1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 help 19 This option provides the core Cryptographic API. 20 21if CRYPTO 22 23comment "Crypto core or helper" 24 25config CRYPTO_FIPS 26 bool "FIPS 200 compliance" 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 28 depends on (MODULE_SIG || !MODULES) 29 help 30 This options enables the fips boot option which is 31 required if you want to system to operate in a FIPS 200 32 certification. You should say no unless you know what 33 this is. 34 35config CRYPTO_ALGAPI 36 tristate 37 select CRYPTO_ALGAPI2 38 help 39 This option provides the API for cryptographic algorithms. 40 41config CRYPTO_ALGAPI2 42 tristate 43 44config CRYPTO_AEAD 45 tristate 46 select CRYPTO_AEAD2 47 select CRYPTO_ALGAPI 48 49config CRYPTO_AEAD2 50 tristate 51 select CRYPTO_ALGAPI2 52 select CRYPTO_NULL2 53 select CRYPTO_RNG2 54 55config CRYPTO_BLKCIPHER 56 tristate 57 select CRYPTO_BLKCIPHER2 58 select CRYPTO_ALGAPI 59 60config CRYPTO_BLKCIPHER2 61 tristate 62 select CRYPTO_ALGAPI2 63 select CRYPTO_RNG2 64 select CRYPTO_WORKQUEUE 65 66config CRYPTO_HASH 67 tristate 68 select CRYPTO_HASH2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_HASH2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_RNG 76 tristate 77 select CRYPTO_RNG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_RNG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_RNG_DEFAULT 85 tristate 86 select CRYPTO_DRBG_MENU 87 88config CRYPTO_AKCIPHER2 89 tristate 90 select CRYPTO_ALGAPI2 91 92config CRYPTO_AKCIPHER 93 tristate 94 select CRYPTO_AKCIPHER2 95 select CRYPTO_ALGAPI 96 97config CRYPTO_KPP2 98 tristate 99 select CRYPTO_ALGAPI2 100 101config CRYPTO_KPP 102 tristate 103 select CRYPTO_ALGAPI 104 select CRYPTO_KPP2 105 106config CRYPTO_ACOMP2 107 tristate 108 select CRYPTO_ALGAPI2 109 select SGL_ALLOC 110 111config CRYPTO_ACOMP 112 tristate 113 select CRYPTO_ALGAPI 114 select CRYPTO_ACOMP2 115 116config CRYPTO_RSA 117 tristate "RSA algorithm" 118 select CRYPTO_AKCIPHER 119 select CRYPTO_MANAGER 120 select MPILIB 121 select ASN1 122 help 123 Generic implementation of the RSA public key algorithm. 124 125config CRYPTO_DH 126 tristate "Diffie-Hellman algorithm" 127 select CRYPTO_KPP 128 select MPILIB 129 help 130 Generic implementation of the Diffie-Hellman algorithm. 131 132config CRYPTO_ECDH 133 tristate "ECDH algorithm" 134 select CRYPTO_KPP 135 select CRYPTO_RNG_DEFAULT 136 help 137 Generic implementation of the ECDH algorithm 138 139config CRYPTO_MANAGER 140 tristate "Cryptographic algorithm manager" 141 select CRYPTO_MANAGER2 142 help 143 Create default cryptographic template instantiations such as 144 cbc(aes). 145 146config CRYPTO_MANAGER2 147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 148 select CRYPTO_AEAD2 149 select CRYPTO_HASH2 150 select CRYPTO_BLKCIPHER2 151 select CRYPTO_AKCIPHER2 152 select CRYPTO_KPP2 153 select CRYPTO_ACOMP2 154 155config CRYPTO_USER 156 tristate "Userspace cryptographic algorithm configuration" 157 depends on NET 158 select CRYPTO_MANAGER 159 help 160 Userspace configuration for cryptographic instantiations such as 161 cbc(aes). 162 163config CRYPTO_MANAGER_DISABLE_TESTS 164 bool "Disable run-time self tests" 165 default y 166 depends on CRYPTO_MANAGER2 167 help 168 Disable run-time self tests that normally take place at 169 algorithm registration. 170 171config CRYPTO_GF128MUL 172 tristate "GF(2^128) multiplication functions" 173 help 174 Efficient table driven implementation of multiplications in the 175 field GF(2^128). This is needed by some cypher modes. This 176 option will be selected automatically if you select such a 177 cipher mode. Only select this option by hand if you expect to load 178 an external module that requires these functions. 179 180config CRYPTO_NULL 181 tristate "Null algorithms" 182 select CRYPTO_NULL2 183 help 184 These are 'Null' algorithms, used by IPsec, which do nothing. 185 186config CRYPTO_NULL2 187 tristate 188 select CRYPTO_ALGAPI2 189 select CRYPTO_BLKCIPHER2 190 select CRYPTO_HASH2 191 192config CRYPTO_PCRYPT 193 tristate "Parallel crypto engine" 194 depends on SMP 195 select PADATA 196 select CRYPTO_MANAGER 197 select CRYPTO_AEAD 198 help 199 This converts an arbitrary crypto algorithm into a parallel 200 algorithm that executes in kernel threads. 201 202config CRYPTO_WORKQUEUE 203 tristate 204 205config CRYPTO_CRYPTD 206 tristate "Software async crypto daemon" 207 select CRYPTO_BLKCIPHER 208 select CRYPTO_HASH 209 select CRYPTO_MANAGER 210 select CRYPTO_WORKQUEUE 211 help 212 This is a generic software asynchronous crypto daemon that 213 converts an arbitrary synchronous software crypto algorithm 214 into an asynchronous algorithm that executes in a kernel thread. 215 216config CRYPTO_MCRYPTD 217 tristate "Software async multi-buffer crypto daemon" 218 select CRYPTO_BLKCIPHER 219 select CRYPTO_HASH 220 select CRYPTO_MANAGER 221 select CRYPTO_WORKQUEUE 222 help 223 This is a generic software asynchronous crypto daemon that 224 provides the kernel thread to assist multi-buffer crypto 225 algorithms for submitting jobs and flushing jobs in multi-buffer 226 crypto algorithms. Multi-buffer crypto algorithms are executed 227 in the context of this kernel thread and drivers can post 228 their crypto request asynchronously to be processed by this daemon. 229 230config CRYPTO_AUTHENC 231 tristate "Authenc support" 232 select CRYPTO_AEAD 233 select CRYPTO_BLKCIPHER 234 select CRYPTO_MANAGER 235 select CRYPTO_HASH 236 select CRYPTO_NULL 237 help 238 Authenc: Combined mode wrapper for IPsec. 239 This is required for IPSec. 240 241config CRYPTO_TEST 242 tristate "Testing module" 243 depends on m 244 select CRYPTO_MANAGER 245 help 246 Quick & dirty crypto test module. 247 248config CRYPTO_SIMD 249 tristate 250 select CRYPTO_CRYPTD 251 252config CRYPTO_GLUE_HELPER_X86 253 tristate 254 depends on X86 255 select CRYPTO_BLKCIPHER 256 257config CRYPTO_ENGINE 258 tristate 259 260comment "Authenticated Encryption with Associated Data" 261 262config CRYPTO_CCM 263 tristate "CCM support" 264 select CRYPTO_CTR 265 select CRYPTO_HASH 266 select CRYPTO_AEAD 267 help 268 Support for Counter with CBC MAC. Required for IPsec. 269 270config CRYPTO_GCM 271 tristate "GCM/GMAC support" 272 select CRYPTO_CTR 273 select CRYPTO_AEAD 274 select CRYPTO_GHASH 275 select CRYPTO_NULL 276 help 277 Support for Galois/Counter Mode (GCM) and Galois Message 278 Authentication Code (GMAC). Required for IPSec. 279 280config CRYPTO_CHACHA20POLY1305 281 tristate "ChaCha20-Poly1305 AEAD support" 282 select CRYPTO_CHACHA20 283 select CRYPTO_POLY1305 284 select CRYPTO_AEAD 285 help 286 ChaCha20-Poly1305 AEAD support, RFC7539. 287 288 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 289 with the Poly1305 authenticator. It is defined in RFC7539 for use in 290 IETF protocols. 291 292config CRYPTO_AEGIS128 293 tristate "AEGIS-128 AEAD algorithm" 294 select CRYPTO_AEAD 295 select CRYPTO_AES # for AES S-box tables 296 help 297 Support for the AEGIS-128 dedicated AEAD algorithm. 298 299config CRYPTO_AEGIS128L 300 tristate "AEGIS-128L AEAD algorithm" 301 select CRYPTO_AEAD 302 select CRYPTO_AES # for AES S-box tables 303 help 304 Support for the AEGIS-128L dedicated AEAD algorithm. 305 306config CRYPTO_AEGIS256 307 tristate "AEGIS-256 AEAD algorithm" 308 select CRYPTO_AEAD 309 select CRYPTO_AES # for AES S-box tables 310 help 311 Support for the AEGIS-256 dedicated AEAD algorithm. 