xref: /linux/crypto/adiantum.c (revision a4e573db06a4e8c519ec4c42f8e1249a0853367a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Adiantum length-preserving encryption mode
4  *
5  * Copyright 2018 Google LLC
6  */
7 
8 /*
9  * Adiantum is a tweakable, length-preserving encryption mode designed for fast
10  * and secure disk encryption, especially on CPUs without dedicated crypto
11  * instructions.  Adiantum encrypts each sector using the XChaCha12 stream
12  * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
13  * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
14  * 16-byte block.  See the paper for details:
15  *
16  *	Adiantum: length-preserving encryption for entry-level processors
17  *      (https://eprint.iacr.org/2018/720.pdf)
18  *
19  * For flexibility, this implementation also allows other ciphers:
20  *
21  *	- Stream cipher: XChaCha12 or XChaCha20
22  *	- Block cipher: any with a 128-bit block size and 256-bit key
23  */
24 
25 #include <crypto/b128ops.h>
26 #include <crypto/chacha.h>
27 #include <crypto/internal/cipher.h>
28 #include <crypto/internal/poly1305.h>
29 #include <crypto/internal/skcipher.h>
30 #include <crypto/nh.h>
31 #include <crypto/scatterwalk.h>
32 #include <linux/module.h>
33 
34 /*
35  * Size of right-hand part of input data, in bytes; also the size of the block
36  * cipher's block size and the hash function's output.
37  */
38 #define BLOCKCIPHER_BLOCK_SIZE		16
39 
40 /* Size of the block cipher key (K_E) in bytes */
41 #define BLOCKCIPHER_KEY_SIZE		32
42 
43 /* Size of the hash key (K_H) in bytes */
44 #define HASH_KEY_SIZE		(2 * POLY1305_BLOCK_SIZE + NH_KEY_BYTES)
45 
46 /*
47  * The specification allows variable-length tweaks, but Linux's crypto API
48  * currently only allows algorithms to support a single length.  The "natural"
49  * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
50  * the best performance.  But longer tweaks are useful for fscrypt, to avoid
51  * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes.
52  */
53 #define TWEAK_SIZE		32
54 
55 struct adiantum_instance_ctx {
56 	struct crypto_skcipher_spawn streamcipher_spawn;
57 	struct crypto_cipher_spawn blockcipher_spawn;
58 };
59 
60 struct adiantum_tfm_ctx {
61 	struct crypto_skcipher *streamcipher;
62 	struct crypto_cipher *blockcipher;
63 	struct poly1305_core_key header_hash_key;
64 	struct poly1305_core_key msg_poly_key;
65 	u32 nh_key[NH_KEY_WORDS];
66 };
67 
68 struct nhpoly1305_ctx {
69 	/* Running total of polynomial evaluation */
70 	struct poly1305_state poly_state;
71 
72 	/* Partial block buffer */
73 	u8 buffer[NH_MESSAGE_UNIT];
74 	unsigned int buflen;
75 
76 	/*
77 	 * Number of bytes remaining until the current NH message reaches
78 	 * NH_MESSAGE_BYTES.  When nonzero, 'nh_hash' holds the partial NH hash.
79 	 */
80 	unsigned int nh_remaining;
81 
82 	__le64 nh_hash[NH_NUM_PASSES];
83 };
84 
85 struct adiantum_request_ctx {
86 	/*
87 	 * skcipher sub-request size is unknown at compile-time, so it needs to
88 	 * go after the members with known sizes.
89 	 */
90 	union {
91 		struct nhpoly1305_ctx hash_ctx;
92 		struct skcipher_request streamcipher_req;
93 	} u;
94 };
95 
96 /*
97  * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
98  * hash key K_H as follows:
99  *
100  *     K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
101  *
102  * Note that this denotes using bits from the XChaCha keystream, which here we
103  * get indirectly by encrypting a buffer containing all 0's.
