xref: /linux/crypto/Kconfig (revision eec76ea5a7213c48529a46eed1b343e5cee3aaab)
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6	tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17	tristate "Cryptographic API"
18	select CRYPTO_LIB_UTILS
19	help
20	  This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27	bool "FIPS 200 compliance"
28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && CRYPTO_SELFTESTS
29	depends on (MODULE_SIG || !MODULES)
30	help
31	  This option enables the fips boot option which is
32	  required if you want the system to operate in a FIPS 200
33	  certification.  You should say no unless you know what
34	  this is.
35
36config CRYPTO_FIPS_NAME
37	string "FIPS Module Name"
38	default "Linux Kernel Cryptographic API"
39	depends on CRYPTO_FIPS
40	help
41	  This option sets the FIPS Module name reported by the Crypto API via
42	  the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45	bool "Use Custom FIPS Module Version"
46	depends on CRYPTO_FIPS
47	default n
48
49config CRYPTO_FIPS_VERSION
50	string "FIPS Module Version"
51	default "(none)"
52	depends on CRYPTO_FIPS_CUSTOM_VERSION
53	help
54	  This option provides the ability to override the FIPS Module Version.
55	  By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58	tristate
59	select CRYPTO_ALGAPI2
60	help
61	  This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64	tristate
65
66config CRYPTO_AEAD
67	tristate
68	select CRYPTO_AEAD2
69	select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72	tristate
73	select CRYPTO_ALGAPI2
74
75config CRYPTO_SIG
76	tristate
77	select CRYPTO_SIG2
78	select CRYPTO_ALGAPI
79
80config CRYPTO_SIG2
81	tristate
82	select CRYPTO_ALGAPI2
83
84config CRYPTO_SKCIPHER
85	tristate
86	select CRYPTO_SKCIPHER2
87	select CRYPTO_ALGAPI
88	select CRYPTO_ECB
89
90config CRYPTO_SKCIPHER2
91	tristate
92	select CRYPTO_ALGAPI2
93
94config CRYPTO_HASH
95	tristate
96	select CRYPTO_HASH2
97	select CRYPTO_ALGAPI
98
99config CRYPTO_HASH2
100	tristate
101	select CRYPTO_ALGAPI2
102
103config CRYPTO_RNG
104	tristate
105	select CRYPTO_RNG2
106	select CRYPTO_ALGAPI
107
108config CRYPTO_RNG2
109	tristate
110	select CRYPTO_ALGAPI2
111
112config CRYPTO_RNG_DEFAULT
113	tristate
114	select CRYPTO_DRBG_MENU
115
116config CRYPTO_AKCIPHER2
117	tristate
118	select CRYPTO_ALGAPI2
119
120config CRYPTO_AKCIPHER
121	tristate
122	select CRYPTO_AKCIPHER2
123	select CRYPTO_ALGAPI
124
125config CRYPTO_KPP2
126	tristate
127	select CRYPTO_ALGAPI2
128
129config CRYPTO_KPP
130	tristate
131	select CRYPTO_ALGAPI
132	select CRYPTO_KPP2
133
134config CRYPTO_ACOMP2
135	tristate
136	select CRYPTO_ALGAPI2
137	select SGL_ALLOC
138
139config CRYPTO_ACOMP
140	tristate
141	select CRYPTO_ALGAPI
142	select CRYPTO_ACOMP2
143
144config CRYPTO_HKDF
145	tristate
146	select CRYPTO_SHA256 if CRYPTO_SELFTESTS
147	select CRYPTO_SHA512 if CRYPTO_SELFTESTS
148	select CRYPTO_HASH2
149
150config CRYPTO_MANAGER
151	tristate
152	default CRYPTO_ALGAPI if CRYPTO_SELFTESTS
153	select CRYPTO_MANAGER2
154	help
155	  This provides the support for instantiating templates such as
156	  cbc(aes), and the support for the crypto self-tests.
157
158config CRYPTO_MANAGER2
159	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
160	select CRYPTO_ACOMP2
161	select CRYPTO_AEAD2
162	select CRYPTO_AKCIPHER2
163	select CRYPTO_SIG2
164	select CRYPTO_HASH2
165	select CRYPTO_KPP2
166	select CRYPTO_RNG2
167	select CRYPTO_SKCIPHER2
168
169config CRYPTO_USER
170	tristate "Userspace cryptographic algorithm configuration"
171	depends on NET
172	select CRYPTO_MANAGER
173	help
174	  Userspace configuration for cryptographic instantiations such as
175	  cbc(aes).
176
177config CRYPTO_SELFTESTS
178	bool "Enable cryptographic self-tests"
179	depends on EXPERT
180	help
181	  Enable the cryptographic self-tests.
182
183	  The cryptographic self-tests run at boot time, or at algorithm
184	  registration time if algorithms are dynamically loaded later.
185
186	  There are two main use cases for these tests:
187
188	  - Development and pre-release testing.  In this case, also enable
189	    CRYPTO_SELFTESTS_FULL to get the full set of tests.  All crypto code
190	    in the kernel is expected to pass the full set of tests.
191
192	  - Production kernels, to help prevent buggy drivers from being used
193	    and/or meet FIPS 140-3 pre-operational testing requirements.  In
194	    this case, enable CRYPTO_SELFTESTS but not CRYPTO_SELFTESTS_FULL.
195
196config CRYPTO_SELFTESTS_FULL
197	bool "Enable the full set of cryptographic self-tests"
198	depends on CRYPTO_SELFTESTS
199	help
200	  Enable the full set of cryptographic self-tests for each algorithm.
201
202	  The full set of tests should be enabled for development and
203	  pre-release testing, but not in production kernels.
