xref: /linux/crypto/Kconfig (revision e45f710b42afd7e67276234853d2de19faf46362)
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6	tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17	tristate "Cryptographic API"
18	select CRYPTO_LIB_UTILS
19	help
20	  This option provides the core Cryptographic API.
21
22if CRYPTO
23
24comment "Crypto core or helper"
25
26config CRYPTO_FIPS
27	bool "FIPS 200 compliance"
28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
29	depends on (MODULE_SIG || !MODULES)
30	help
31	  This option enables the fips boot option which is
32	  required if you want the system to operate in a FIPS 200
33	  certification.  You should say no unless you know what
34	  this is.
35
36config CRYPTO_FIPS_NAME
37	string "FIPS Module Name"
38	default "Linux Kernel Cryptographic API"
39	depends on CRYPTO_FIPS
40	help
41	  This option sets the FIPS Module name reported by the Crypto API via
42	  the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45	bool "Use Custom FIPS Module Version"
46	depends on CRYPTO_FIPS
47	default n
48
49config CRYPTO_FIPS_VERSION
50	string "FIPS Module Version"
51	default "(none)"
52	depends on CRYPTO_FIPS_CUSTOM_VERSION
53	help
54	  This option provides the ability to override the FIPS Module Version.
55	  By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58	tristate
59	select CRYPTO_ALGAPI2
60	help
61	  This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64	tristate
65
66config CRYPTO_AEAD
67	tristate
68	select CRYPTO_AEAD2
69	select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72	tristate
73	select CRYPTO_ALGAPI2
74	select CRYPTO_NULL2
75	select CRYPTO_RNG2
76
77config CRYPTO_SKCIPHER
78	tristate
79	select CRYPTO_SKCIPHER2
80	select CRYPTO_ALGAPI
81
82config CRYPTO_SKCIPHER2
83	tristate
84	select CRYPTO_ALGAPI2
85	select CRYPTO_RNG2
86
87config CRYPTO_HASH
88	tristate
89	select CRYPTO_HASH2
90	select CRYPTO_ALGAPI
91
92config CRYPTO_HASH2
93	tristate
94	select CRYPTO_ALGAPI2
95
96config CRYPTO_RNG
97	tristate
98	select CRYPTO_RNG2
99	select CRYPTO_ALGAPI
100
101config CRYPTO_RNG2
102	tristate
103	select CRYPTO_ALGAPI2
104
105config CRYPTO_RNG_DEFAULT
106	tristate
107	select CRYPTO_DRBG_MENU
108
109config CRYPTO_AKCIPHER2
110	tristate
111	select CRYPTO_ALGAPI2
112
113config CRYPTO_AKCIPHER
114	tristate
115	select CRYPTO_AKCIPHER2
116	select CRYPTO_ALGAPI
117
118config CRYPTO_KPP2
119	tristate
120	select CRYPTO_ALGAPI2
121
122config CRYPTO_KPP
123	tristate
124	select CRYPTO_ALGAPI
125	select CRYPTO_KPP2
126
127config CRYPTO_ACOMP2
128	tristate
129	select CRYPTO_ALGAPI2
130	select SGL_ALLOC
131
132config CRYPTO_ACOMP
133	tristate
134	select CRYPTO_ALGAPI
135	select CRYPTO_ACOMP2
136
137config CRYPTO_MANAGER
138	tristate "Cryptographic algorithm manager"
139	select CRYPTO_MANAGER2
140	help
141	  Create default cryptographic template instantiations such as
142	  cbc(aes).
143
144config CRYPTO_MANAGER2
145	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
146	select CRYPTO_AEAD2
147	select CRYPTO_HASH2
148	select CRYPTO_SKCIPHER2
149	select CRYPTO_AKCIPHER2
150	select CRYPTO_KPP2
151	select CRYPTO_ACOMP2
152
153config CRYPTO_USER
154	tristate "Userspace cryptographic algorithm configuration"
155	depends on NET
156	select CRYPTO_MANAGER
157	help
158	  Userspace configuration for cryptographic instantiations such as
159	  cbc(aes).
160
161config CRYPTO_MANAGER_DISABLE_TESTS
162	bool "Disable run-time self tests"
163	default y
164	help
165	  Disable run-time self tests that normally take place at
166	  algorithm registration.
167
168config CRYPTO_MANAGER_EXTRA_TESTS
169	bool "Enable extra run-time crypto self tests"
170	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
171	help
172	  Enable extra run-time self tests of registered crypto algorithms,
173	  including randomized fuzz tests.