312 313config CRYPTO_AEGIS128_AESNI_SSE2 314 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 315 depends on X86 && 64BIT 316 select CRYPTO_AEAD 317 select CRYPTO_CRYPTD 318 help 319 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm. 320 321config CRYPTO_AEGIS128L_AESNI_SSE2 322 tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 323 depends on X86 && 64BIT 324 select CRYPTO_AEAD 325 select CRYPTO_CRYPTD 326 help 327 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm. 328 329config CRYPTO_AEGIS256_AESNI_SSE2 330 tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 331 depends on X86 && 64BIT 332 select CRYPTO_AEAD 333 select CRYPTO_CRYPTD 334 help 335 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm. 336 337config CRYPTO_MORUS640 338 tristate "MORUS-640 AEAD algorithm" 339 select CRYPTO_AEAD 340 help 341 Support for the MORUS-640 dedicated AEAD algorithm. 342 343config CRYPTO_MORUS640_GLUE 344 tristate 345 depends on X86 346 select CRYPTO_AEAD 347 select CRYPTO_CRYPTD 348 help 349 Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 350 algorithm. 351 352config CRYPTO_MORUS640_SSE2 353 tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 354 depends on X86 && 64BIT 355 select CRYPTO_AEAD 356 select CRYPTO_MORUS640_GLUE 357 help 358 SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 359 360config CRYPTO_MORUS1280 361 tristate "MORUS-1280 AEAD algorithm" 362 select CRYPTO_AEAD 363 help 364 Support for the MORUS-1280 dedicated AEAD algorithm. 365 366config CRYPTO_MORUS1280_GLUE 367 tristate 368 depends on X86 369 select CRYPTO_AEAD 370 select CRYPTO_CRYPTD 371 help 372 Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 373 algorithm. 374 375config CRYPTO_MORUS1280_SSE2 376 tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 377 depends on X86 && 64BIT 378 select CRYPTO_AEAD 379 select CRYPTO_MORUS1280_GLUE 380 help 381 SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 382 algorithm. 383 384config CRYPTO_MORUS1280_AVX2 385 tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 386 depends on X86 && 64BIT 387 select CRYPTO_AEAD 388 select CRYPTO_MORUS1280_GLUE 389 help 390 AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 391 algorithm. 392 393config CRYPTO_SEQIV 394 tristate "Sequence Number IV Generator" 395 select CRYPTO_AEAD 396 select CRYPTO_BLKCIPHER 397 select CRYPTO_NULL 398 select CRYPTO_RNG_DEFAULT 399 help 400 This IV generator generates an IV based on a sequence number by 401 xoring it with a salt. This algorithm is mainly useful for CTR 402 403config CRYPTO_ECHAINIV 404 tristate "Encrypted Chain IV Generator" 405 select CRYPTO_AEAD 406 select CRYPTO_NULL 407 select CRYPTO_RNG_DEFAULT 408 default m 409 help 410 This IV generator generates an IV based on the encryption of 411 a sequence number xored with a salt. This is the default 412 algorithm for CBC. 413 414comment "Block modes" 415 416config CRYPTO_CBC 417 tristate "CBC support" 418 select CRYPTO_BLKCIPHER 419 select CRYPTO_MANAGER 420 help 421 CBC: Cipher Block Chaining mode 422 This block cipher algorithm is required for IPSec. 423 424config CRYPTO_CFB 425 tristate "CFB support" 426 select CRYPTO_BLKCIPHER 427 select CRYPTO_MANAGER 428 help 429 CFB: Cipher FeedBack mode 430 This block cipher algorithm is required for TPM2 Cryptography. 431 432config CRYPTO_CTR 433 tristate "CTR support" 434 select CRYPTO_BLKCIPHER 435 select CRYPTO_SEQIV 436 select CRYPTO_MANAGER 437 help 438 CTR: Counter mode 439 This block cipher algorithm is required for IPSec. 440 441config CRYPTO_CTS 442 tristate "CTS support" 443 select CRYPTO_BLKCIPHER 444 help 445 CTS: Cipher Text Stealing 446 This is the Cipher Text Stealing mode as described by 447 Section 8 of rfc2040 and referenced by rfc3962. 448 (rfc3962 includes errata information in its Appendix A) 449 This mode is required for Kerberos gss mechanism support 450 for AES encryption. 451 452config CRYPTO_ECB 453 tristate "ECB support" 454 select CRYPTO_BLKCIPHER 455 select CRYPTO_MANAGER 456 help 457 ECB: Electronic CodeBook mode 458 This is the simplest block cipher algorithm. It simply encrypts 459 the input block by block. 460 461config CRYPTO_LRW 462 tristate "LRW support" 463 select CRYPTO_BLKCIPHER 464 select CRYPTO_MANAGER 465 select CRYPTO_GF128MUL 466 help 467 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 468 narrow block cipher mode for dm-crypt. Use it with cipher 469 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 470 The first 128, 192 or 256 bits in the key are used for AES and the 471 rest is used to tie each cipher block to its logical position. 472 473config CRYPTO_PCBC 474 tristate "PCBC support" 475 select CRYPTO_BLKCIPHER 476 select CRYPTO_MANAGER 477 help 478 PCBC: Propagating Cipher Block Chaining mode 479 This block cipher algorithm is required for RxRPC. 480 481config CRYPTO_XTS 482 tristate "XTS support" 483 select CRYPTO_BLKCIPHER 484 select CRYPTO_MANAGER 485 select CRYPTO_ECB 486 help 487 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 488 key size 256, 384 or 512 bits. This implementation currently 489 can't handle a sectorsize which is not a multiple of 16 bytes. 490 491config CRYPTO_KEYWRAP 492 tristate "Key wrapping support" 493 select CRYPTO_BLKCIPHER 494 help 495 Support for key wrapping (NIST SP800-38F / RFC3394) without 496 padding. 497 498comment "Hash modes" 499 500config CRYPTO_CMAC 501 tristate "CMAC support" 502 select CRYPTO_HASH 503 select CRYPTO_MANAGER 504 help 505 Cipher-based Message Authentication Code (CMAC) specified by 506 The National Institute of Standards and Technology (NIST). 507 508 https://tools.ietf.org/html/rfc4493 509 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 510 511config CRYPTO_HMAC 512 tristate "HMAC support" 513 select CRYPTO_HASH 514 select CRYPTO_MANAGER 515 help 516 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 517 This is required for IPSec. 518 519config CRYPTO_XCBC 520 tristate "XCBC support" 521 select CRYPTO_HASH 522 select CRYPTO_MANAGER 523 help 524 XCBC: Keyed-Hashing with encryption algorithm 525 http://www.ietf.org/rfc/rfc3566.txt 526 http://csrc.nist.gov/encryption/modes/proposedmodes/ 527 xcbc-mac/xcbc-mac-spec.pdf 528 529config CRYPTO_VMAC 530 tristate "VMAC support" 531 select CRYPTO_HASH 532 select CRYPTO_MANAGER 533 help 534 VMAC is a message authentication algorithm designed for 535 very high speed on 64-bit architectures. 536 537 See also: 538 <http://fastcrypto.org/vmac> 539 540comment "Digest" 541 542config CRYPTO_CRC32C 543 tristate "CRC32c CRC algorithm" 544 select CRYPTO_HASH 545 select CRC32 546 help 547 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 548 by iSCSI for header and data digests and by others. 549 See Castagnoli93. Module will be crc32c. 550 551config CRYPTO_CRC32C_INTEL 552 tristate "CRC32c INTEL hardware acceleration" 553 depends on X86 554 select CRYPTO_HASH 555 help 556 In Intel processor with SSE4.2 supported, the processor will 557 support CRC32C implementation using hardware accelerated CRC32 558 instruction. This option will create 'crc32c-intel' module, 559 which will enable any routine to use the CRC32 instruction to 560 gain performance compared with software implementation. 561 Module will be crc32c-intel. 