104  */
105 static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key,
106 			   unsigned int keylen)
107 {
108 	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
109 	struct {
110 		u8 iv[XCHACHA_IV_SIZE];
111 		u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE];
112 		struct scatterlist sg;
113 		struct crypto_wait wait;
114 		struct skcipher_request req; /* must be last */
115 	} *data;
116 	u8 *keyp;
117 	int err;
118 
119 	/* Set the stream cipher key (K_S) */
120 	crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK);
121 	crypto_skcipher_set_flags(tctx->streamcipher,
122 				  crypto_skcipher_get_flags(tfm) &
123 				  CRYPTO_TFM_REQ_MASK);
124 	err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen);
125 	if (err)
126 		return err;
127 
128 	/* Derive the subkeys */
129 	data = kzalloc(sizeof(*data) +
130 		       crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL);
131 	if (!data)
132 		return -ENOMEM;
133 	data->iv[0] = 1;
134 	sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys));
135 	crypto_init_wait(&data->wait);
136 	skcipher_request_set_tfm(&data->req, tctx->streamcipher);
137 	skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
138 						  CRYPTO_TFM_REQ_MAY_BACKLOG,
139 				      crypto_req_done, &data->wait);
140 	skcipher_request_set_crypt(&data->req, &data->sg, &data->sg,
141 				   sizeof(data->derived_keys), data->iv);
142 	err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait);
143 	if (err)
144 		goto out;
145 	keyp = data->derived_keys;
146 
147 	/* Set the block cipher key (K_E) */
148 	crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
149 	crypto_cipher_set_flags(tctx->blockcipher,
150 				crypto_skcipher_get_flags(tfm) &
151 				CRYPTO_TFM_REQ_MASK);
152 	err = crypto_cipher_setkey(tctx->blockcipher, keyp,
153 				   BLOCKCIPHER_KEY_SIZE);
154 	if (err)
155 		goto out;
156 	keyp += BLOCKCIPHER_KEY_SIZE;
157 
158 	/* Set the hash key (K_H) */
159 	poly1305_core_setkey(&tctx->header_hash_key, keyp);
160 	keyp += POLY1305_BLOCK_SIZE;
161 	poly1305_core_setkey(&tctx->msg_poly_key, keyp);
162 	keyp += POLY1305_BLOCK_SIZE;
163 	for (int i = 0; i < NH_KEY_WORDS; i++)
164 		tctx->nh_key[i] = get_unaligned_le32(&keyp[i * 4]);
165 	keyp += NH_KEY_BYTES;
166 	WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]);
167 out:
168 	kfree_sensitive(data);
169 	return err;
170 }
171 
172 /* Addition in Z/(2^{128}Z) */
173 static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2)
174 {
175 	u64 x = le64_to_cpu(v1->b);
176 	u64 y = le64_to_cpu(v2->b);
177 
178 	r->b = cpu_to_le64(x + y);
179 	r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) +
180 			   (x + y < x));
181 }
182 
183 /* Subtraction in Z/(2^{128}Z) */
184 static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2)
185 {
186 	u64 x = le64_to_cpu(v1->b);
187 	u64 y = le64_to_cpu(v2->b);
188 
189 	r->b = cpu_to_le64(x - y);
190 	r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) -
191 			   (x - y > x));
192 }
193 
194 /*
195  * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
196  * result to @out.  This is the calculation
197  *
198  *	H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
199  *
200  * from the procedure in section 6.4 of the Adiantum paper.  The resulting value
201  * is reused in both the first and second hash steps.  Specifically, it's added
202  * to the result of an independently keyed ε-∆U hash function (for equal length
203  * inputs only) taken over the left-hand part (the "bulk") of the message, to
204  * give the overall Adiantum hash of the (tweak, left-hand part) pair.
