1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Adiantum length-preserving encryption mode 4 * 5 * Copyright 2018 Google LLC 6 */ 7 8 /* 9 * Adiantum is a tweakable, length-preserving encryption mode designed for fast 10 * and secure disk encryption, especially on CPUs without dedicated crypto 11 * instructions. Adiantum encrypts each sector using the XChaCha12 stream 12 * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on 13 * NH and Poly1305, and an invocation of the AES-256 block cipher on a single 14 * 16-byte block. See the paper for details: 15 * 16 * Adiantum: length-preserving encryption for entry-level processors 17 * (https://eprint.iacr.org/2018/720.pdf) 18 * 19 * For flexibility, this implementation also allows other ciphers: 20 * 21 * - Stream cipher: XChaCha12 or XChaCha20 22 * - Block cipher: any with a 128-bit block size and 256-bit key 23 */ 24 25 #include <crypto/b128ops.h> 26 #include <crypto/chacha.h> 27 #include <crypto/internal/cipher.h> 28 #include <crypto/internal/poly1305.h> 29 #include <crypto/internal/skcipher.h> 30 #include <crypto/nh.h> 31 #include <crypto/scatterwalk.h> 32 #include <linux/module.h> 33 34 /* 35 * Size of right-hand part of input data, in bytes; also the size of the block 36 * cipher's block size and the hash function's output. 37 */ 38 #define BLOCKCIPHER_BLOCK_SIZE 16 39 40 /* Size of the block cipher key (K_E) in bytes */ 41 #define BLOCKCIPHER_KEY_SIZE 32 42 43 /* Size of the hash key (K_H) in bytes */ 44 #define HASH_KEY_SIZE (2 * POLY1305_BLOCK_SIZE + NH_KEY_BYTES) 45 46 /* 47 * The specification allows variable-length tweaks, but Linux's crypto API 48 * currently only allows algorithms to support a single length. The "natural" 49 * tweak length for Adiantum is 16, since that fits into one Poly1305 block for 50 * the best performance. But longer tweaks are useful for fscrypt, to avoid 51 * needing to derive per-file keys. So instead we use two blocks, or 32 bytes. 52 */ 53 #define TWEAK_SIZE 32 54 55 struct adiantum_instance_ctx { 56 struct crypto_skcipher_spawn streamcipher_spawn; 57 struct crypto_cipher_spawn blockcipher_spawn; 58 }; 59 60 struct adiantum_tfm_ctx { 61 struct crypto_skcipher *streamcipher; 62 struct crypto_cipher *blockcipher; 63 struct poly1305_core_key header_hash_key; 64 struct poly1305_core_key msg_poly_key; 65 u32 nh_key[NH_KEY_WORDS]; 66 }; 67 68 struct nhpoly1305_ctx { 69 /* Running total of polynomial evaluation */ 70 struct poly1305_state poly_state; 71 72 /* Partial block buffer */ 73 u8 buffer[NH_MESSAGE_UNIT]; 74 unsigned int buflen; 75 76 /* 77 * Number of bytes remaining until the current NH message reaches 78 * NH_MESSAGE_BYTES. When nonzero, 'nh_hash' holds the partial NH hash. 79 */ 80 unsigned int nh_remaining; 81 82 __le64 nh_hash[NH_NUM_PASSES]; 83 }; 84 85 struct adiantum_request_ctx { 86 /* 87 * skcipher sub-request size is unknown at compile-time, so it needs to 88 * go after the members with known sizes. 89 */ 90 union { 91 struct nhpoly1305_ctx hash_ctx; 92 struct skcipher_request streamcipher_req; 93 } u; 94 }; 95 96 /* 97 * Given the XChaCha stream key K_S, derive the block cipher key K_E and the 98 * hash key K_H as follows: 99 * 100 * K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191) 101 * 102 * Note that this denotes using bits from the XChaCha keystream, which here we 103 * get indirectly by encrypting a buffer containing all 0's. 104 */ 105 static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key, 106 unsigned int keylen) 107 { 108 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 109 struct { 110 u8 iv[XCHACHA_IV_SIZE]; 111 u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE]; 112 struct scatterlist sg; 113 struct crypto_wait wait; 114 struct skcipher_request req; /* must be last */ 115 } *data; 116 u8 *keyp; 117 int err; 118 119 /* Set the stream cipher key (K_S) */ 120 crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK); 