204
205	  All crypto code in the kernel is expected to pass the full tests.
206
207config CRYPTO_NULL
208	tristate "Null algorithms"
209	select CRYPTO_ALGAPI
210	select CRYPTO_SKCIPHER
211	select CRYPTO_HASH
212	help
213	  These are 'Null' algorithms, used by IPsec, which do nothing.
214
215config CRYPTO_PCRYPT
216	tristate "Parallel crypto engine"
217	depends on SMP
218	select PADATA
219	select CRYPTO_MANAGER
220	select CRYPTO_AEAD
221	help
222	  This converts an arbitrary crypto algorithm into a parallel
223	  algorithm that executes in kernel threads.
224
225config CRYPTO_CRYPTD
226	tristate "Software async crypto daemon"
227	select CRYPTO_SKCIPHER
228	select CRYPTO_HASH
229	select CRYPTO_MANAGER
230	help
231	  This is a generic software asynchronous crypto daemon that
232	  converts an arbitrary synchronous software crypto algorithm
233	  into an asynchronous algorithm that executes in a kernel thread.
234
235config CRYPTO_AUTHENC
236	tristate "Authenc support"
237	select CRYPTO_AEAD
238	select CRYPTO_SKCIPHER
239	select CRYPTO_MANAGER
240	select CRYPTO_HASH
241	help
242	  Authenc: Combined mode wrapper for IPsec.
243
244	  This is required for IPSec ESP (XFRM_ESP).
245
246config CRYPTO_KRB5ENC
247	tristate "Kerberos 5 combined hash+cipher support"
248	select CRYPTO_AEAD
249	select CRYPTO_SKCIPHER
250	select CRYPTO_MANAGER
251	select CRYPTO_HASH
252	help
253	  Combined hash and cipher support for Kerberos 5 RFC3961 simplified
254	  profile.  This is required for Kerberos 5-style encryption, used by
255	  sunrpc/NFS and rxrpc/AFS.
256
257config CRYPTO_BENCHMARK
258	tristate "Crypto benchmarking module"
259	depends on m || EXPERT
260	select CRYPTO_MANAGER
261	help
262	  Quick & dirty crypto benchmarking module.
263
264	  This is mainly intended for use by people developing cryptographic
265	  algorithms in the kernel.  It should not be enabled in production
266	  kernels.
267
268config CRYPTO_SIMD
269	tristate
270	select CRYPTO_CRYPTD
271
272config CRYPTO_ENGINE
273	tristate
274
275endmenu
276
277menu "Public-key cryptography"
278
279config CRYPTO_RSA
280	tristate "RSA (Rivest-Shamir-Adleman)"
281	select CRYPTO_AKCIPHER
282	select CRYPTO_MANAGER
283	select CRYPTO_SIG
284	select MPILIB
285	select ASN1
286	help
287	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
288
289config CRYPTO_DH
290	tristate "DH (Diffie-Hellman)"
291	select CRYPTO_KPP
292	select MPILIB
293	help
294	  DH (Diffie-Hellman) key exchange algorithm
295
296config CRYPTO_DH_RFC7919_GROUPS
297	bool "RFC 7919 FFDHE groups"
298	depends on CRYPTO_DH
299	select CRYPTO_RNG_DEFAULT
300	help
301	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
302	  defined in RFC7919.
303
304	  Support these finite-field groups in DH key exchanges:
305	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
306
307	  If unsure, say N.
308
309config CRYPTO_ECC
310	tristate
311	select CRYPTO_RNG_DEFAULT
312
313config CRYPTO_ECDH
314	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
315	select CRYPTO_ECC
316	select CRYPTO_KPP
317	help
318	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
319	  using curves P-192, P-256, and P-384 (FIPS 186)
320
321config CRYPTO_ECDSA
322	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
323	select CRYPTO_ECC
324	select CRYPTO_SIG
325	select ASN1
326	help
327	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
328	  ISO/IEC 14888-3)
329	  using curves P-192, P-256, P-384 and P-521
330
331	  Only signature verification is implemented.
332
333config CRYPTO_ECRDSA
334	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
335	select CRYPTO_ECC
336	select CRYPTO_SIG
337	select CRYPTO_STREEBOG
338	select OID_REGISTRY
339	select ASN1
340	help
341	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
342	  RFC 7091, ISO/IEC 14888-3)
343
344	  One of the Russian cryptographic standard algorithms (called GOST
345	  algorithms). Only signature verification is implemented.
346
347config CRYPTO_CURVE25519
348	tristate "Curve25519"
349	select CRYPTO_KPP
350	select CRYPTO_LIB_CURVE25519_GENERIC
351	select CRYPTO_LIB_CURVE25519_INTERNAL
352	help
353	  Curve25519 elliptic curve (RFC7748)
354
355endmenu
356
357menu "Block ciphers"
358
359config CRYPTO_AES
360	tristate "AES (Advanced Encryption Standard)"
361	select CRYPTO_ALGAPI
362	select CRYPTO_LIB_AES
363	help
364	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
365
366	  Rijndael appears to be consistently a very good performer in
367	  both hardware and software across a wide range of computing
368	  environments regardless of its use in feedback or non-feedback
369	  modes. Its key setup time is excellent, and its key agility is
370	  good. Rijndael's very low memory requirements make it very well
371	  suited for restricted-space environments, in which it also
372	  demonstrates excellent performance. Rijndael's operations are
373	  among the easiest to defend against power and timing attacks.