205  */
206 static void adiantum_hash_header(struct skcipher_request *req, le128 *out)
207 {
208 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
209 	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
210 	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
211 	struct {
212 		__le64 message_bits;
213 		__le64 padding;
214 	} header = {
215 		.message_bits = cpu_to_le64((u64)bulk_len * 8)
216 	};
217 	struct poly1305_state state;
218 
219 	poly1305_core_init(&state);
220 
221 	BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0);
222 	poly1305_core_blocks(&state, &tctx->header_hash_key,
223 			     &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1);
224 
225 	BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0);
226 	poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv,
227 			     TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1);
228 
229 	poly1305_core_emit(&state, NULL, out);
230 }
231 
232 /* Pass the next NH hash value through Poly1305 */
233 static void process_nh_hash_value(struct nhpoly1305_ctx *ctx,
234 				  const struct adiantum_tfm_ctx *key)
235 {
236 	static_assert(NH_HASH_BYTES % POLY1305_BLOCK_SIZE == 0);
237 
238 	poly1305_core_blocks(&ctx->poly_state, &key->msg_poly_key, ctx->nh_hash,
239 			     NH_HASH_BYTES / POLY1305_BLOCK_SIZE, 1);
240 }
241 
242 /*
243  * Feed the next portion of the message data, as a whole number of 16-byte
244  * "NH message units", through NH and Poly1305.  Each NH hash is taken over
245  * 1024 bytes, except possibly the final one which is taken over a multiple of
246  * 16 bytes up to 1024.  Also, in the case where data is passed in misaligned
247  * chunks, we combine partial hashes; the end result is the same either way.
248  */
249 static void nhpoly1305_units(struct nhpoly1305_ctx *ctx,
250 			     const struct adiantum_tfm_ctx *key,
251 			     const u8 *data, size_t len)
252 {
253 	do {
254 		unsigned int bytes;
255 
256 		if (ctx->nh_remaining == 0) {
257 			/* Starting a new NH message */
258 			bytes = min(len, NH_MESSAGE_BYTES);
259 			nh(key->nh_key, data, bytes, ctx->nh_hash);
260 			ctx->nh_remaining = NH_MESSAGE_BYTES - bytes;
261 		} else {
262 			/* Continuing a previous NH message */
263 			__le64 tmp_hash[NH_NUM_PASSES];
264 			unsigned int pos;
265 
266 			pos = NH_MESSAGE_BYTES - ctx->nh_remaining;
267 			bytes = min(len, ctx->nh_remaining);
268 			nh(&key->nh_key[pos / 4], data, bytes, tmp_hash);
269 			for (int i = 0; i < NH_NUM_PASSES; i++)
270 				le64_add_cpu(&ctx->nh_hash[i],
271 					     le64_to_cpu(tmp_hash[i]));
272 			ctx->nh_remaining -= bytes;
273 		}
274 		if (ctx->nh_remaining == 0)
275 			process_nh_hash_value(ctx, key);
276 		data += bytes;
277 		len -= bytes;
278 	} while (len);
279 }
280 
281 static void nhpoly1305_init(struct nhpoly1305_ctx *ctx)
282 {
283 	poly1305_core_init(&ctx->poly_state);
284 	ctx->buflen = 0;
285 	ctx->nh_remaining = 0;
286 }
287 
288 static void nhpoly1305_update(struct nhpoly1305_ctx *ctx,
289 			      const struct adiantum_tfm_ctx *key,
290 			      const u8 *data, size_t len)
291 {
292 	unsigned int bytes;
293 
294 	if (ctx->buflen) {