562 563config CRYPTO_CRC32C_VPMSUM 564 tristate "CRC32c CRC algorithm (powerpc64)" 565 depends on PPC64 && ALTIVEC 566 select CRYPTO_HASH 567 select CRC32 568 help 569 CRC32c algorithm implemented using vector polynomial multiply-sum 570 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 571 and newer processors for improved performance. 572 573 574config CRYPTO_CRC32C_SPARC64 575 tristate "CRC32c CRC algorithm (SPARC64)" 576 depends on SPARC64 577 select CRYPTO_HASH 578 select CRC32 579 help 580 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 581 when available. 582 583config CRYPTO_CRC32 584 tristate "CRC32 CRC algorithm" 585 select CRYPTO_HASH 586 select CRC32 587 help 588 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 589 Shash crypto api wrappers to crc32_le function. 590 591config CRYPTO_CRC32_PCLMUL 592 tristate "CRC32 PCLMULQDQ hardware acceleration" 593 depends on X86 594 select CRYPTO_HASH 595 select CRC32 596 help 597 From Intel Westmere and AMD Bulldozer processor with SSE4.2 598 and PCLMULQDQ supported, the processor will support 599 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 600 instruction. This option will create 'crc32-plcmul' module, 601 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 602 and gain better performance as compared with the table implementation. 603 604config CRYPTO_CRC32_MIPS 605 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 606 depends on MIPS_CRC_SUPPORT 607 select CRYPTO_HASH 608 help 609 CRC32c and CRC32 CRC algorithms implemented using mips crypto 610 instructions, when available. 611 612 613config CRYPTO_CRCT10DIF 614 tristate "CRCT10DIF algorithm" 615 select CRYPTO_HASH 616 help 617 CRC T10 Data Integrity Field computation is being cast as 618 a crypto transform. This allows for faster crc t10 diff 619 transforms to be used if they are available. 620 621config CRYPTO_CRCT10DIF_PCLMUL 622 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 623 depends on X86 && 64BIT && CRC_T10DIF 624 select CRYPTO_HASH 625 help 626 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 627 CRC T10 DIF PCLMULQDQ computation can be hardware 628 accelerated PCLMULQDQ instruction. This option will create 629 'crct10dif-plcmul' module, which is faster when computing the 630 crct10dif checksum as compared with the generic table implementation. 631 632config CRYPTO_CRCT10DIF_VPMSUM 633 tristate "CRC32T10DIF powerpc64 hardware acceleration" 634 depends on PPC64 && ALTIVEC && CRC_T10DIF 635 select CRYPTO_HASH 636 help 637 CRC10T10DIF algorithm implemented using vector polynomial 638 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 639 POWER8 and newer processors for improved performance. 640 641config CRYPTO_VPMSUM_TESTER 642 tristate "Powerpc64 vpmsum hardware acceleration tester" 643 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 644 help 645 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 646 POWER8 vpmsum instructions. 647 Unless you are testing these algorithms, you don't need this. 648 649config CRYPTO_GHASH 650 tristate "GHASH digest algorithm" 651 select CRYPTO_GF128MUL 652 select CRYPTO_HASH 653 help 654 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 655 656config CRYPTO_POLY1305 657 tristate "Poly1305 authenticator algorithm" 658 select CRYPTO_HASH 659 help 660 Poly1305 authenticator algorithm, RFC7539. 661 662 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 663 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 664 in IETF protocols. This is the portable C implementation of Poly1305. 665 666config CRYPTO_POLY1305_X86_64 667 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 668 depends on X86 && 64BIT 669 select CRYPTO_POLY1305 670 help 671 Poly1305 authenticator algorithm, RFC7539. 672 673 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 674 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 675 in IETF protocols. This is the x86_64 assembler implementation using SIMD 676 instructions. 677 678config CRYPTO_MD4 679 tristate "MD4 digest algorithm" 680 select CRYPTO_HASH 681 help 682 MD4 message digest algorithm (RFC1320). 683 684config CRYPTO_MD5 685 tristate "MD5 digest algorithm" 686 select CRYPTO_HASH 687 help 688 MD5 message digest algorithm (RFC1321). 689 690config CRYPTO_MD5_OCTEON 691 tristate "MD5 digest algorithm (OCTEON)" 692 depends on CPU_CAVIUM_OCTEON 693 select CRYPTO_MD5 694 select CRYPTO_HASH 695 help 696 MD5 message digest algorithm (RFC1321) implemented 697 using OCTEON crypto instructions, when available. 698 699config CRYPTO_MD5_PPC 700 tristate "MD5 digest algorithm (PPC)" 701 depends on PPC 702 select CRYPTO_HASH 703 help 704 MD5 message digest algorithm (RFC1321) implemented 705 in PPC assembler. 706 707config CRYPTO_MD5_SPARC64 708 tristate "MD5 digest algorithm (SPARC64)" 709 depends on SPARC64 710 select CRYPTO_MD5 711 select CRYPTO_HASH 712 help 713 MD5 message digest algorithm (RFC1321) implemented 714 using sparc64 crypto instructions, when available. 715 716config CRYPTO_MICHAEL_MIC 717 tristate "Michael MIC keyed digest algorithm" 718 select CRYPTO_HASH 719 help 720 Michael MIC is used for message integrity protection in TKIP 721 (IEEE 802.11i). This algorithm is required for TKIP, but it 722 should not be used for other purposes because of the weakness 723 of the algorithm. 724 725config CRYPTO_RMD128 726 tristate "RIPEMD-128 digest algorithm" 727 select CRYPTO_HASH 728 help 729 RIPEMD-128 (ISO/IEC 10118-3:2004). 730 731 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 732 be used as a secure replacement for RIPEMD. For other use cases, 733 RIPEMD-160 should be used. 734 735 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 736 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 737 738config CRYPTO_RMD160 739 tristate "RIPEMD-160 digest algorithm" 740 select CRYPTO_HASH 741 help 742 RIPEMD-160 (ISO/IEC 10118-3:2004). 743 744 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 745 to be used as a secure replacement for the 128-bit hash functions 746 MD4, MD5 and it's predecessor RIPEMD 747 (not to be confused with RIPEMD-128). 748 749 It's speed is comparable to SHA1 and there are no known attacks 750 against RIPEMD-160. 751 752 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 753 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 754 755config CRYPTO_RMD256 756 tristate "RIPEMD-256 digest algorithm" 757 select CRYPTO_HASH 758 help 759 RIPEMD-256 is an optional extension of RIPEMD-128 with a 760 256 bit hash. It is intended for applications that require 761 longer hash-results, without needing a larger security level 762 (than RIPEMD-128). 763 764 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 765 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 766 767config CRYPTO_RMD320 768 tristate "RIPEMD-320 digest algorithm" 769 select CRYPTO_HASH 770 help 771 RIPEMD-320 is an optional extension of RIPEMD-160 with a 772 320 bit hash. It is intended for applications that require 773 longer hash-results, without needing a larger security level 774 (than RIPEMD-160). 775 776 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 777 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 778 779config CRYPTO_SHA1 780 tristate "SHA1 digest algorithm" 781 select CRYPTO_HASH 782 help 783 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 784 785config CRYPTO_SHA1_SSSE3 786 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 787 depends on X86 && 64BIT 788 select CRYPTO_SHA1 789 select CRYPTO_HASH 790 help 791 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 792 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 793 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 794 when available. 