374
375	  The AES specifies three key sizes: 128, 192 and 256 bits
376
377config CRYPTO_AES_TI
378	tristate "AES (Advanced Encryption Standard) (fixed time)"
379	select CRYPTO_ALGAPI
380	select CRYPTO_LIB_AES
381	help
382	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
383
384	  This is a generic implementation of AES that attempts to eliminate
385	  data dependent latencies as much as possible without affecting
386	  performance too much. It is intended for use by the generic CCM
387	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
388	  solely on encryption (although decryption is supported as well, but
389	  with a more dramatic performance hit)
390
391	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
392	  8 for decryption), this implementation only uses just two S-boxes of
393	  256 bytes each, and attempts to eliminate data dependent latencies by
394	  prefetching the entire table into the cache at the start of each
395	  block. Interrupts are also disabled to avoid races where cachelines
396	  are evicted when the CPU is interrupted to do something else.
397
398config CRYPTO_ANUBIS
399	tristate "Anubis"
400	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
401	select CRYPTO_ALGAPI
402	help
403	  Anubis cipher algorithm
404
405	  Anubis is a variable key length cipher which can use keys from
406	  128 bits to 320 bits in length.  It was evaluated as a entrant
407	  in the NESSIE competition.
408
409	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
410	  for further information.
411
412config CRYPTO_ARIA
413	tristate "ARIA"
414	select CRYPTO_ALGAPI
415	help
416	  ARIA cipher algorithm (RFC5794)
417
418	  ARIA is a standard encryption algorithm of the Republic of Korea.
419	  The ARIA specifies three key sizes and rounds.
420	  128-bit: 12 rounds.
421	  192-bit: 14 rounds.
422	  256-bit: 16 rounds.
423
424	  See:
425	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
426
427config CRYPTO_BLOWFISH
428	tristate "Blowfish"
429	select CRYPTO_ALGAPI
430	select CRYPTO_BLOWFISH_COMMON
431	help
432	  Blowfish cipher algorithm, by Bruce Schneier
433
434	  This is a variable key length cipher which can use keys from 32
435	  bits to 448 bits in length.  It's fast, simple and specifically
436	  designed for use on "large microprocessors".
437
438	  See https://www.schneier.com/blowfish.html for further information.
439
440config CRYPTO_BLOWFISH_COMMON
441	tristate
442	help
443	  Common parts of the Blowfish cipher algorithm shared by the
444	  generic c and the assembler implementations.
445
446config CRYPTO_CAMELLIA
447	tristate "Camellia"
448	select CRYPTO_ALGAPI
449	help
450	  Camellia cipher algorithms (ISO/IEC 18033-3)
451
452	  Camellia is a symmetric key block cipher developed jointly
453	  at NTT and Mitsubishi Electric Corporation.
454
455	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
456
457	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
458
459config CRYPTO_CAST_COMMON
460	tristate
461	help
462	  Common parts of the CAST cipher algorithms shared by the
463	  generic c and the assembler implementations.
464
465config CRYPTO_CAST5
466	tristate "CAST5 (CAST-128)"
467	select CRYPTO_ALGAPI
468	select CRYPTO_CAST_COMMON
469	help
470	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
471
472config CRYPTO_CAST6
473	tristate "CAST6 (CAST-256)"
474	select CRYPTO_ALGAPI
475	select CRYPTO_CAST_COMMON
476	help
477	  CAST6 (CAST-256) encryption algorithm (RFC2612)
478
479config CRYPTO_DES
480	tristate "DES and Triple DES EDE"
481	select CRYPTO_ALGAPI
482	select CRYPTO_LIB_DES
483	help
484	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
485	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
486	  cipher algorithms
487
488config CRYPTO_FCRYPT
489	tristate "FCrypt"
490	select CRYPTO_ALGAPI
491	select CRYPTO_SKCIPHER
492	help
493	  FCrypt algorithm used by RxRPC
494
495	  See https://ota.polyonymo.us/fcrypt-paper.txt
496
497config CRYPTO_KHAZAD
498	tristate "Khazad"
499	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
500	select CRYPTO_ALGAPI
501	help
502	  Khazad cipher algorithm
503
504	  Khazad was a finalist in the initial NESSIE competition.  It is
505	  an algorithm optimized for 64-bit processors with good performance
506	  on 32-bit processors.  Khazad uses an 128 bit key size.
507
508	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
509	  for further information.
510
511config CRYPTO_SEED
512	tristate "SEED"
513	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
514	select CRYPTO_ALGAPI
515	help
516	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
517
518	  SEED is a 128-bit symmetric key block cipher that has been
519	  developed by KISA (Korea Information Security Agency) as a
520	  national standard encryption algorithm of the Republic of Korea.
521	  It is a 16 round block cipher with the key size of 128 bit.
522
523	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
524	  for further information.
525
526config CRYPTO_SERPENT
527	tristate "Serpent"
528	select CRYPTO_ALGAPI
529	help
530	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
531
532	  Keys are allowed to be from 0 to 256 bits in length, in steps
533	  of 8 bits.
534
535	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
536
537config CRYPTO_SM4
538	tristate
539
540config CRYPTO_SM4_GENERIC
541	tristate "SM4 (ShangMi 4)"
542	select CRYPTO_ALGAPI
543	select CRYPTO_SM4
544	help
545	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
546	  ISO/IEC 18033-3:2010/Amd 1:2021)
547
548	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
549	  Organization of State Commercial Administration of China (OSCCA)
550	  as an authorized cryptographic algorithms for the use within China.
551
552	  SMS4 was originally created for use in protecting wireless
553	  networks, and is mandated in the Chinese National Standard for
554	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
555	  (GB.15629.11-2003).
556
557	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
558	  standardized through TC 260 of the Standardization Administration
559	  of the People's Republic of China (SAC).