295 		bytes = min(len, (int)NH_MESSAGE_UNIT - ctx->buflen);
296 		memcpy(&ctx->buffer[ctx->buflen], data, bytes);
297 		ctx->buflen += bytes;
298 		if (ctx->buflen < NH_MESSAGE_UNIT)
299 			return;
300 		nhpoly1305_units(ctx, key, ctx->buffer, NH_MESSAGE_UNIT);
301 		ctx->buflen = 0;
302 		data += bytes;
303 		len -= bytes;
304 	}
305 
306 	if (len >= NH_MESSAGE_UNIT) {
307 		bytes = round_down(len, NH_MESSAGE_UNIT);
308 		nhpoly1305_units(ctx, key, data, bytes);
309 		data += bytes;
310 		len -= bytes;
311 	}
312 
313 	if (len) {
314 		memcpy(ctx->buffer, data, len);
315 		ctx->buflen = len;
316 	}
317 }
318 
319 static void nhpoly1305_final(struct nhpoly1305_ctx *ctx,
320 			     const struct adiantum_tfm_ctx *key, le128 *out)
321 {
322 	if (ctx->buflen) {
323 		memset(&ctx->buffer[ctx->buflen], 0,
324 		       NH_MESSAGE_UNIT - ctx->buflen);
325 		nhpoly1305_units(ctx, key, ctx->buffer, NH_MESSAGE_UNIT);
326 	}
327 
328 	if (ctx->nh_remaining)
329 		process_nh_hash_value(ctx, key);
330 
331 	poly1305_core_emit(&ctx->poly_state, NULL, out);
332 }
333 
334 /*
335  * Hash the left-hand part (the "bulk") of the message as follows:
336  *
337  *	H_L ← Poly1305_{K_L}(NH_{K_N}(pad_{128}(L)))
338  *
339  * See section 6.4 of the Adiantum paper.  This is an ε-almost-∆-universal
340  * (ε-∆U) hash function for equal-length inputs over Z/(2^{128}Z), where the "∆"
341  * operation is addition.  It hashes 1024-byte chunks of the input with the NH
342  * hash function, reducing the input length by 32x.  The resulting NH hashes are
343  * evaluated as a polynomial in GF(2^{130}-5), like in the Poly1305 MAC.  Note
344  * that the polynomial evaluation by itself would suffice to achieve the ε-∆U
345  * property; NH is used for performance since it's much faster than Poly1305.
346  */
347 static void adiantum_hash_message(struct skcipher_request *req,
348 				  struct scatterlist *sgl, le128 *out)
349 {
350 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
351 	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
352 	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
353 	unsigned int len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
354 	struct scatter_walk walk;
355 
356 	nhpoly1305_init(&rctx->u.hash_ctx);
357 	scatterwalk_start(&walk, sgl);
358 	while (len) {
359 		unsigned int n = scatterwalk_next(&walk, len);
360 
361 		nhpoly1305_update(&rctx->u.hash_ctx, tctx, walk.addr, n);
362 		scatterwalk_done_src(&walk, n);
363 		len -= n;
364 	}
365 	nhpoly1305_final(&rctx->u.hash_ctx, tctx, out);
366 }
367 
368 static int adiantum_crypt(struct skcipher_request *req, bool enc)
369 {
370 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
371 	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
372 	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
373 	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
374 	struct scatterlist *src = req->src, *dst = req->dst;
375 	/*
376 	 * Buffer for right-hand part of data, i.e.
377 	 *
378 	 *    P_L => P_M => C_M => C_R when encrypting, or
379 	 *    C_R => C_M => P_M => P_L when decrypting.
380 	 *
381 	 * Also used to build the IV for the stream cipher.