121 crypto_skcipher_set_flags(tctx->streamcipher, 122 crypto_skcipher_get_flags(tfm) & 123 CRYPTO_TFM_REQ_MASK); 124 err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen); 125 if (err) 126 return err; 127 128 /* Derive the subkeys */ 129 data = kzalloc(sizeof(*data) + 130 crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL); 131 if (!data) 132 return -ENOMEM; 133 data->iv[0] = 1; 134 sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys)); 135 crypto_init_wait(&data->wait); 136 skcipher_request_set_tfm(&data->req, tctx->streamcipher); 137 skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP | 138 CRYPTO_TFM_REQ_MAY_BACKLOG, 139 crypto_req_done, &data->wait); 140 skcipher_request_set_crypt(&data->req, &data->sg, &data->sg, 141 sizeof(data->derived_keys), data->iv); 142 err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait); 143 if (err) 144 goto out; 145 keyp = data->derived_keys; 146 147 /* Set the block cipher key (K_E) */ 148 crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK); 149 crypto_cipher_set_flags(tctx->blockcipher, 150 crypto_skcipher_get_flags(tfm) & 151 CRYPTO_TFM_REQ_MASK); 152 err = crypto_cipher_setkey(tctx->blockcipher, keyp, 153 BLOCKCIPHER_KEY_SIZE); 154 if (err) 155 goto out; 156 keyp += BLOCKCIPHER_KEY_SIZE; 157 158 /* Set the hash key (K_H) */ 159 poly1305_core_setkey(&tctx->header_hash_key, keyp); 160 keyp += POLY1305_BLOCK_SIZE; 161 poly1305_core_setkey(&tctx->msg_poly_key, keyp); 162 keyp += POLY1305_BLOCK_SIZE; 163 for (int i = 0; i < NH_KEY_WORDS; i++) 164 tctx->nh_key[i] = get_unaligned_le32(&keyp[i * 4]); 165 keyp += NH_KEY_BYTES; 166 WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]); 167 out: 168 kfree_sensitive(data); 169 return err; 170 } 171 172 /* Addition in Z/(2^{128}Z) */ 173 static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2) 174 { 175 u64 x = le64_to_cpu(v1->b); 176 u64 y = le64_to_cpu(v2->b); 177 178 r->b = cpu_to_le64(x + y); 179 r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) + 180 (x + y < x)); 181 } 182 183 /* Subtraction in Z/(2^{128}Z) */ 184 static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2) 185 { 186 u64 x = le64_to_cpu(v1->b); 187 u64 y = le64_to_cpu(v2->b); 188 189 r->b = cpu_to_le64(x - y); 190 r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) - 191 (x - y > x)); 192 } 193 194 /* 195 * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the 196 * result to @out. This is the calculation 197 * 198 * H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T) 199 * 200 * from the procedure in section 6.4 of the Adiantum paper. The resulting value 201 * is reused in both the first and second hash steps. Specifically, it's added 202 * to the result of an independently keyed ε-∆U hash function (for equal length 203 * inputs only) taken over the left-hand part (the "bulk") of the message, to 204 * give the overall Adiantum hash of the (tweak, left-hand part) pair. 205 */ 206 static void adiantum_hash_header(struct skcipher_request *req, le128 *out) 207 { 208 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 209 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 210 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; 211 struct { 212 __le64 message_bits; 213 __le64 padding; 214 } header = { 215 .message_bits = cpu_to_le64((u64)bulk_len * 8) 216 }; 217 struct poly1305_state state; 218 219 poly1305_core_init(&state); 220 221 BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0); 222 poly1305_core_blocks(&state, &tctx->header_hash_key, 223 &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1); 224 225 BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0); 226 poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv, 227 TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1); 228 229 poly1305_core_emit(&state, NULL, out); 230 } 231 232 /* Pass the next NH hash value through Poly1305 */ 233 static void process_nh_hash_value(struct nhpoly1305_ctx *ctx, 234 const struct adiantum_tfm_ctx *key) 235 { 236 static_assert(NH_HASH_BYTES % POLY1305_BLOCK_SIZE == 0); 237 238 poly1305_core_blocks(&ctx->poly_state, &key->msg_poly_key, ctx->nh_hash, 239 NH_HASH_BYTES / POLY1305_BLOCK_SIZE, 1); 240 } 241 242 /* 243 * Feed the next portion of the message data, as a whole number of 16-byte 244 * "NH message units", through NH and Poly1305. Each NH hash is taken over 245 * 1024 bytes, except possibly the final one which is taken over a multiple of 246 * 16 bytes up to 1024. Also, in the case where data is passed in misaligned 247 * chunks, we combine partial hashes; the end result is the same either way. 248 */ 249 static void nhpoly1305_units(struct nhpoly1305_ctx *ctx, 250 const struct adiantum_tfm_ctx *key, 251 const u8 *data, size_t len) 252 { 253 do { 254 unsigned int bytes; 255 256 if (ctx->nh_remaining == 0) { 257 /* Starting a new NH message */ 258 bytes = min(len, NH_MESSAGE_BYTES); 259 nh(key->nh_key, data, bytes, ctx->nh_hash); 260 ctx->nh_remaining = NH_MESSAGE_BYTES - bytes; 261 } else { 262 /* Continuing a previous NH message */ 263 __le64 tmp_hash[NH_NUM_PASSES]; 264 unsigned int pos; 265 266 pos = NH_MESSAGE_BYTES - ctx->nh_remaining; 267 bytes = min(len, ctx->nh_remaining); 268 nh(&key->nh_key[pos / 4], data, bytes, tmp_hash); 269 for (int i = 0; i < NH_NUM_PASSES; i++) 270 le64_add_cpu(&ctx->nh_hash[i], 271 le64_to_cpu(tmp_hash[i])); 272 ctx->nh_remaining -= bytes; 273 } 274 if (ctx->nh_remaining == 0) 275 process_nh_hash_value(ctx, key); 276 data += bytes; 277 len -= bytes; 278 } while (len); 279 } 280 281 static void nhpoly1305_init(struct nhpoly1305_ctx *ctx) 282 { 283 poly1305_core_init(&ctx->poly_state); 284 ctx->buflen = 0; 285 ctx->nh_remaining = 0; 286 } 287 288 static void nhpoly1305_update(struct nhpoly1305_ctx *ctx, 289 const struct adiantum_tfm_ctx *key, 290 const u8 *data, size_t len) 291 { 292 unsigned int bytes; 293 294 if (ctx->buflen) { 295 bytes = min(len, (int)NH_MESSAGE_UNIT - ctx->buflen); 296 memcpy(&ctx->buffer[ctx->buflen], data, bytes); 297 ctx->buflen += bytes; 298 if (ctx->buflen < NH_MESSAGE_UNIT) 299 return; 300 nhpoly1305_units(ctx, key, ctx->buffer, NH_MESSAGE_UNIT); 301 ctx->buflen = 0; 302 data += bytes; 303 len -= bytes; 304 } 305 306 if (len >= NH_MESSAGE_UNIT) { 307 bytes = round_down(len, NH_MESSAGE_UNIT); 308 nhpoly1305_units(ctx, key, data, bytes); 309 data += bytes; 310 len -= bytes; 311 } 312 313 if (len) { 314 memcpy(ctx->buffer, data, len); 315 ctx->buflen = len; 316 } 317 } 318 319 static void nhpoly1305_final(struct nhpoly1305_ctx *ctx, 320 const struct adiantum_tfm_ctx *key, le128 *out) 321 { 322 if (ctx->buflen) { 323 memset(&ctx->buffer[ctx->buflen], 0, 324 NH_MESSAGE_UNIT - ctx->buflen); 325 nhpoly1305_units(ctx, key, ctx->buffer, NH_MESSAGE_UNIT); 326 } 327 328 if (ctx->nh_remaining) 329 process_nh_hash_value(ctx, key); 330 331 poly1305_core_emit(&ctx->poly_state, NULL, out); 332 } 333 334 /* 335 * Hash the left-hand part (the "bulk") of the message as follows: 336 * 337 * H_L ← Poly1305_{K_L}(NH_{K_N}(pad_{128}(L))) 338 * 339 * See section 6.4 of the Adiantum paper. This is an ε-almost-∆-universal 340 * (ε-∆U) hash function for equal-length inputs over Z/(2^{128}Z), where the "∆" 341 * operation is addition. It hashes 1024-byte chunks of the input with the NH 342 * hash function, reducing the input length by 32x. The resulting NH hashes are 343 * evaluated as a polynomial in GF(2^{130}-5), like in the Poly1305 MAC. Note 344 * that the polynomial evaluation by itself would suffice to achieve the ε-∆U 345 * property; NH is used for performance since it's much faster than Poly1305. 