560
561	  The input, output, and key of SMS4 are each 128 bits.
562
563	  See https://eprint.iacr.org/2008/329.pdf for further information.
564
565	  If unsure, say N.
566
567config CRYPTO_TEA
568	tristate "TEA, XTEA and XETA"
569	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
570	select CRYPTO_ALGAPI
571	help
572	  TEA (Tiny Encryption Algorithm) cipher algorithms
573
574	  Tiny Encryption Algorithm is a simple cipher that uses
575	  many rounds for security.  It is very fast and uses
576	  little memory.
577
578	  Xtendend Tiny Encryption Algorithm is a modification to
579	  the TEA algorithm to address a potential key weakness
580	  in the TEA algorithm.
581
582	  Xtendend Encryption Tiny Algorithm is a mis-implementation
583	  of the XTEA algorithm for compatibility purposes.
584
585config CRYPTO_TWOFISH
586	tristate "Twofish"
587	select CRYPTO_ALGAPI
588	select CRYPTO_TWOFISH_COMMON
589	help
590	  Twofish cipher algorithm
591
592	  Twofish was submitted as an AES (Advanced Encryption Standard)
593	  candidate cipher by researchers at CounterPane Systems.  It is a
594	  16 round block cipher supporting key sizes of 128, 192, and 256
595	  bits.
596
597	  See https://www.schneier.com/twofish.html for further information.
598
599config CRYPTO_TWOFISH_COMMON
600	tristate
601	help
602	  Common parts of the Twofish cipher algorithm shared by the
603	  generic c and the assembler implementations.
604
605endmenu
606
607menu "Length-preserving ciphers and modes"
608
609config CRYPTO_ADIANTUM
610	tristate "Adiantum"
611	select CRYPTO_CHACHA20
612	select CRYPTO_LIB_POLY1305_GENERIC
613	select CRYPTO_NHPOLY1305
614	select CRYPTO_MANAGER
615	help
616	  Adiantum tweakable, length-preserving encryption mode
617
618	  Designed for fast and secure disk encryption, especially on
619	  CPUs without dedicated crypto instructions.  It encrypts
620	  each sector using the XChaCha12 stream cipher, two passes of
621	  an ε-almost-∆-universal hash function, and an invocation of
622	  the AES-256 block cipher on a single 16-byte block.  On CPUs
623	  without AES instructions, Adiantum is much faster than
624	  AES-XTS.
625
626	  Adiantum's security is provably reducible to that of its
627	  underlying stream and block ciphers, subject to a security
628	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
629	  mode, so it actually provides an even stronger notion of
630	  security than XTS, subject to the security bound.
631
632	  If unsure, say N.
633
634config CRYPTO_ARC4
635	tristate "ARC4 (Alleged Rivest Cipher 4)"
636	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
637	select CRYPTO_SKCIPHER
638	select CRYPTO_LIB_ARC4
639	help
640	  ARC4 cipher algorithm
641
642	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
643	  bits in length.  This algorithm is required for driver-based
644	  WEP, but it should not be for other purposes because of the
645	  weakness of the algorithm.
646
647config CRYPTO_CHACHA20
648	tristate "ChaCha"
649	select CRYPTO_LIB_CHACHA
650	select CRYPTO_LIB_CHACHA_GENERIC
651	select CRYPTO_SKCIPHER
652	help
653	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
654
655	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
656	  Bernstein and further specified in RFC7539 for use in IETF protocols.
657	  This is the portable C implementation of ChaCha20.  See
658	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
659
660	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
661	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
662	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
663	  while provably retaining ChaCha20's security.  See
664	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
665
666	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
667	  reduced security margin but increased performance.  It can be needed
668	  in some performance-sensitive scenarios.
669
670config CRYPTO_CBC
671	tristate "CBC (Cipher Block Chaining)"
672	select CRYPTO_SKCIPHER
673	select CRYPTO_MANAGER
674	help
675	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
676
677	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
678
679config CRYPTO_CTR
680	tristate "CTR (Counter)"
681	select CRYPTO_SKCIPHER
682	select CRYPTO_MANAGER
683	help
684	  CTR (Counter) mode (NIST SP800-38A)
685
686config CRYPTO_CTS
687	tristate "CTS (Cipher Text Stealing)"
688	select CRYPTO_SKCIPHER
689	select CRYPTO_MANAGER
690	help
691	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
692	  Addendum to SP800-38A (October 2010))
693
694	  This mode is required for Kerberos gss mechanism support
695	  for AES encryption.
696
697config CRYPTO_ECB
698	tristate "ECB (Electronic Codebook)"
699	select CRYPTO_SKCIPHER2
700	select CRYPTO_MANAGER
701	help
702	  ECB (Electronic Codebook) mode (NIST SP800-38A)
703
704config CRYPTO_HCTR2
705	tristate "HCTR2"
706	select CRYPTO_XCTR
707	select CRYPTO_POLYVAL
708	select CRYPTO_MANAGER
709	help
710	  HCTR2 length-preserving encryption mode
711
712	  A mode for storage encryption that is efficient on processors with
713	  instructions to accelerate AES and carryless multiplication, e.g.
714	  x86 processors with AES-NI and CLMUL, and ARM processors with the
715	  ARMv8 crypto extensions.
716
717	  See https://eprint.iacr.org/2021/1441
718
719config CRYPTO_LRW
720	tristate "LRW (Liskov Rivest Wagner)"
721	select CRYPTO_LIB_GF128MUL
722	select CRYPTO_SKCIPHER
723	select CRYPTO_MANAGER
724	select CRYPTO_ECB
725	help
726	  LRW (Liskov Rivest Wagner) mode
727
728	  A tweakable, non malleable, non movable
729	  narrow block cipher mode for dm-crypt.  Use it with cipher
730	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
731	  The first 128, 192 or 256 bits in the key are used for AES and the
732	  rest is used to tie each cipher block to its logical position.