382 	 */
383 	union {
384 		u8 bytes[XCHACHA_IV_SIZE];
385 		__le32 words[XCHACHA_IV_SIZE / sizeof(__le32)];
386 		le128 bignum; /* interpret as element of Z/(2^{128}Z) */
387 	} rbuf;
388 	le128 header_hash, msg_hash;
389 	unsigned int stream_len;
390 	int err;
391 
392 	if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
393 		return -EINVAL;
394 
395 	/*
396 	 * First hash step
397 	 *	enc: P_M = P_R + H_{K_H}(T, P_L)
398 	 *	dec: C_M = C_R + H_{K_H}(T, C_L)
399 	 */
400 	adiantum_hash_header(req, &header_hash);
401 	if (src->length >= req->cryptlen &&
402 	    src->offset + req->cryptlen <= PAGE_SIZE) {
403 		/* Fast path for single-page source */
404 		void *virt = kmap_local_page(sg_page(src)) + src->offset;
405 
406 		nhpoly1305_init(&rctx->u.hash_ctx);
407 		nhpoly1305_update(&rctx->u.hash_ctx, tctx, virt, bulk_len);
408 		nhpoly1305_final(&rctx->u.hash_ctx, tctx, &msg_hash);
409 		memcpy(&rbuf.bignum, virt + bulk_len, sizeof(le128));
410 		kunmap_local(virt);
411 	} else {
412 		/* Slow path that works for any source scatterlist */
413 		adiantum_hash_message(req, src, &msg_hash);
414 		memcpy_from_sglist(&rbuf.bignum, src, bulk_len, sizeof(le128));
415 	}
416 	le128_add(&rbuf.bignum, &rbuf.bignum, &header_hash);
417 	le128_add(&rbuf.bignum, &rbuf.bignum, &msg_hash);
418 
419 	/* If encrypting, encrypt P_M with the block cipher to get C_M */
420 	if (enc)
421 		crypto_cipher_encrypt_one(tctx->blockcipher, rbuf.bytes,
422 					  rbuf.bytes);
423 
424 	/* Initialize the rest of the XChaCha IV (first part is C_M) */
425 	BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16);
426 	BUILD_BUG_ON(XCHACHA_IV_SIZE != 32);	/* nonce || stream position */
427 	rbuf.words[4] = cpu_to_le32(1);
428 	rbuf.words[5] = 0;
429 	rbuf.words[6] = 0;
430 	rbuf.words[7] = 0;
431 
432 	/*
433 	 * XChaCha needs to be done on all the data except the last 16 bytes;
434 	 * for disk encryption that usually means 4080 or 496 bytes.  But ChaCha
435 	 * implementations tend to be most efficient when passed a whole number
436 	 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
437 	 * And here it doesn't matter whether the last 16 bytes are written to,
438 	 * as the second hash step will overwrite them.  Thus, round the XChaCha
439 	 * length up to the next 64-byte boundary if possible.
440 	 */
441 	stream_len = bulk_len;
442 	if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen)
443 		stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE);
444 
445 	skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher);
446 	skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src,
447 				   req->dst, stream_len, &rbuf);
448 	skcipher_request_set_callback(&rctx->u.streamcipher_req,
449 				      req->base.flags, NULL, NULL);
450 	err = crypto_skcipher_encrypt(&rctx->u.streamcipher_req);
451 	if (err)
452 		return err;
453 
454 	/* If decrypting, decrypt C_M with the block cipher to get P_M */
455 	if (!enc)
456 		crypto_cipher_decrypt_one(tctx->blockcipher, rbuf.bytes,
457 					  rbuf.bytes);
458 
459 	/*
460 	 * Second hash step
461 	 *	enc: C_R = C_M - H_{K_H}(T, C_L)
462 	 *	dec: P_R = P_M - H_{K_H}(T, P_L)
463 	 */
464 	le128_sub(&rbuf.bignum, &rbuf.bignum, &header_hash);
465 	if (dst->length >= req->cryptlen &&
466 	    dst->offset + req->cryptlen <= PAGE_SIZE) {
467 		/* Fast path for single-page destination */
468 		struct page *page = sg_page(dst);
469 		void *virt = kmap_local_page(page) + dst->offset;
470 
471 		nhpoly1305_init(&rctx->u.hash_ctx);
472 		nhpoly1305_update(&rctx->u.hash_ctx, tctx, virt, bulk_len);
473 		nhpoly1305_final(&rctx->u.hash_ctx, tctx, &msg_hash);
474 		le128_sub(&rbuf.bignum, &rbuf.bignum, &msg_hash);
475 		memcpy(virt + bulk_len, &rbuf.bignum, sizeof(le128));
476 		flush_dcache_page(page);
477 		kunmap_local(virt);
478 	} else {
479 		/* Slow path that works for any destination scatterlist */
480 		adiantum_hash_message(req, dst, &msg_hash);
481 		le128_sub(&rbuf.bignum, &rbuf.bignum, &msg_hash);
482 		memcpy_to_sglist(dst, bulk_len, &rbuf.bignum, sizeof(le128));
483 	}