795 796config CRYPTO_SHA256_SSSE3 797 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 798 depends on X86 && 64BIT 799 select CRYPTO_SHA256 800 select CRYPTO_HASH 801 help 802 SHA-256 secure hash standard (DFIPS 180-2) implemented 803 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 804 Extensions version 1 (AVX1), or Advanced Vector Extensions 805 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 806 Instructions) when available. 807 808config CRYPTO_SHA512_SSSE3 809 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 810 depends on X86 && 64BIT 811 select CRYPTO_SHA512 812 select CRYPTO_HASH 813 help 814 SHA-512 secure hash standard (DFIPS 180-2) implemented 815 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 816 Extensions version 1 (AVX1), or Advanced Vector Extensions 817 version 2 (AVX2) instructions, when available. 818 819config CRYPTO_SHA1_OCTEON 820 tristate "SHA1 digest algorithm (OCTEON)" 821 depends on CPU_CAVIUM_OCTEON 822 select CRYPTO_SHA1 823 select CRYPTO_HASH 824 help 825 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 826 using OCTEON crypto instructions, when available. 827 828config CRYPTO_SHA1_SPARC64 829 tristate "SHA1 digest algorithm (SPARC64)" 830 depends on SPARC64 831 select CRYPTO_SHA1 832 select CRYPTO_HASH 833 help 834 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 835 using sparc64 crypto instructions, when available. 836 837config CRYPTO_SHA1_PPC 838 tristate "SHA1 digest algorithm (powerpc)" 839 depends on PPC 840 help 841 This is the powerpc hardware accelerated implementation of the 842 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 843 844config CRYPTO_SHA1_PPC_SPE 845 tristate "SHA1 digest algorithm (PPC SPE)" 846 depends on PPC && SPE 847 help 848 SHA-1 secure hash standard (DFIPS 180-4) implemented 849 using powerpc SPE SIMD instruction set. 850 851config CRYPTO_SHA1_MB 852 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 853 depends on X86 && 64BIT 854 select CRYPTO_SHA1 855 select CRYPTO_HASH 856 select CRYPTO_MCRYPTD 857 help 858 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 859 using multi-buffer technique. This algorithm computes on 860 multiple data lanes concurrently with SIMD instructions for 861 better throughput. It should not be enabled by default but 862 used when there is significant amount of work to keep the keep 863 the data lanes filled to get performance benefit. If the data 864 lanes remain unfilled, a flush operation will be initiated to 865 process the crypto jobs, adding a slight latency. 866 867config CRYPTO_SHA256_MB 868 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 869 depends on X86 && 64BIT 870 select CRYPTO_SHA256 871 select CRYPTO_HASH 872 select CRYPTO_MCRYPTD 873 help 874 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 875 using multi-buffer technique. This algorithm computes on 876 multiple data lanes concurrently with SIMD instructions for 877 better throughput. It should not be enabled by default but 878 used when there is significant amount of work to keep the keep 879 the data lanes filled to get performance benefit. If the data 880 lanes remain unfilled, a flush operation will be initiated to 881 process the crypto jobs, adding a slight latency. 882 883config CRYPTO_SHA512_MB 884 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 885 depends on X86 && 64BIT 886 select CRYPTO_SHA512 887 select CRYPTO_HASH 888 select CRYPTO_MCRYPTD 889 help 890 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 891 using multi-buffer technique. This algorithm computes on 892 multiple data lanes concurrently with SIMD instructions for 893 better throughput. It should not be enabled by default but 894 used when there is significant amount of work to keep the keep 895 the data lanes filled to get performance benefit. If the data 896 lanes remain unfilled, a flush operation will be initiated to 897 process the crypto jobs, adding a slight latency. 898 899config CRYPTO_SHA256 900 tristate "SHA224 and SHA256 digest algorithm" 901 select CRYPTO_HASH 902 help 903 SHA256 secure hash standard (DFIPS 180-2). 904 905 This version of SHA implements a 256 bit hash with 128 bits of 906 security against collision attacks. 907 908 This code also includes SHA-224, a 224 bit hash with 112 bits 909 of security against collision attacks. 910 911config CRYPTO_SHA256_PPC_SPE 912 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 913 depends on PPC && SPE 914 select CRYPTO_SHA256 915 select CRYPTO_HASH 916 help 917 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 918 implemented using powerpc SPE SIMD instruction set. 919 920config CRYPTO_SHA256_OCTEON 921 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 922 depends on CPU_CAVIUM_OCTEON 923 select CRYPTO_SHA256 924 select CRYPTO_HASH 925 help 926 SHA-256 secure hash standard (DFIPS 180-2) implemented 927 using OCTEON crypto instructions, when available. 928 929config CRYPTO_SHA256_SPARC64 930 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 931 depends on SPARC64 932 select CRYPTO_SHA256 933 select CRYPTO_HASH 934 help 935 SHA-256 secure hash standard (DFIPS 180-2) implemented 936 using sparc64 crypto instructions, when available. 937 938config CRYPTO_SHA512 939 tristate "SHA384 and SHA512 digest algorithms" 940 select CRYPTO_HASH 941 help 942 SHA512 secure hash standard (DFIPS 180-2). 943 944 This version of SHA implements a 512 bit hash with 256 bits of 945 security against collision attacks. 946 947 This code also includes SHA-384, a 384 bit hash with 192 bits 948 of security against collision attacks. 949 950config CRYPTO_SHA512_OCTEON 951 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 952 depends on CPU_CAVIUM_OCTEON 953 select CRYPTO_SHA512 954 select CRYPTO_HASH 955 help 956 SHA-512 secure hash standard (DFIPS 180-2) implemented 957 using OCTEON crypto instructions, when available. 958 959config CRYPTO_SHA512_SPARC64 960 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 961 depends on SPARC64 962 select CRYPTO_SHA512 963 select CRYPTO_HASH 964 help 965 SHA-512 secure hash standard (DFIPS 180-2) implemented 966 using sparc64 crypto instructions, when available. 967 968config CRYPTO_SHA3 969 tristate "SHA3 digest algorithm" 970 select CRYPTO_HASH 971 help 972 SHA-3 secure hash standard (DFIPS 202). It's based on 973 cryptographic sponge function family called Keccak. 974 975 References: 976 http://keccak.noekeon.org/ 977 978config CRYPTO_SM3 979 tristate "SM3 digest algorithm" 980 select CRYPTO_HASH 981 help 982 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 983 It is part of the Chinese Commercial Cryptography suite. 984 985 References: 986 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 987 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 988 989config CRYPTO_TGR192 990 tristate "Tiger digest algorithms" 991 select CRYPTO_HASH 992 help 993 Tiger hash algorithm 192, 160 and 128-bit hashes 994 995 Tiger is a hash function optimized for 64-bit processors while 996 still having decent performance on 32-bit processors. 997 Tiger was developed by Ross Anderson and Eli Biham. 