346 */ 347 static void adiantum_hash_message(struct skcipher_request *req, 348 struct scatterlist *sgl, le128 *out) 349 { 350 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 351 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 352 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); 353 unsigned int len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; 354 struct scatter_walk walk; 355 356 nhpoly1305_init(&rctx->u.hash_ctx); 357 scatterwalk_start(&walk, sgl); 358 while (len) { 359 unsigned int n = scatterwalk_next(&walk, len); 360 361 nhpoly1305_update(&rctx->u.hash_ctx, tctx, walk.addr, n); 362 scatterwalk_done_src(&walk, n); 363 len -= n; 364 } 365 nhpoly1305_final(&rctx->u.hash_ctx, tctx, out); 366 } 367 368 static int adiantum_crypt(struct skcipher_request *req, bool enc) 369 { 370 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 371 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 372 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); 373 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; 374 struct scatterlist *src = req->src, *dst = req->dst; 375 /* 376 * Buffer for right-hand part of data, i.e. 377 * 378 * P_L => P_M => C_M => C_R when encrypting, or 379 * C_R => C_M => P_M => P_L when decrypting. 380 * 381 * Also used to build the IV for the stream cipher. 382 */ 383 union { 384 u8 bytes[XCHACHA_IV_SIZE]; 385 __le32 words[XCHACHA_IV_SIZE / sizeof(__le32)]; 386 le128 bignum; /* interpret as element of Z/(2^{128}Z) */ 387 } rbuf; 388 le128 header_hash, msg_hash; 389 unsigned int stream_len; 390 int err; 391 392 if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE) 393 return -EINVAL; 394 395 /* 396 * First hash step 397 * enc: P_M = P_R + H_{K_H}(T, P_L) 398 * dec: C_M = C_R + H_{K_H}(T, C_L) 399 */ 400 adiantum_hash_header(req, &header_hash); 401 if (src->length >= req->cryptlen && 402 src->offset + req->cryptlen <= PAGE_SIZE) { 403 /* Fast path for single-page source */ 404 void *virt = kmap_local_page(sg_page(src)) + src->offset; 405 406 nhpoly1305_init(&rctx->u.hash_ctx); 407 nhpoly1305_update(&rctx->u.hash_ctx, tctx, virt, bulk_len); 408 nhpoly1305_final(&rctx->u.hash_ctx, tctx, &msg_hash); 409 memcpy(&rbuf.bignum, virt + bulk_len, sizeof(le128)); 410 kunmap_local(virt); 411 } else { 412 /* Slow path that works for any source scatterlist */ 413 adiantum_hash_message(req, src, &msg_hash); 414 memcpy_from_sglist(&rbuf.bignum, src, bulk_len, sizeof(le128)); 415 } 416 le128_add(&rbuf.bignum, &rbuf.bignum, &header_hash); 417 le128_add(&rbuf.bignum, &rbuf.bignum, &msg_hash); 418 419 /* If encrypting, encrypt P_M with the block cipher to get C_M */ 420 if (enc) 421 crypto_cipher_encrypt_one(tctx->blockcipher, rbuf.bytes, 422 rbuf.bytes); 423 424 /* Initialize the rest of the XChaCha IV (first part is C_M) */ 425 BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16); 426 BUILD_BUG_ON(XCHACHA_IV_SIZE != 32); /* nonce || stream position */ 427 rbuf.words[4] = cpu_to_le32(1); 428 rbuf.words[5] = 0; 429 rbuf.words[6] = 0; 430 rbuf.words[7] = 0; 431 432 /* 433 * XChaCha needs to be done on all the data except the last 16 bytes; 434 * for disk encryption that usually means 4080 or 496 bytes. But ChaCha 435 * implementations tend to be most efficient when passed a whole number 436 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes. 437 * And here it doesn't matter whether the last 16 bytes are written to, 438 * as the second hash step will overwrite them. Thus, round the XChaCha 439 * length up to the next 64-byte boundary if possible. 