733
734	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
735
736config CRYPTO_PCBC
737	tristate "PCBC (Propagating Cipher Block Chaining)"
738	select CRYPTO_SKCIPHER
739	select CRYPTO_MANAGER
740	help
741	  PCBC (Propagating Cipher Block Chaining) mode
742
743	  This block cipher mode is required for RxRPC.
744
745config CRYPTO_XCTR
746	tristate
747	select CRYPTO_SKCIPHER
748	select CRYPTO_MANAGER
749	help
750	  XCTR (XOR Counter) mode for HCTR2
751
752	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
753	  addition rather than big-endian arithmetic.
754
755	  XCTR mode is used to implement HCTR2.
756
757config CRYPTO_XTS
758	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
759	select CRYPTO_SKCIPHER
760	select CRYPTO_MANAGER
761	select CRYPTO_ECB
762	help
763	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
764	  and IEEE 1619)
765
766	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
767	  implementation currently can't handle a sectorsize which is not a
768	  multiple of 16 bytes.
769
770config CRYPTO_NHPOLY1305
771	tristate
772	select CRYPTO_HASH
773	select CRYPTO_LIB_POLY1305_GENERIC
774
775endmenu
776
777menu "AEAD (authenticated encryption with associated data) ciphers"
778
779config CRYPTO_AEGIS128
780	tristate "AEGIS-128"
781	select CRYPTO_AEAD
782	select CRYPTO_AES  # for AES S-box tables
783	help
784	  AEGIS-128 AEAD algorithm
785
786config CRYPTO_AEGIS128_SIMD
787	bool "AEGIS-128 (arm NEON, arm64 NEON)"
788	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
789	default y
790	help
791	  AEGIS-128 AEAD algorithm
792
793	  Architecture: arm or arm64 using:
794	  - NEON (Advanced SIMD) extension
795
796config CRYPTO_CHACHA20POLY1305
797	tristate "ChaCha20-Poly1305"
798	select CRYPTO_CHACHA20
799	select CRYPTO_AEAD
800	select CRYPTO_LIB_POLY1305
801	select CRYPTO_MANAGER
802	help
803	  ChaCha20 stream cipher and Poly1305 authenticator combined
804	  mode (RFC8439)
805
806config CRYPTO_CCM
807	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
808	select CRYPTO_CTR
809	select CRYPTO_HASH
810	select CRYPTO_AEAD
811	select CRYPTO_MANAGER
812	help
813	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
814	  authenticated encryption mode (NIST SP800-38C)
815
816config CRYPTO_GCM
817	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
818	select CRYPTO_CTR
819	select CRYPTO_AEAD
820	select CRYPTO_GHASH
821	select CRYPTO_MANAGER
822	help
823	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
824	  (GCM Message Authentication Code) (NIST SP800-38D)
825
826	  This is required for IPSec ESP (XFRM_ESP).
827
828config CRYPTO_GENIV
829	tristate
830	select CRYPTO_AEAD
831	select CRYPTO_MANAGER
832	select CRYPTO_RNG_DEFAULT
833
834config CRYPTO_SEQIV
835	tristate "Sequence Number IV Generator"
836	select CRYPTO_GENIV
837	help
838	  Sequence Number IV generator
839
840	  This IV generator generates an IV based on a sequence number by
841	  xoring it with a salt.  This algorithm is mainly useful for CTR.
842
843	  This is required for IPsec ESP (XFRM_ESP).
844
845config CRYPTO_ECHAINIV
846	tristate "Encrypted Chain IV Generator"
847	select CRYPTO_GENIV
848	help
849	  Encrypted Chain IV generator
850
851	  This IV generator generates an IV based on the encryption of
852	  a sequence number xored with a salt.  This is the default
853	  algorithm for CBC.
854
855config CRYPTO_ESSIV
856	tristate "Encrypted Salt-Sector IV Generator"
857	select CRYPTO_AUTHENC
858	help
859	  Encrypted Salt-Sector IV generator
860
861	  This IV generator is used in some cases by fscrypt and/or
862	  dm-crypt. It uses the hash of the block encryption key as the
863	  symmetric key for a block encryption pass applied to the input
864	  IV, making low entropy IV sources more suitable for block
865	  encryption.
866
867	  This driver implements a crypto API template that can be
868	  instantiated either as an skcipher or as an AEAD (depending on the
869	  type of the first template argument), and which defers encryption
870	  and decryption requests to the encapsulated cipher after applying
871	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
872	  that the keys are presented in the same format used by the authenc
873	  template, and that the IV appears at the end of the authenticated
874	  associated data (AAD) region (which is how dm-crypt uses it.)
875
876	  Note that the use of ESSIV is not recommended for new deployments,
877	  and so this only needs to be enabled when interoperability with
878	  existing encrypted volumes of filesystems is required, or when
879	  building for a particular system that requires it (e.g., when
880	  the SoC in question has accelerated CBC but not XTS, making CBC
881	  combined with ESSIV the only feasible mode for h/w accelerated
882	  block encryption)
883
884endmenu
885
886menu "Hashes, digests, and MACs"
887
888config CRYPTO_BLAKE2B
889	tristate "BLAKE2b"