998 999 See also: 1000 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 1001 1002config CRYPTO_WP512 1003 tristate "Whirlpool digest algorithms" 1004 select CRYPTO_HASH 1005 help 1006 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1007 1008 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1009 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1010 1011 See also: 1012 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1013 1014config CRYPTO_GHASH_CLMUL_NI_INTEL 1015 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 1016 depends on X86 && 64BIT 1017 select CRYPTO_CRYPTD 1018 help 1019 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 1020 The implementation is accelerated by CLMUL-NI of Intel. 1021 1022comment "Ciphers" 1023 1024config CRYPTO_AES 1025 tristate "AES cipher algorithms" 1026 select CRYPTO_ALGAPI 1027 help 1028 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1029 algorithm. 1030 1031 Rijndael appears to be consistently a very good performer in 1032 both hardware and software across a wide range of computing 1033 environments regardless of its use in feedback or non-feedback 1034 modes. Its key setup time is excellent, and its key agility is 1035 good. Rijndael's very low memory requirements make it very well 1036 suited for restricted-space environments, in which it also 1037 demonstrates excellent performance. Rijndael's operations are 1038 among the easiest to defend against power and timing attacks. 1039 1040 The AES specifies three key sizes: 128, 192 and 256 bits 1041 1042 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1043 1044config CRYPTO_AES_TI 1045 tristate "Fixed time AES cipher" 1046 select CRYPTO_ALGAPI 1047 help 1048 This is a generic implementation of AES that attempts to eliminate 1049 data dependent latencies as much as possible without affecting 1050 performance too much. It is intended for use by the generic CCM 1051 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1052 solely on encryption (although decryption is supported as well, but 1053 with a more dramatic performance hit) 1054 1055 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1056 8 for decryption), this implementation only uses just two S-boxes of 1057 256 bytes each, and attempts to eliminate data dependent latencies by 1058 prefetching the entire table into the cache at the start of each 1059 block. 1060 1061config CRYPTO_AES_586 1062 tristate "AES cipher algorithms (i586)" 1063 depends on (X86 || UML_X86) && !64BIT 1064 select CRYPTO_ALGAPI 1065 select CRYPTO_AES 1066 help 1067 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1068 algorithm. 1069 1070 Rijndael appears to be consistently a very good performer in 1071 both hardware and software across a wide range of computing 1072 environments regardless of its use in feedback or non-feedback 1073 modes. Its key setup time is excellent, and its key agility is 1074 good. Rijndael's very low memory requirements make it very well 1075 suited for restricted-space environments, in which it also 1076 demonstrates excellent performance. Rijndael's operations are 1077 among the easiest to defend against power and timing attacks. 1078 1079 The AES specifies three key sizes: 128, 192 and 256 bits 1080 1081 See <http://csrc.nist.gov/encryption/aes/> for more information. 1082 1083config CRYPTO_AES_X86_64 1084 tristate "AES cipher algorithms (x86_64)" 1085 depends on (X86 || UML_X86) && 64BIT 1086 select CRYPTO_ALGAPI 1087 select CRYPTO_AES 1088 help 1089 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1090 algorithm. 1091 1092 Rijndael appears to be consistently a very good performer in 1093 both hardware and software across a wide range of computing 1094 environments regardless of its use in feedback or non-feedback 1095 modes. Its key setup time is excellent, and its key agility is 1096 good. Rijndael's very low memory requirements make it very well 1097 suited for restricted-space environments, in which it also 1098 demonstrates excellent performance. Rijndael's operations are 1099 among the easiest to defend against power and timing attacks. 1100 1101 The AES specifies three key sizes: 128, 192 and 256 bits 1102 1103 See <http://csrc.nist.gov/encryption/aes/> for more information. 1104 1105config CRYPTO_AES_NI_INTEL 1106 tristate "AES cipher algorithms (AES-NI)" 1107 depends on X86 1108 select CRYPTO_AEAD 1109 select CRYPTO_AES_X86_64 if 64BIT 1110 select CRYPTO_AES_586 if !64BIT 1111 select CRYPTO_ALGAPI 1112 select CRYPTO_BLKCIPHER 1113 select CRYPTO_GLUE_HELPER_X86 if 64BIT 1114 select CRYPTO_SIMD 1115 help 1116 Use Intel AES-NI instructions for AES algorithm. 1117 1118 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1119 algorithm. 1120 1121 Rijndael appears to be consistently a very good performer in 1122 both hardware and software across a wide range of computing 1123 environments regardless of its use in feedback or non-feedback 1124 modes. Its key setup time is excellent, and its key agility is 1125 good. Rijndael's very low memory requirements make it very well 1126 suited for restricted-space environments, in which it also 1127 demonstrates excellent performance. Rijndael's operations are 1128 among the easiest to defend against power and timing attacks. 1129 1130 The AES specifies three key sizes: 128, 192 and 256 bits 1131 1132 See <http://csrc.nist.gov/encryption/aes/> for more information. 1133 1134 In addition to AES cipher algorithm support, the acceleration 1135 for some popular block cipher mode is supported too, including 1136 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 1137 acceleration for CTR. 1138 1139config CRYPTO_AES_SPARC64 1140 tristate "AES cipher algorithms (SPARC64)" 1141 depends on SPARC64 1142 select CRYPTO_CRYPTD 1143 select CRYPTO_ALGAPI 1144 help 1145 Use SPARC64 crypto opcodes for AES algorithm. 1146 1147 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1148 algorithm. 1149 1150 Rijndael appears to be consistently a very good performer in 1151 both hardware and software across a wide range of computing 1152 environments regardless of its use in feedback or non-feedback 1153 modes. Its key setup time is excellent, and its key agility is 1154 good. Rijndael's very low memory requirements make it very well 1155 suited for restricted-space environments, in which it also 1156 demonstrates excellent performance. Rijndael's operations are 1157 among the easiest to defend against power and timing attacks. 1158 1159 The AES specifies three key sizes: 128, 192 and 256 bits 1160 1161 See <http://csrc.nist.gov/encryption/aes/> for more information. 1162 1163 In addition to AES cipher algorithm support, the acceleration 1164 for some popular block cipher mode is supported too, including 1165 ECB and CBC. 1166 1167config CRYPTO_AES_PPC_SPE 1168 tristate "AES cipher algorithms (PPC SPE)" 1169 depends on PPC && SPE 1170 help 1171 AES cipher algorithms (FIPS-197). Additionally the acceleration 1172 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1173 This module should only be used for low power (router) devices 1174 without hardware AES acceleration (e.g. caam crypto). It reduces the 1175 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1176 timining attacks. Nevertheless it might be not as secure as other 1177 architecture specific assembler implementations that work on 1KB 1178 tables or 256 bytes S-boxes. 