440 */ 441 stream_len = bulk_len; 442 if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen) 443 stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE); 444 445 skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher); 446 skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src, 447 req->dst, stream_len, &rbuf); 448 skcipher_request_set_callback(&rctx->u.streamcipher_req, 449 req->base.flags, NULL, NULL); 450 err = crypto_skcipher_encrypt(&rctx->u.streamcipher_req); 451 if (err) 452 return err; 453 454 /* If decrypting, decrypt C_M with the block cipher to get P_M */ 455 if (!enc) 456 crypto_cipher_decrypt_one(tctx->blockcipher, rbuf.bytes, 457 rbuf.bytes); 458 459 /* 460 * Second hash step 461 * enc: C_R = C_M - H_{K_H}(T, C_L) 462 * dec: P_R = P_M - H_{K_H}(T, P_L) 463 */ 464 le128_sub(&rbuf.bignum, &rbuf.bignum, &header_hash); 465 if (dst->length >= req->cryptlen && 466 dst->offset + req->cryptlen <= PAGE_SIZE) { 467 /* Fast path for single-page destination */ 468 struct page *page = sg_page(dst); 469 void *virt = kmap_local_page(page) + dst->offset; 470 471 nhpoly1305_init(&rctx->u.hash_ctx); 472 nhpoly1305_update(&rctx->u.hash_ctx, tctx, virt, bulk_len); 473 nhpoly1305_final(&rctx->u.hash_ctx, tctx, &msg_hash); 474 le128_sub(&rbuf.bignum, &rbuf.bignum, &msg_hash); 475 memcpy(virt + bulk_len, &rbuf.bignum, sizeof(le128)); 476 flush_dcache_page(page); 477 kunmap_local(virt); 478 } else { 479 /* Slow path that works for any destination scatterlist */ 480 adiantum_hash_message(req, dst, &msg_hash); 481 le128_sub(&rbuf.bignum, &rbuf.bignum, &msg_hash); 482 memcpy_to_sglist(dst, bulk_len, &rbuf.bignum, sizeof(le128)); 483 } 484 return 0; 485 } 486 487 static int adiantum_encrypt(struct skcipher_request *req) 488 { 489 return adiantum_crypt(req, true); 490 } 491 492 static int adiantum_decrypt(struct skcipher_request *req) 493 { 494 return adiantum_crypt(req, false); 495 } 496 497 static int adiantum_init_tfm(struct crypto_skcipher *tfm) 498 { 499 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 500 struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); 501 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 502 struct crypto_skcipher *streamcipher; 503 struct crypto_cipher *blockcipher; 504 int err; 505 506 streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn); 507 if (IS_ERR(streamcipher)) 508 return PTR_ERR(streamcipher); 509 510 blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn); 511 if (IS_ERR(blockcipher)) { 512 err = PTR_ERR(blockcipher); 513 goto err_free_streamcipher; 514 } 515 516 tctx->streamcipher = streamcipher; 517 tctx->blockcipher = blockcipher; 518 519 BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) != 520 sizeof(struct adiantum_request_ctx)); 521 crypto_skcipher_set_reqsize( 522 tfm, max(sizeof(struct adiantum_request_ctx), 523 offsetofend(struct adiantum_request_ctx, 524 u.streamcipher_req) + 525 crypto_skcipher_reqsize(streamcipher))); 526 return 0; 527 528 err_free_streamcipher: 529 crypto_free_skcipher(streamcipher); 530 return err; 531 } 532 533 static void adiantum_exit_tfm(struct crypto_skcipher *tfm) 534 { 535 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); 536 537 crypto_free_skcipher(tctx->streamcipher); 538 crypto_free_cipher(tctx->blockcipher); 539 } 540 541 static void adiantum_free_instance(struct skcipher_instance *inst) 542 { 543 struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); 544 545 crypto_drop_skcipher(&ictx->streamcipher_spawn); 546 crypto_drop_cipher(&ictx->blockcipher_spawn); 547 kfree(inst); 548 } 549 550 /* 551 * Check for a supported set of inner algorithms. 552 * See the comment at the beginning of this file. 553 */ 554 static bool 555 adiantum_supported_algorithms(struct skcipher_alg_common *streamcipher_alg, 556 struct crypto_alg *blockcipher_alg) 557 { 558 if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 && 559 strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0) 560 return false; 561 562 if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE || 563 blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE) 564 return false; 565 if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE) 566 return false; 567 568 return true; 569 } 570 571 static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb) 572 { 573 u32 mask; 574 struct skcipher_instance *inst; 575 struct adiantum_instance_ctx *ictx; 576 struct skcipher_alg_common *streamcipher_alg; 