484 	return 0;
485 }
486 
487 static int adiantum_encrypt(struct skcipher_request *req)
488 {
489 	return adiantum_crypt(req, true);
490 }
491 
492 static int adiantum_decrypt(struct skcipher_request *req)
493 {
494 	return adiantum_crypt(req, false);
495 }
496 
497 static int adiantum_init_tfm(struct crypto_skcipher *tfm)
498 {
499 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
500 	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
501 	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
502 	struct crypto_skcipher *streamcipher;
503 	struct crypto_cipher *blockcipher;
504 	int err;
505 
506 	streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn);
507 	if (IS_ERR(streamcipher))
508 		return PTR_ERR(streamcipher);
509 
510 	blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
511 	if (IS_ERR(blockcipher)) {
512 		err = PTR_ERR(blockcipher);
513 		goto err_free_streamcipher;
514 	}
515 
516 	tctx->streamcipher = streamcipher;
517 	tctx->blockcipher = blockcipher;
518 
519 	BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) !=
520 		     sizeof(struct adiantum_request_ctx));
521 	crypto_skcipher_set_reqsize(
522 		tfm, max(sizeof(struct adiantum_request_ctx),
523 			 offsetofend(struct adiantum_request_ctx,
524 				     u.streamcipher_req) +
525 				 crypto_skcipher_reqsize(streamcipher)));
526 	return 0;
527 
528 err_free_streamcipher:
529 	crypto_free_skcipher(streamcipher);
530 	return err;
531 }
532 
533 static void adiantum_exit_tfm(struct crypto_skcipher *tfm)
534 {
535 	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
536 
537 	crypto_free_skcipher(tctx->streamcipher);
538 	crypto_free_cipher(tctx->blockcipher);
539 }
540 
541 static void adiantum_free_instance(struct skcipher_instance *inst)
542 {
543 	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
544 
545 	crypto_drop_skcipher(&ictx->streamcipher_spawn);
546 	crypto_drop_cipher(&ictx->blockcipher_spawn);
547 	kfree(inst);
548 }
549 
550 /*
551  * Check for a supported set of inner algorithms.
552  * See the comment at the beginning of this file.
553  */
554 static bool
555 adiantum_supported_algorithms(struct skcipher_alg_common *streamcipher_alg,
556 			      struct crypto_alg *blockcipher_alg)
557 {
558 	if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 &&
559 	    strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0)
560 		return false;
561 
562 	if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE ||
563 	    blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE)
564 		return false;
565 	if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
566 		return false;
567 
568 	return true;
569 }
570 
571 static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb)
572 {
573 	u32 mask;
574 	struct skcipher_instance *inst;
575 	struct adiantum_instance_ctx *ictx;
576 	struct skcipher_alg_common *streamcipher_alg;
577 	struct crypto_alg *blockcipher_alg;
578 	int err;
579 
580 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
581 	if (err)
582 		return err;
583 
584 	inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
585 	if (!inst)
586 		return -ENOMEM;
587 	ictx = skcipher_instance_ctx(inst);
588 
589 	/* Stream cipher, e.g. "xchacha12" */
590 	err = crypto_grab_skcipher(&ictx->streamcipher_spawn,
591 				   skcipher_crypto_instance(inst),
592 				   crypto_attr_alg_name(tb[1]), 0,
593 				   mask | CRYPTO_ALG_ASYNC /* sync only */);
594 	if (err)
595 		goto err_free_inst;
596 	streamcipher_alg = crypto_spawn_skcipher_alg_common(&ictx->streamcipher_spawn);
597 
598 	/* Block cipher, e.g. "aes" */
599 	err = crypto_grab_cipher(&ictx->blockcipher_spawn,
600 				 skcipher_crypto_instance(inst),
601 				 crypto_attr_alg_name(tb[2]), 0, mask);
602 	if (err)
603 		goto err_free_inst;
604 	blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);
605 
606 	/*
607 	 * Originally there was an optional third parameter, for requesting a
608 	 * specific implementation of "nhpoly1305" for message hashing.  This is
609 	 * no longer supported.  The best implementation is just always used.
