req(req, ahash_def_finup_done1);
414 	if (err)
415 		return err;
416 
417 	err = tfm->update(req);
418 	return ahash_def_finup_finish1(req, err);
419 }
420 
421 static int ahash_no_export(struct ahash_request *req, void *out)
422 {
423 	return -ENOSYS;
424 }
425 
426 static int ahash_no_import(struct ahash_request *req, const void *in)
427 {
428 	return -ENOSYS;
429 }
430 
431 static int crypto_ahash_init_tfm(struct crypto_tfm *tfm)
432 {
433 	struct crypto_ahash *hash = __crypto_ahash_cast(tfm);
434 	struct ahash_alg *alg = crypto_ahash_alg(hash);
435 
436 	hash->setkey = ahash_nosetkey;
437 	hash->has_setkey = false;
438 	hash->export = ahash_no_export;
439 	hash->import = ahash_no_import;
440 
441 	if (tfm->__crt_alg->cra_type != &crypto_ahash_type)
442 		return crypto_init_shash_ops_async(tfm);
443 
444 	hash->init = alg->init;
445 	hash->update = alg->update;
446 	hash->final = alg->final;
447 	hash->finup = alg->finup ?: ahash_def_finup;
448 	hash->digest = alg->digest;
449 
450 	if (alg->setkey) {
451 		hash->setkey = alg->setkey;
452 		hash->has_setkey = true;
453 	}
454 	if (alg->export)
455 		hash->export = alg->export;
456 	if (alg->import)
457 		hash->import = alg->import;
458 
459 	return 0;
460 }
461 
462 static unsigned int crypto_ahash_extsize(struct crypto_alg *alg)
463 {
464 	if (alg->cra_type != &crypto_ahash_type)
465 		return sizeof(struct crypto_shash *);
466 
467 	return crypto_alg_extsize(alg);
468 }
469 
470 #ifdef CONFIG_NET
471 static int crypto_ahash_report(struct sk_buff *skb, struct crypto_alg *alg)
472 {
473 	struct crypto_report_hash rhash;
474 
475 	strncpy(rhash.type, "ahash", sizeof(rhash.type));
476 
477 	rhash.blocksize = alg->cra_blocksize;
478 	rhash.digestsize = __crypto_hash_alg_common(alg)->digestsize;
479 
480 	if (nla_put(skb, CRYPTOCFGA_REPORT_HASH,
481 		    sizeof(struct crypto_report_hash), &rhash))
482 		goto nla_put_failure;
483 	return 0;
484 
485 nla_put_failure:
486 	return -EMSGSIZE;
487 }
488 #else
489 static int crypto_ahash_report(struct sk_buff *skb, struct crypto_alg *alg)
490 {
491 	return -ENOSYS;
492 }
493 #endif
494 
495 static void crypto_ahash_show(struct seq_file *m, struct crypto_alg *alg)
496 	__attribute__ ((unused));
497 static void crypto_ahash_show(struct seq_file *m, struct crypto_alg *alg)
498 {
499 	seq_printf(m, "type         : ahash\n");
500 	seq_printf(m, "async        : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
501 					     "yes" : "no");
502 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
503 	seq_printf(m, "digestsize   : %u\n",
504 		   __crypto_hash_alg_common(alg)->digestsize);
505 }
506 
507 const struct crypto_type crypto_ahash_type = {
508 	.extsize = crypto_ahash_extsize,
509 	.init_tfm = crypto_ahash_init_tfm,
510 #ifdef CONFIG_PROC_FS
511 	.show = crypto_ahash_show,
512 #endif
513 	.report = crypto_ahash_report,
514 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
515 	.maskset = CRYPTO_ALG_TYPE_AHASH_MASK,
516 	.type = CRYPTO_ALG_TYPE_AHASH,
517 	.tfmsize = offsetof(struct crypto_ahash, base),
518 };
519 EXPORT_SYMBOL_GPL(crypto_ahash_type);
520 
521 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
522 					u32 mask)
523 {
524 	return crypto_alloc_tfm(alg_name, &crypto_ahash_type, type, mask);
525 }
526 EXPORT_SYMBOL_GPL(crypto_alloc_ahash);
527 
528 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask)
529 {
530 	return crypto_type_has_alg(alg_name, &crypto_ahash_type, type, mask);
531 }
532 EXPORT_SYMBOL_GPL(crypto_has_ahash);
533 
534 static int ahash_prepare_alg(struct ahash_alg *alg)
535 {
536 	struct crypto_alg *base = &alg->halg.base;
537 
538 	if (alg->halg.digestsize > PAGE_SIZE / 8 ||
539 	    alg->halg.statesize > PAGE_SIZE / 8 ||
540 	    alg->halg.statesize == 0)
541 		return -EINVAL;
542 
543 	base->cra_type = &crypto_ahash_type;
544 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
545 	base->cra_flags |= CRYPTO_ALG_TYPE_AHASH;
546 
547 	return 0;
548 }
549 
550 int crypto_register_ahash(struct ahash_alg *alg)
551 {
552 	struct crypto_alg *base = &alg->halg.base;
553 	int err;
554 
555 	err = ahash_prepare_alg(alg);
556 	if (err)
557 		return err;
558 
559 	return crypto_register_alg(base);
560 }
561 EXPORT_SYMBOL_GPL(crypto_register_ahash);
562 
563 int crypto_unregister_ahash(struct ahash_alg *alg)
564 {
565 	return crypto_unregister_alg(&alg->halg.base);
566 }
567 EXPORT_SYMBOL_GPL(crypto_unregister_ahash);
568 
569 int ahash_register_instance(struct crypto_template *tmpl,
570 			    struct ahash_instance *inst)
571 {
572 	int err;
573 
574 	err = ahash_prepare_alg(&inst->alg);
575 	if (err)
576 		return err;
577 
578 	return crypto_register_instance(tmpl, ahash_crypto_instance(inst));
579 }
580 EXPORT_SYMBOL_GPL(ahash_register_instance);
581 
582 void ahash_free_instance(struct crypto_instance *inst)
583 {
584 	crypto_drop_spawn(crypto_instance_ctx(inst));
585 	kfree(ahash_instance(inst));
586 }
587 EXPORT_SYMBOL_GPL(ahash_free_instance);
588 
589 int crypto_init_ahash_spawn(struct crypto_ahash_spawn *spawn,
590 			    struct hash_alg_common *alg,
591 			    struct crypto_instance *inst)
592 {
593 	return crypto_init_spawn2(&spawn->base, &alg->base, inst,
594 				  &crypto_ahash_type);
595 }
596 EXPORT_SYMBOL_GPL(crypto_init_ahash_spawn);
597 
598 struct hash_alg_common *ahash_attr_alg(struct rtattr *rta, u32 type, u32 mask)
599 {
600 	struct crypto_alg *alg;
601 
602 	alg = crypto_attr_alg2(rta, &crypto_ahash_type, type, mask);
603 	return IS_ERR(alg) ? ERR_CAST(alg) : __crypto_hash_alg_common(alg);
604 }
605 EXPORT_SYMBOL_GPL(ahash_attr_alg);
606 
607 MODULE_LICENSE("GPL");
608 MODULE_DESCRIPTION("Asynchronous cryptographic hash type");
609