890	select CRYPTO_HASH
891	help
892	  BLAKE2b cryptographic hash function (RFC 7693)
893
894	  BLAKE2b is optimized for 64-bit platforms and can produce digests
895	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
896
897	  This module provides the following algorithms:
898	  - blake2b-160
899	  - blake2b-256
900	  - blake2b-384
901	  - blake2b-512
902
903	  Used by the btrfs filesystem.
904
905	  See https://blake2.net for further information.
906
907config CRYPTO_CMAC
908	tristate "CMAC (Cipher-based MAC)"
909	select CRYPTO_HASH
910	select CRYPTO_MANAGER
911	help
912	  CMAC (Cipher-based Message Authentication Code) authentication
913	  mode (NIST SP800-38B and IETF RFC4493)
914
915config CRYPTO_GHASH
916	tristate "GHASH"
917	select CRYPTO_HASH
918	select CRYPTO_LIB_GF128MUL
919	help
920	  GCM GHASH function (NIST SP800-38D)
921
922config CRYPTO_HMAC
923	tristate "HMAC (Keyed-Hash MAC)"
924	select CRYPTO_HASH
925	select CRYPTO_MANAGER
926	help
927	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
928	  RFC2104)
929
930	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
931
932config CRYPTO_MD4
933	tristate "MD4"
934	select CRYPTO_HASH
935	help
936	  MD4 message digest algorithm (RFC1320)
937
938config CRYPTO_MD5
939	tristate "MD5"
940	select CRYPTO_HASH
941	help
942	  MD5 message digest algorithm (RFC1321)
943
944config CRYPTO_MICHAEL_MIC
945	tristate "Michael MIC"
946	select CRYPTO_HASH
947	help
948	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
949
950	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
951	  known as WPA (Wif-Fi Protected Access).
952
953	  This algorithm is required for TKIP, but it should not be used for
954	  other purposes because of the weakness of the algorithm.
955
956config CRYPTO_POLYVAL
957	tristate
958	select CRYPTO_HASH
959	select CRYPTO_LIB_GF128MUL
960	help
961	  POLYVAL hash function for HCTR2
962
963	  This is used in HCTR2.  It is not a general-purpose
964	  cryptographic hash function.
965
966config CRYPTO_RMD160
967	tristate "RIPEMD-160"
968	select CRYPTO_HASH
969	help
970	  RIPEMD-160 hash function (ISO/IEC 10118-3)
971
972	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
973	  to be used as a secure replacement for the 128-bit hash functions
974	  MD4, MD5 and its predecessor RIPEMD
975	  (not to be confused with RIPEMD-128).
976
977	  Its speed is comparable to SHA-1 and there are no known attacks
978	  against RIPEMD-160.
979
980	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
981	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
982	  for further information.
983
984config CRYPTO_SHA1
985	tristate "SHA-1"
986	select CRYPTO_HASH
987	select CRYPTO_LIB_SHA1
988	help
989	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
990
991config CRYPTO_SHA256
992	tristate "SHA-224 and SHA-256"
993	select CRYPTO_HASH
994	select CRYPTO_LIB_SHA256
995	help
996	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC
997	  10118-3), including HMAC support.
998
999	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1000	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
1001
1002config CRYPTO_SHA512
1003	tristate "SHA-384 and SHA-512"
1004	select CRYPTO_HASH
1005	select CRYPTO_LIB_SHA512
1006	help
1007	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC
1008	  10118-3), including HMAC support.
1009
1010config CRYPTO_SHA3
1011	tristate "SHA-3"
1012	select CRYPTO_HASH
1013	help
1014	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1015
1016config CRYPTO_SM3_GENERIC
1017	tristate "SM3 (ShangMi 3)"
1018	select CRYPTO_HASH
1019	select CRYPTO_LIB_SM3
1020	help
1021	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1022
1023	  This is part of the Chinese Commercial Cryptography suite.
1024
1025	  References:
1026	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1027	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1028
1029config CRYPTO_STREEBOG
1030	tristate "Streebog"
1031	select CRYPTO_HASH
1032	help
1033	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1034
1035	  This is one of the Russian cryptographic standard algorithms (called
1036	  GOST algorithms). This setting enables two hash algorithms with
1037	  256 and 512 bits output.
1038
1039	  References:
1040	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1041	  https://tools.ietf.org/html/rfc6986
1042
1043config CRYPTO_WP512
1044	tristate "Whirlpool"
1045	select CRYPTO_HASH
1046	help
1047	  Whirlpool hash function (ISO/IEC 10118-3)
1048
1049	  512, 384 and 256-bit hashes.
1050
1051	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1052
1053	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1054	  for further information.
1055
1056config CRYPTO_XCBC
1057	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1058	select CRYPTO_HASH
1059	select CRYPTO_MANAGER
1060	help
1061	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1062	  Code) (RFC3566)
1063
1064config CRYPTO_XXHASH
1065	tristate "xxHash"
1066	select CRYPTO_HASH
1067	select XXHASH
1068	help
1069	  xxHash non-cryptographic hash algorithm
1070
1071	  Extremely fast, working at speeds close to RAM limits.
1072
1073	  Used by the btrfs filesystem.
1074
1075endmenu
1076
1077menu "CRCs (cyclic redundancy checks)"
1078
1079config CRYPTO_CRC32C
1080	tristate "CRC32c"
1081	select CRYPTO_HASH
1082	select CRC32
1083	help
1084	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1085
1086	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1087	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1088	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1089	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1090	  iSCSI.