1179 1180config CRYPTO_ANUBIS 1181 tristate "Anubis cipher algorithm" 1182 select CRYPTO_ALGAPI 1183 help 1184 Anubis cipher algorithm. 1185 1186 Anubis is a variable key length cipher which can use keys from 1187 128 bits to 320 bits in length. It was evaluated as a entrant 1188 in the NESSIE competition. 1189 1190 See also: 1191 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1192 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1193 1194config CRYPTO_ARC4 1195 tristate "ARC4 cipher algorithm" 1196 select CRYPTO_BLKCIPHER 1197 help 1198 ARC4 cipher algorithm. 1199 1200 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1201 bits in length. This algorithm is required for driver-based 1202 WEP, but it should not be for other purposes because of the 1203 weakness of the algorithm. 1204 1205config CRYPTO_BLOWFISH 1206 tristate "Blowfish cipher algorithm" 1207 select CRYPTO_ALGAPI 1208 select CRYPTO_BLOWFISH_COMMON 1209 help 1210 Blowfish cipher algorithm, by Bruce Schneier. 1211 1212 This is a variable key length cipher which can use keys from 32 1213 bits to 448 bits in length. It's fast, simple and specifically 1214 designed for use on "large microprocessors". 1215 1216 See also: 1217 <http://www.schneier.com/blowfish.html> 1218 1219config CRYPTO_BLOWFISH_COMMON 1220 tristate 1221 help 1222 Common parts of the Blowfish cipher algorithm shared by the 1223 generic c and the assembler implementations. 1224 1225 See also: 1226 <http://www.schneier.com/blowfish.html> 1227 1228config CRYPTO_BLOWFISH_X86_64 1229 tristate "Blowfish cipher algorithm (x86_64)" 1230 depends on X86 && 64BIT 1231 select CRYPTO_BLKCIPHER 1232 select CRYPTO_BLOWFISH_COMMON 1233 help 1234 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1235 1236 This is a variable key length cipher which can use keys from 32 1237 bits to 448 bits in length. It's fast, simple and specifically 1238 designed for use on "large microprocessors". 1239 1240 See also: 1241 <http://www.schneier.com/blowfish.html> 1242 1243config CRYPTO_CAMELLIA 1244 tristate "Camellia cipher algorithms" 1245 depends on CRYPTO 1246 select CRYPTO_ALGAPI 1247 help 1248 Camellia cipher algorithms module. 1249 1250 Camellia is a symmetric key block cipher developed jointly 1251 at NTT and Mitsubishi Electric Corporation. 1252 1253 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1254 1255 See also: 1256 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1257 1258config CRYPTO_CAMELLIA_X86_64 1259 tristate "Camellia cipher algorithm (x86_64)" 1260 depends on X86 && 64BIT 1261 depends on CRYPTO 1262 select CRYPTO_BLKCIPHER 1263 select CRYPTO_GLUE_HELPER_X86 1264 help 1265 Camellia cipher algorithm module (x86_64). 1266 1267 Camellia is a symmetric key block cipher developed jointly 1268 at NTT and Mitsubishi Electric Corporation. 1269 1270 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1271 1272 See also: 1273 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1274 1275config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1276 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1277 depends on X86 && 64BIT 1278 depends on CRYPTO 1279 select CRYPTO_BLKCIPHER 1280 select CRYPTO_CAMELLIA_X86_64 1281 select CRYPTO_GLUE_HELPER_X86 1282 select CRYPTO_SIMD 1283 select CRYPTO_XTS 1284 help 1285 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1286 1287 Camellia is a symmetric key block cipher developed jointly 1288 at NTT and Mitsubishi Electric Corporation. 1289 1290 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1291 1292 See also: 1293 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1294 1295config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1296 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1297 depends on X86 && 64BIT 1298 depends on CRYPTO 1299 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1300 help 1301 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1302 1303 Camellia is a symmetric key block cipher developed jointly 1304 at NTT and Mitsubishi Electric Corporation. 1305 1306 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1307 1308 See also: 1309 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1310 1311config CRYPTO_CAMELLIA_SPARC64 1312 tristate "Camellia cipher algorithm (SPARC64)" 1313 depends on SPARC64 1314 depends on CRYPTO 1315 select CRYPTO_ALGAPI 1316 help 1317 Camellia cipher algorithm module (SPARC64). 1318 1319 Camellia is a symmetric key block cipher developed jointly 1320 at NTT and Mitsubishi Electric Corporation. 1321 1322 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1323 1324 See also: 1325 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1326 1327config CRYPTO_CAST_COMMON 1328 tristate 1329 help 1330 Common parts of the CAST cipher algorithms shared by the 1331 generic c and the assembler implementations. 1332 1333config CRYPTO_CAST5 1334 tristate "CAST5 (CAST-128) cipher algorithm" 1335 select CRYPTO_ALGAPI 1336 select CRYPTO_CAST_COMMON 1337 help 1338 The CAST5 encryption algorithm (synonymous with CAST-128) is 1339 described in RFC2144. 1340 1341config CRYPTO_CAST5_AVX_X86_64 1342 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1343 depends on X86 && 64BIT 1344 select CRYPTO_BLKCIPHER 1345 select CRYPTO_CAST5 1346 select CRYPTO_CAST_COMMON 1347 select CRYPTO_SIMD 1348 help 1349 The CAST5 encryption algorithm (synonymous with CAST-128) is 1350 described in RFC2144. 1351 1352 This module provides the Cast5 cipher algorithm that processes 1353 sixteen blocks parallel using the AVX instruction set. 1354 1355config CRYPTO_CAST6 1356 tristate "CAST6 (CAST-256) cipher algorithm" 1357 select CRYPTO_ALGAPI 1358 select CRYPTO_CAST_COMMON 1359 help 1360 The CAST6 encryption algorithm (synonymous with CAST-256) is 1361 described in RFC2612. 1362 1363config CRYPTO_CAST6_AVX_X86_64 1364 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1365 depends on X86 && 64BIT 1366 select CRYPTO_BLKCIPHER 1367 select CRYPTO_CAST6 1368 select CRYPTO_CAST_COMMON 1369 select CRYPTO_GLUE_HELPER_X86 1370 select CRYPTO_SIMD 1371 select CRYPTO_XTS 1372 help 1373 The CAST6 encryption algorithm (synonymous with CAST-256) is 1374 described in RFC2612. 1375 1376 This module provides the Cast6 cipher algorithm that processes 1377 eight blocks parallel using the AVX instruction set. 1378 1379config CRYPTO_DES 1380 tristate "DES and Triple DES EDE cipher algorithms" 1381 select CRYPTO_ALGAPI 1382 help 1383 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1384 1385config CRYPTO_DES_SPARC64 1386 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1387 depends on SPARC64 1388 select CRYPTO_ALGAPI 1389 select CRYPTO_DES 1390 help 1391 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1392 optimized using SPARC64 crypto opcodes. 1393 1394config CRYPTO_DES3_EDE_X86_64 1395 tristate "Triple DES EDE cipher algorithm (x86-64)" 1396 depends on X86 && 64BIT 1397 select CRYPTO_BLKCIPHER 1398 select CRYPTO_DES 1399 help 1400 Triple DES EDE (FIPS 46-3) algorithm. 1401 1402 This module provides implementation of the Triple DES EDE cipher 1403 algorithm that is optimized for x86-64 processors. Two versions of 1404 algorithm are provided; regular processing one input block and 1405 one that processes three blocks parallel. 1406 1407config CRYPTO_FCRYPT 1408 tristate "FCrypt cipher algorithm" 1409 select CRYPTO_ALGAPI 1410 select CRYPTO_BLKCIPHER 1411 help 1412 FCrypt algorithm used by RxRPC. 