610 	 */
611 	if (crypto_attr_alg_name(tb[3]) != ERR_PTR(-ENOENT)) {
612 		err = -ENOENT;
613 		goto err_free_inst;
614 	}
615 
616 	/* Check the set of algorithms */
617 	if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg)) {
618 		pr_warn("Unsupported Adiantum instantiation: (%s,%s)\n",
619 			streamcipher_alg->base.cra_name,
620 			blockcipher_alg->cra_name);
621 		err = -EINVAL;
622 		goto err_free_inst;
623 	}
624 
625 	/* Instance fields */
626 
627 	err = -ENAMETOOLONG;
628 	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
629 		     "adiantum(%s,%s)", streamcipher_alg->base.cra_name,
630 		     blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
631 		goto err_free_inst;
632 	if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
633 		     "adiantum(%s,%s)", streamcipher_alg->base.cra_driver_name,
634 		     blockcipher_alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
635 		goto err_free_inst;
636 
637 	inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
638 	inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx);
639 	inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask;
640 	/*
641 	 * The block cipher is only invoked once per message, so for long
642 	 * messages (e.g. sectors for disk encryption) its performance doesn't
643 	 * matter as much as that of the stream cipher.  Thus, weigh the block
644 	 * cipher's ->cra_priority less.
645 	 */
646 	inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority +
647 				       blockcipher_alg->cra_priority) /
648 				      5;
649 
650 	inst->alg.setkey = adiantum_setkey;
651 	inst->alg.encrypt = adiantum_encrypt;
652 	inst->alg.decrypt = adiantum_decrypt;
653 	inst->alg.init = adiantum_init_tfm;
654 	inst->alg.exit = adiantum_exit_tfm;
655 	inst->alg.min_keysize = streamcipher_alg->min_keysize;
656 	inst->alg.max_keysize = streamcipher_alg->max_keysize;
657 	inst->alg.ivsize = TWEAK_SIZE;
658 
659 	inst->free = adiantum_free_instance;
660 
661 	err = skcipher_register_instance(tmpl, inst);
662 	if (err) {
663 err_free_inst:
664 		adiantum_free_instance(inst);
665 	}
666 	return err;
667 }
668 
669 /* adiantum(streamcipher_name, blockcipher_name) */
670 static struct crypto_template adiantum_tmpl = {
671 	.name = "adiantum",
672 	.create = adiantum_create,
673 	.module = THIS_MODULE,
674 };
675 
676 static int __init adiantum_module_init(void)
677 {
678 	return crypto_register_template(&adiantum_tmpl);
679 }
680 
681 static void __exit adiantum_module_exit(void)
682 {
683 	crypto_unregister_template(&adiantum_tmpl);
684 }
685 
686 module_init(adiantum_module_init);
687 module_exit(adiantum_module_exit);
688 
689 MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
690 MODULE_LICENSE("GPL v2");
691 MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
692 MODULE_ALIAS_CRYPTO("adiantum");
693 MODULE_IMPORT_NS("CRYPTO_INTERNAL");
694