1091
1092	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1093
1094config CRYPTO_CRC32
1095	tristate "CRC32"
1096	select CRYPTO_HASH
1097	select CRC32
1098	help
1099	  CRC32 CRC algorithm (IEEE 802.3)
1100
1101	  Used by RoCEv2 and f2fs.
1102
1103endmenu
1104
1105menu "Compression"
1106
1107config CRYPTO_DEFLATE
1108	tristate "Deflate"
1109	select CRYPTO_ALGAPI
1110	select CRYPTO_ACOMP2
1111	select ZLIB_INFLATE
1112	select ZLIB_DEFLATE
1113	help
1114	  Deflate compression algorithm (RFC1951)
1115
1116	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1117
1118config CRYPTO_LZO
1119	tristate "LZO"
1120	select CRYPTO_ALGAPI
1121	select CRYPTO_ACOMP2
1122	select LZO_COMPRESS
1123	select LZO_DECOMPRESS
1124	help
1125	  LZO compression algorithm
1126
1127	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1128
1129config CRYPTO_842
1130	tristate "842"
1131	select CRYPTO_ALGAPI
1132	select CRYPTO_ACOMP2
1133	select 842_COMPRESS
1134	select 842_DECOMPRESS
1135	help
1136	  842 compression algorithm by IBM
1137
1138	  See https://github.com/plauth/lib842 for further information.
1139
1140config CRYPTO_LZ4
1141	tristate "LZ4"
1142	select CRYPTO_ALGAPI
1143	select CRYPTO_ACOMP2
1144	select LZ4_COMPRESS
1145	select LZ4_DECOMPRESS
1146	help
1147	  LZ4 compression algorithm
1148
1149	  See https://github.com/lz4/lz4 for further information.
1150
1151config CRYPTO_LZ4HC
1152	tristate "LZ4HC"
1153	select CRYPTO_ALGAPI
1154	select CRYPTO_ACOMP2
1155	select LZ4HC_COMPRESS
1156	select LZ4_DECOMPRESS
1157	help
1158	  LZ4 high compression mode algorithm
1159
1160	  See https://github.com/lz4/lz4 for further information.
1161
1162config CRYPTO_ZSTD
1163	tristate "Zstd"
1164	select CRYPTO_ALGAPI
1165	select CRYPTO_ACOMP2
1166	select ZSTD_COMPRESS
1167	select ZSTD_DECOMPRESS
1168	help
1169	  zstd compression algorithm
1170
1171	  See https://github.com/facebook/zstd for further information.
1172
1173endmenu
1174
1175menu "Random number generation"
1176
1177config CRYPTO_ANSI_CPRNG
1178	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1179	select CRYPTO_AES
1180	select CRYPTO_RNG
1181	help
1182	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1183
1184	  This uses the AES cipher algorithm.
1185
1186	  Note that this option must be enabled if CRYPTO_FIPS is selected
1187
1188menuconfig CRYPTO_DRBG_MENU
1189	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1190	help
1191	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1192
1193	  In the following submenu, one or more of the DRBG types must be selected.
1194
1195if CRYPTO_DRBG_MENU
1196
1197config CRYPTO_DRBG_HMAC
1198	bool
1199	default y
1200	select CRYPTO_HMAC
1201	select CRYPTO_SHA512
1202
1203config CRYPTO_DRBG_HASH
1204	bool "Hash_DRBG"
1205	select CRYPTO_SHA256
1206	help
1207	  Hash_DRBG variant as defined in NIST SP800-90A.
1208
1209	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1210
1211config CRYPTO_DRBG_CTR
1212	bool "CTR_DRBG"
1213	select CRYPTO_AES
1214	select CRYPTO_CTR
1215	help
1216	  CTR_DRBG variant as defined in NIST SP800-90A.
1217
1218	  This uses the AES cipher algorithm with the counter block mode.
1219
1220config CRYPTO_DRBG
1221	tristate
1222	default CRYPTO_DRBG_MENU
1223	select CRYPTO_RNG
1224	select CRYPTO_JITTERENTROPY
1225
1226endif	# if CRYPTO_DRBG_MENU
1227
1228config CRYPTO_JITTERENTROPY
1229	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1230	select CRYPTO_RNG
1231	select CRYPTO_SHA3
1232	help
1233	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1234
1235	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1236	  compliant with NIST SP800-90B) intended to provide a seed to a
1237	  deterministic RNG (e.g., per NIST SP800-90C).
1238	  This RNG does not perform any cryptographic whitening of the generated
1239	  random numbers.
1240
1241	  See https://www.chronox.de/jent/
1242
1243if CRYPTO_JITTERENTROPY
1244if CRYPTO_FIPS && EXPERT
1245
1246choice
1247	prompt "CPU Jitter RNG Memory Size"
1248	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1249	help
1250	  The Jitter RNG measures the execution time of memory accesses.
1251	  Multiple consecutive memory accesses are performed. If the memory
1252	  size fits into a cache (e.g. L1), only the memory access timing
1253	  to that cache is measured. The closer the cache is to the CPU
1254	  the less variations are measured and thus the less entropy is
1255	  obtained. Thus, if the memory size fits into the L1 cache, the
1256	  obtained entropy is less than if the memory size fits within
1257	  L1 + L2, which in turn is less if the memory fits into
1258	  L1 + L2 + L3. Thus, by selecting a different memory size,
1259	  the entropy rate produced by the Jitter RNG can be modified.
1260
1261	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1262		bool "2048 Bytes (default)"
1263
1264	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1265		bool "128 kBytes"
1266
1267	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1268		bool "1024 kBytes"
1269
1270	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1271		bool "8192 kBytes"
1272endchoice
1273
1274config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1275	int
1276	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1277	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1278	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1279	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1280
1281config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1282	int
1283	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1284	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1285	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1286	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1287
1288config CRYPTO_JITTERENTROPY_OSR
1289	int "CPU Jitter RNG Oversampling Rate"
1290	range 1 15
1291	default 3
1292	help
1293	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1294	  The Jitter RNG operation requires a fixed amount of timing
1295	  measurements to produce one output block of random numbers. The
1296	  OSR value is multiplied with the amount of timing measurements to
1297	  generate one output block. Thus, the timing measurement is oversampled
1298	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1299	  on hardware whose timers deliver limited amount of entropy (e.g.