1413 1414config CRYPTO_KHAZAD 1415 tristate "Khazad cipher algorithm" 1416 select CRYPTO_ALGAPI 1417 help 1418 Khazad cipher algorithm. 1419 1420 Khazad was a finalist in the initial NESSIE competition. It is 1421 an algorithm optimized for 64-bit processors with good performance 1422 on 32-bit processors. Khazad uses an 128 bit key size. 1423 1424 See also: 1425 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1426 1427config CRYPTO_SALSA20 1428 tristate "Salsa20 stream cipher algorithm" 1429 select CRYPTO_BLKCIPHER 1430 help 1431 Salsa20 stream cipher algorithm. 1432 1433 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1434 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1435 1436 The Salsa20 stream cipher algorithm is designed by Daniel J. 1437 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1438 1439config CRYPTO_CHACHA20 1440 tristate "ChaCha20 cipher algorithm" 1441 select CRYPTO_BLKCIPHER 1442 help 1443 ChaCha20 cipher algorithm, RFC7539. 1444 1445 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1446 Bernstein and further specified in RFC7539 for use in IETF protocols. 1447 This is the portable C implementation of ChaCha20. 1448 1449 See also: 1450 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1451 1452config CRYPTO_CHACHA20_X86_64 1453 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1454 depends on X86 && 64BIT 1455 select CRYPTO_BLKCIPHER 1456 select CRYPTO_CHACHA20 1457 help 1458 ChaCha20 cipher algorithm, RFC7539. 1459 1460 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1461 Bernstein and further specified in RFC7539 for use in IETF protocols. 1462 This is the x86_64 assembler implementation using SIMD instructions. 1463 1464 See also: 1465 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1466 1467config CRYPTO_SEED 1468 tristate "SEED cipher algorithm" 1469 select CRYPTO_ALGAPI 1470 help 1471 SEED cipher algorithm (RFC4269). 1472 1473 SEED is a 128-bit symmetric key block cipher that has been 1474 developed by KISA (Korea Information Security Agency) as a 1475 national standard encryption algorithm of the Republic of Korea. 1476 It is a 16 round block cipher with the key size of 128 bit. 1477 1478 See also: 1479 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1480 1481config CRYPTO_SERPENT 1482 tristate "Serpent cipher algorithm" 1483 select CRYPTO_ALGAPI 1484 help 1485 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1486 1487 Keys are allowed to be from 0 to 256 bits in length, in steps 1488 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1489 variant of Serpent for compatibility with old kerneli.org code. 1490 1491 See also: 1492 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1493 1494config CRYPTO_SERPENT_SSE2_X86_64 1495 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1496 depends on X86 && 64BIT 1497 select CRYPTO_BLKCIPHER 1498 select CRYPTO_GLUE_HELPER_X86 1499 select CRYPTO_SERPENT 1500 select CRYPTO_SIMD 1501 help 1502 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1503 1504 Keys are allowed to be from 0 to 256 bits in length, in steps 1505 of 8 bits. 1506 1507 This module provides Serpent cipher algorithm that processes eight 1508 blocks parallel using SSE2 instruction set. 1509 1510 See also: 1511 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1512 1513config CRYPTO_SERPENT_SSE2_586 1514 tristate "Serpent cipher algorithm (i586/SSE2)" 1515 depends on X86 && !64BIT 1516 select CRYPTO_BLKCIPHER 1517 select CRYPTO_GLUE_HELPER_X86 1518 select CRYPTO_SERPENT 1519 select CRYPTO_SIMD 1520 help 1521 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1522 1523 Keys are allowed to be from 0 to 256 bits in length, in steps 1524 of 8 bits. 1525 1526 This module provides Serpent cipher algorithm that processes four 1527 blocks parallel using SSE2 instruction set. 1528 1529 See also: 1530 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1531 1532config CRYPTO_SERPENT_AVX_X86_64 1533 tristate "Serpent cipher algorithm (x86_64/AVX)" 1534 depends on X86 && 64BIT 1535 select CRYPTO_BLKCIPHER 1536 select CRYPTO_GLUE_HELPER_X86 1537 select CRYPTO_SERPENT 1538 select CRYPTO_SIMD 1539 select CRYPTO_XTS 1540 help 1541 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1542 1543 Keys are allowed to be from 0 to 256 bits in length, in steps 1544 of 8 bits. 1545 1546 This module provides the Serpent cipher algorithm that processes 1547 eight blocks parallel using the AVX instruction set. 1548 1549 See also: 1550 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1551 1552config CRYPTO_SERPENT_AVX2_X86_64 1553 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1554 depends on X86 && 64BIT 1555 select CRYPTO_SERPENT_AVX_X86_64 1556 help 1557 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1558 1559 Keys are allowed to be from 0 to 256 bits in length, in steps 1560 of 8 bits. 1561 1562 This module provides Serpent cipher algorithm that processes 16 1563 blocks parallel using AVX2 instruction set. 1564 1565 See also: 1566 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1567 1568config CRYPTO_SM4 1569 tristate "SM4 cipher algorithm" 1570 select CRYPTO_ALGAPI 1571 help 1572 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1573 1574 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1575 Organization of State Commercial Administration of China (OSCCA) 1576 as an authorized cryptographic algorithms for the use within China. 1577 1578 SMS4 was originally created for use in protecting wireless 1579 networks, and is mandated in the Chinese National Standard for 1580 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1581 (GB.15629.11-2003). 1582 1583 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1584 standardized through TC 260 of the Standardization Administration 1585 of the People's Republic of China (SAC). 1586 1587 The input, output, and key of SMS4 are each 128 bits. 1588 1589 See also: <https://eprint.iacr.org/2008/329.pdf> 1590 1591 If unsure, say N. 1592 1593config CRYPTO_SPECK 1594 tristate "Speck cipher algorithm" 1595 select CRYPTO_ALGAPI 1596 help 1597 Speck is a lightweight block cipher that is tuned for optimal 1598 performance in software (rather than hardware). 1599 1600 Speck may not be as secure as AES, and should only be used on systems 1601 where AES is not fast enough. 1602 1603 See also: <https://eprint.iacr.org/2013/404.pdf> 1604 1605 If unsure, say N. 1606 1607config CRYPTO_TEA 1608 tristate "TEA, XTEA and XETA cipher algorithms" 1609 select CRYPTO_ALGAPI 1610 help 1611 TEA cipher algorithm. 1612 1613 Tiny Encryption Algorithm is a simple cipher that uses 1614 many rounds for security. It is very fast and uses 1615 little memory. 1616 1617 Xtendend Tiny Encryption Algorithm is a modification to 1618 the TEA algorithm to address a potential key weakness 1619 in the TEA algorithm. 1620 1621 Xtendend Encryption Tiny Algorithm is a mis-implementation 1622 of the XTEA algorithm for compatibility purposes. 1623 1624config CRYPTO_TWOFISH 1625 tristate "Twofish cipher algorithm" 1626 select CRYPTO_ALGAPI 1627 select CRYPTO_TWOFISH_COMMON 1628 help 1629 Twofish cipher algorithm. 1630 1631 Twofish was submitted as an AES (Advanced Encryption Standard) 1632 candidate cipher by researchers at CounterPane Systems. It is a 1633 16 round block cipher supporting key sizes of 128, 192, and 256 1634 bits. 1635 1636 See also: 1637 <http://www.schneier.com/twofish.html> 1638 1639config CRYPTO_TWOFISH_COMMON 1640 tristate 1641 help 1642 Common parts of the Twofish cipher algorithm shared by the 1643 generic c and the assembler implementations. 