577 struct crypto_alg *blockcipher_alg; 578 int err; 579 580 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); 581 if (err) 582 return err; 583 584 inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL); 585 if (!inst) 586 return -ENOMEM; 587 ictx = skcipher_instance_ctx(inst); 588 589 /* Stream cipher, e.g. "xchacha12" */ 590 err = crypto_grab_skcipher(&ictx->streamcipher_spawn, 591 skcipher_crypto_instance(inst), 592 crypto_attr_alg_name(tb[1]), 0, 593 mask | CRYPTO_ALG_ASYNC /* sync only */); 594 if (err) 595 goto err_free_inst; 596 streamcipher_alg = crypto_spawn_skcipher_alg_common(&ictx->streamcipher_spawn); 597 598 /* Block cipher, e.g. "aes" */ 599 err = crypto_grab_cipher(&ictx->blockcipher_spawn, 600 skcipher_crypto_instance(inst), 601 crypto_attr_alg_name(tb[2]), 0, mask); 602 if (err) 603 goto err_free_inst; 604 blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn); 605 606 /* 607 * Originally there was an optional third parameter, for requesting a 608 * specific implementation of "nhpoly1305" for message hashing. This is 609 * no longer supported. The best implementation is just always used. 610 */ 611 if (crypto_attr_alg_name(tb[3]) != ERR_PTR(-ENOENT)) { 612 err = -ENOENT; 613 goto err_free_inst; 614 } 615 616 /* Check the set of algorithms */ 617 if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg)) { 618 pr_warn("Unsupported Adiantum instantiation: (%s,%s)\n", 619 streamcipher_alg->base.cra_name, 620 blockcipher_alg->cra_name); 621 err = -EINVAL; 622 goto err_free_inst; 623 } 624 625 /* Instance fields */ 626 627 err = -ENAMETOOLONG; 628 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 629 "adiantum(%s,%s)", streamcipher_alg->base.cra_name, 630 blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME) 631 goto err_free_inst; 632 if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, 633 "adiantum(%s,%s)", streamcipher_alg->base.cra_driver_name, 634 blockcipher_alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 635 goto err_free_inst; 636 637 inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE; 638 inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx); 639 inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask; 640 /* 641 * The block cipher is only invoked once per message, so for long 642 * messages (e.g. sectors for disk encryption) its performance doesn't 643 * matter as much as that of the stream cipher. Thus, weigh the block 644 * cipher's ->cra_priority less. 645 */ 646 inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority + 647 blockcipher_alg->cra_priority) / 648 5; 649 650 inst->alg.setkey = adiantum_setkey; 651 inst->alg.encrypt = adiantum_encrypt; 652 inst->alg.decrypt = adiantum_decrypt; 653 inst->alg.init = adiantum_init_tfm; 654 inst->alg.exit = adiantum_exit_tfm; 655 inst->alg.min_keysize = streamcipher_alg->min_keysize; 656 inst->alg.max_keysize = streamcipher_alg->max_keysize; 657 inst->alg.ivsize = TWEAK_SIZE; 658 659 inst->free = adiantum_free_instance; 660 661 err = skcipher_register_instance(tmpl, inst); 662 if (err) { 663 err_free_inst: 664 adiantum_free_instance(inst); 665 } 666 return err; 667 } 668 669 /* adiantum(streamcipher_name, blockcipher_name) */ 670 static struct crypto_template adiantum_tmpl = { 671 .name = "adiantum", 672 .create = adiantum_create, 673 .module = THIS_MODULE, 674 }; 675 676 static int __init adiantum_module_init(void) 677 { 678 return crypto_register_template(&adiantum_tmpl); 679 } 680 681 static void __exit adiantum_module_exit(void) 682 { 683 crypto_unregister_template(&adiantum_tmpl); 684 } 685 686 module_init(adiantum_module_init); 687 module_exit(adiantum_module_exit); 688 689 MODULE_DESCRIPTION("Adiantum length-preserving encryption mode"); 690 MODULE_LICENSE("GPL v2"); 691 MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>"); 692 MODULE_ALIAS_CRYPTO("adiantum"); 693 MODULE_IMPORT_NS("CRYPTO_INTERNAL"); 694