1300	  the timer is coarse) by setting the OSR to a higher value. The
1301	  trade-off, however, is that the Jitter RNG now requires more time
1302	  to generate random numbers.
1303
1304config CRYPTO_JITTERENTROPY_TESTINTERFACE
1305	bool "CPU Jitter RNG Test Interface"
1306	help
1307	  The test interface allows a privileged process to capture
1308	  the raw unconditioned high resolution time stamp noise that
1309	  is collected by the Jitter RNG for statistical analysis. As
1310	  this data is used at the same time to generate random bits,
1311	  the Jitter RNG operates in an insecure mode as long as the
1312	  recording is enabled. This interface therefore is only
1313	  intended for testing purposes and is not suitable for
1314	  production systems.
1315
1316	  The raw noise data can be obtained using the jent_raw_hires
1317	  debugfs file. Using the option
1318	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1319	  the first 1000 entropy events since boot can be sampled.
1320
1321	  If unsure, select N.
1322
1323endif	# if CRYPTO_FIPS && EXPERT
1324
1325if !(CRYPTO_FIPS && EXPERT)
1326
1327config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1328	int
1329	default 64
1330
1331config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1332	int
1333	default 32
1334
1335config CRYPTO_JITTERENTROPY_OSR
1336	int
1337	default 1
1338
1339config CRYPTO_JITTERENTROPY_TESTINTERFACE
1340	bool
1341
1342endif	# if !(CRYPTO_FIPS && EXPERT)
1343endif	# if CRYPTO_JITTERENTROPY
1344
1345config CRYPTO_KDF800108_CTR
1346	tristate
1347	select CRYPTO_HMAC
1348	select CRYPTO_SHA256
1349
1350endmenu
1351menu "Userspace interface"
1352
1353config CRYPTO_USER_API
1354	tristate
1355
1356config CRYPTO_USER_API_HASH
1357	tristate "Hash algorithms"
1358	depends on NET
1359	select CRYPTO_HASH
1360	select CRYPTO_USER_API
1361	help
1362	  Enable the userspace interface for hash algorithms.
1363
1364	  See Documentation/crypto/userspace-if.rst and
1365	  https://www.chronox.de/libkcapi/html/index.html
1366
1367config CRYPTO_USER_API_SKCIPHER
1368	tristate "Symmetric key cipher algorithms"
1369	depends on NET
1370	select CRYPTO_SKCIPHER
1371	select CRYPTO_USER_API
1372	help
1373	  Enable the userspace interface for symmetric key cipher algorithms.
1374
1375	  See Documentation/crypto/userspace-if.rst and
1376	  https://www.chronox.de/libkcapi/html/index.html
1377
1378config CRYPTO_USER_API_RNG
1379	tristate "RNG (random number generator) algorithms"
1380	depends on NET
1381	select CRYPTO_RNG
1382	select CRYPTO_USER_API
1383	help
1384	  Enable the userspace interface for RNG (random number generator)
1385	  algorithms.
1386
1387	  See Documentation/crypto/userspace-if.rst and
1388	  https://www.chronox.de/libkcapi/html/index.html
1389
1390config CRYPTO_USER_API_RNG_CAVP
1391	bool "Enable CAVP testing of DRBG"
1392	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1393	help
1394	  Enable extra APIs in the userspace interface for NIST CAVP
1395	  (Cryptographic Algorithm Validation Program) testing:
1396	  - resetting DRBG entropy
1397	  - providing Additional Data
1398
1399	  This should only be enabled for CAVP testing. You should say
1400	  no unless you know what this is.
1401
1402config CRYPTO_USER_API_AEAD
1403	tristate "AEAD cipher algorithms"
1404	depends on NET
1405	select CRYPTO_AEAD
1406	select CRYPTO_SKCIPHER
1407	select CRYPTO_USER_API
1408	help
1409	  Enable the userspace interface for AEAD cipher algorithms.
1410
1411	  See Documentation/crypto/userspace-if.rst and
1412	  https://www.chronox.de/libkcapi/html/index.html
1413
1414config CRYPTO_USER_API_ENABLE_OBSOLETE
1415	bool "Obsolete cryptographic algorithms"
1416	depends on CRYPTO_USER_API
1417	default y
1418	help
1419	  Allow obsolete cryptographic algorithms to be selected that have
1420	  already been phased out from internal use by the kernel, and are
1421	  only useful for userspace clients that still rely on them.
1422
1423endmenu
1424
1425if !KMSAN # avoid false positives from assembly
1426if ARM
1427source "arch/arm/crypto/Kconfig"
1428endif
1429if ARM64
1430source "arch/arm64/crypto/Kconfig"
1431endif
1432if LOONGARCH
1433source "arch/loongarch/crypto/Kconfig"
1434endif
1435if MIPS
1436source "arch/mips/crypto/Kconfig"
1437endif
1438if PPC
1439source "arch/powerpc/crypto/Kconfig"
1440endif
1441if RISCV
1442source "arch/riscv/crypto/Kconfig"
1443endif
1444if S390
1445source "arch/s390/crypto/Kconfig"
1446endif
1447if SPARC
1448source "arch/sparc/crypto/Kconfig"
1449endif
1450if X86
1451source "arch/x86/crypto/Kconfig"
1452endif
1453endif
1454
1455source "drivers/crypto/Kconfig"
1456source "crypto/asymmetric_keys/Kconfig"
1457source "certs/Kconfig"
1458source "crypto/krb5/Kconfig"
1459
1460endif	# if CRYPTO
1461