1644 1645config CRYPTO_TWOFISH_586 1646 tristate "Twofish cipher algorithms (i586)" 1647 depends on (X86 || UML_X86) && !64BIT 1648 select CRYPTO_ALGAPI 1649 select CRYPTO_TWOFISH_COMMON 1650 help 1651 Twofish cipher algorithm. 1652 1653 Twofish was submitted as an AES (Advanced Encryption Standard) 1654 candidate cipher by researchers at CounterPane Systems. It is a 1655 16 round block cipher supporting key sizes of 128, 192, and 256 1656 bits. 1657 1658 See also: 1659 <http://www.schneier.com/twofish.html> 1660 1661config CRYPTO_TWOFISH_X86_64 1662 tristate "Twofish cipher algorithm (x86_64)" 1663 depends on (X86 || UML_X86) && 64BIT 1664 select CRYPTO_ALGAPI 1665 select CRYPTO_TWOFISH_COMMON 1666 help 1667 Twofish cipher algorithm (x86_64). 1668 1669 Twofish was submitted as an AES (Advanced Encryption Standard) 1670 candidate cipher by researchers at CounterPane Systems. It is a 1671 16 round block cipher supporting key sizes of 128, 192, and 256 1672 bits. 1673 1674 See also: 1675 <http://www.schneier.com/twofish.html> 1676 1677config CRYPTO_TWOFISH_X86_64_3WAY 1678 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1679 depends on X86 && 64BIT 1680 select CRYPTO_BLKCIPHER 1681 select CRYPTO_TWOFISH_COMMON 1682 select CRYPTO_TWOFISH_X86_64 1683 select CRYPTO_GLUE_HELPER_X86 1684 help 1685 Twofish cipher algorithm (x86_64, 3-way parallel). 1686 1687 Twofish was submitted as an AES (Advanced Encryption Standard) 1688 candidate cipher by researchers at CounterPane Systems. It is a 1689 16 round block cipher supporting key sizes of 128, 192, and 256 1690 bits. 1691 1692 This module provides Twofish cipher algorithm that processes three 1693 blocks parallel, utilizing resources of out-of-order CPUs better. 1694 1695 See also: 1696 <http://www.schneier.com/twofish.html> 1697 1698config CRYPTO_TWOFISH_AVX_X86_64 1699 tristate "Twofish cipher algorithm (x86_64/AVX)" 1700 depends on X86 && 64BIT 1701 select CRYPTO_BLKCIPHER 1702 select CRYPTO_GLUE_HELPER_X86 1703 select CRYPTO_SIMD 1704 select CRYPTO_TWOFISH_COMMON 1705 select CRYPTO_TWOFISH_X86_64 1706 select CRYPTO_TWOFISH_X86_64_3WAY 1707 help 1708 Twofish cipher algorithm (x86_64/AVX). 1709 1710 Twofish was submitted as an AES (Advanced Encryption Standard) 1711 candidate cipher by researchers at CounterPane Systems. It is a 1712 16 round block cipher supporting key sizes of 128, 192, and 256 1713 bits. 1714 1715 This module provides the Twofish cipher algorithm that processes 1716 eight blocks parallel using the AVX Instruction Set. 1717 1718 See also: 1719 <http://www.schneier.com/twofish.html> 1720 1721comment "Compression" 1722 1723config CRYPTO_DEFLATE 1724 tristate "Deflate compression algorithm" 1725 select CRYPTO_ALGAPI 1726 select CRYPTO_ACOMP2 1727 select ZLIB_INFLATE 1728 select ZLIB_DEFLATE 1729 help 1730 This is the Deflate algorithm (RFC1951), specified for use in 1731 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1732 1733 You will most probably want this if using IPSec. 1734 1735config CRYPTO_LZO 1736 tristate "LZO compression algorithm" 1737 select CRYPTO_ALGAPI 1738 select CRYPTO_ACOMP2 1739 select LZO_COMPRESS 1740 select LZO_DECOMPRESS 1741 help 1742 This is the LZO algorithm. 1743 1744config CRYPTO_842 1745 tristate "842 compression algorithm" 1746 select CRYPTO_ALGAPI 1747 select CRYPTO_ACOMP2 1748 select 842_COMPRESS 1749 select 842_DECOMPRESS 1750 help 1751 This is the 842 algorithm. 1752 1753config CRYPTO_LZ4 1754 tristate "LZ4 compression algorithm" 1755 select CRYPTO_ALGAPI 1756 select CRYPTO_ACOMP2 1757 select LZ4_COMPRESS 1758 select LZ4_DECOMPRESS 1759 help 1760 This is the LZ4 algorithm. 1761 1762config CRYPTO_LZ4HC 1763 tristate "LZ4HC compression algorithm" 1764 select CRYPTO_ALGAPI 1765 select CRYPTO_ACOMP2 1766 select LZ4HC_COMPRESS 1767 select LZ4_DECOMPRESS 1768 help 1769 This is the LZ4 high compression mode algorithm. 1770 1771config CRYPTO_ZSTD 1772 tristate "Zstd compression algorithm" 1773 select CRYPTO_ALGAPI 1774 select CRYPTO_ACOMP2 1775 select ZSTD_COMPRESS 1776 select ZSTD_DECOMPRESS 1777 help 1778 This is the zstd algorithm. 1779 1780comment "Random Number Generation" 1781 1782config CRYPTO_ANSI_CPRNG 1783 tristate "Pseudo Random Number Generation for Cryptographic modules" 1784 select CRYPTO_AES 1785 select CRYPTO_RNG 1786 help 1787 This option enables the generic pseudo random number generator 1788 for cryptographic modules. Uses the Algorithm specified in 1789 ANSI X9.31 A.2.4. Note that this option must be enabled if 1790 CRYPTO_FIPS is selected 1791 1792menuconfig CRYPTO_DRBG_MENU 1793 tristate "NIST SP800-90A DRBG" 1794 help 1795 NIST SP800-90A compliant DRBG. In the following submenu, one or 1796 more of the DRBG types must be selected. 1797 1798if CRYPTO_DRBG_MENU 1799 1800config CRYPTO_DRBG_HMAC 1801 bool 1802 default y 1803 select CRYPTO_HMAC 1804 select CRYPTO_SHA256 1805 1806config CRYPTO_DRBG_HASH 1807 bool "Enable Hash DRBG" 1808 select CRYPTO_SHA256 1809 help 1810 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1811 1812config CRYPTO_DRBG_CTR 1813 bool "Enable CTR DRBG" 1814 select CRYPTO_AES 1815 depends on CRYPTO_CTR 1816 help 1817 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1818 1819config CRYPTO_DRBG 1820 tristate 1821 default CRYPTO_DRBG_MENU 1822 select CRYPTO_RNG 1823 select CRYPTO_JITTERENTROPY 1824 1825endif # if CRYPTO_DRBG_MENU 1826 1827config CRYPTO_JITTERENTROPY 1828 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1829 select CRYPTO_RNG 1830 help 1831 The Jitterentropy RNG is a noise that is intended 1832 to provide seed to another RNG. The RNG does not 1833 perform any cryptographic whitening of the generated 1834 random numbers. This Jitterentropy RNG registers with 1835 the kernel crypto API and can be used by any caller. 1836 1837config CRYPTO_USER_API 1838 tristate 1839 1840config CRYPTO_USER_API_HASH 1841 tristate "User-space interface for hash algorithms" 1842 depends on NET 1843 select CRYPTO_HASH 1844 select CRYPTO_USER_API 1845 help 1846 This option enables the user-spaces interface for hash 1847 algorithms. 1848 1849config CRYPTO_USER_API_SKCIPHER 1850 tristate "User-space interface for symmetric key cipher algorithms" 1851 depends on NET 1852 select CRYPTO_BLKCIPHER 1853 select CRYPTO_USER_API 1854 help 1855 This option enables the user-spaces interface for symmetric 1856 key cipher algorithms. 1857 1858config CRYPTO_USER_API_RNG 1859 tristate "User-space interface for random number generator algorithms" 1860 depends on NET 1861 select CRYPTO_RNG 1862 select CRYPTO_USER_API 1863 help 1864 This option enables the user-spaces interface for random 1865 number generator algorithms. 1866 1867config CRYPTO_USER_API_AEAD 1868 tristate "User-space interface for AEAD cipher algorithms" 1869 depends on NET 1870 select CRYPTO_AEAD 1871 select CRYPTO_BLKCIPHER 1872 select CRYPTO_NULL 1873 select CRYPTO_USER_API 1874 help 1875 This option enables the user-spaces interface for AEAD 1876 cipher algorithms. 1877 1878config CRYPTO_HASH_INFO 1879 bool 1880 1881source "drivers/crypto/Kconfig" 1882source crypto/asymmetric_keys/Kconfig 1883source certs/Kconfig 1884 1885endif # if CRYPTO 1886