174
175	  This is intended for developer use only, as these tests take much
176	  longer to run than the normal self tests.
177
178config CRYPTO_GF128MUL
179	tristate
180
181config CRYPTO_NULL
182	tristate "Null algorithms"
183	select CRYPTO_NULL2
184	help
185	  These are 'Null' algorithms, used by IPsec, which do nothing.
186
187config CRYPTO_NULL2
188	tristate
189	select CRYPTO_ALGAPI2
190	select CRYPTO_SKCIPHER2
191	select CRYPTO_HASH2
192
193config CRYPTO_PCRYPT
194	tristate "Parallel crypto engine"
195	depends on SMP
196	select PADATA
197	select CRYPTO_MANAGER
198	select CRYPTO_AEAD
199	help
200	  This converts an arbitrary crypto algorithm into a parallel
201	  algorithm that executes in kernel threads.
202
203config CRYPTO_CRYPTD
204	tristate "Software async crypto daemon"
205	select CRYPTO_SKCIPHER
206	select CRYPTO_HASH
207	select CRYPTO_MANAGER
208	help
209	  This is a generic software asynchronous crypto daemon that
210	  converts an arbitrary synchronous software crypto algorithm
211	  into an asynchronous algorithm that executes in a kernel thread.
212
213config CRYPTO_AUTHENC
214	tristate "Authenc support"
215	select CRYPTO_AEAD
216	select CRYPTO_SKCIPHER
217	select CRYPTO_MANAGER
218	select CRYPTO_HASH
219	select CRYPTO_NULL
220	help
221	  Authenc: Combined mode wrapper for IPsec.
222	  This is required for IPSec.
223
224config CRYPTO_TEST
225	tristate "Testing module"
226	depends on m || EXPERT
227	select CRYPTO_MANAGER
228	help
229	  Quick & dirty crypto test module.
230
231config CRYPTO_SIMD
232	tristate
233	select CRYPTO_CRYPTD
234
235config CRYPTO_ENGINE
236	tristate
237
238comment "Public-key cryptography"
239
240config CRYPTO_RSA
241	tristate "RSA algorithm"
242	select CRYPTO_AKCIPHER
243	select CRYPTO_MANAGER
244	select MPILIB
245	select ASN1
246	help
247	  Generic implementation of the RSA public key algorithm.
248
249config CRYPTO_DH
250	tristate "Diffie-Hellman algorithm"
251	select CRYPTO_KPP
252	select MPILIB
253	help
254	  Generic implementation of the Diffie-Hellman algorithm.
255
256config CRYPTO_DH_RFC7919_GROUPS
257	bool "Support for RFC 7919 FFDHE group parameters"
258	depends on CRYPTO_DH
259	select CRYPTO_RNG_DEFAULT
260	help
261	  Provide support for RFC 7919 FFDHE group parameters. If unsure, say N.
262
263config CRYPTO_ECC
264	tristate
265	select CRYPTO_RNG_DEFAULT
266
267config CRYPTO_ECDH
268	tristate "ECDH algorithm"
269	select CRYPTO_ECC
270	select CRYPTO_KPP
271	help
272	  Generic implementation of the ECDH algorithm
273
274config CRYPTO_ECDSA
275	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
276	select CRYPTO_ECC
277	select CRYPTO_AKCIPHER
278	select ASN1
279	help
280	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
281	  is A NIST cryptographic standard algorithm. Only signature verification
282	  is implemented.
283
284config CRYPTO_ECRDSA
285	tristate "EC-RDSA (GOST 34.10) algorithm"
286	select CRYPTO_ECC
287	select CRYPTO_AKCIPHER
288	select CRYPTO_STREEBOG
289	select OID_REGISTRY
290	select ASN1
291	help
292	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
293	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
294	  standard algorithms (called GOST algorithms). Only signature verification
295	  is implemented.
296
297config CRYPTO_SM2
298	tristate "SM2 algorithm"
299	select CRYPTO_SM3
300	select CRYPTO_AKCIPHER
301	select CRYPTO_MANAGER
302	select MPILIB
303	select ASN1
304	help
305	  Generic implementation of the SM2 public key algorithm. It was
306	  published by State Encryption Management Bureau, China.
307	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
308
309	  References:
310	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
311	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
312	  http://www.gmbz.org.cn/main/bzlb.html
313
314config CRYPTO_CURVE25519
315	tristate "Curve25519 algorithm"
316	select CRYPTO_KPP
317	select CRYPTO_LIB_CURVE25519_GENERIC
318
319config CRYPTO_CURVE25519_X86
320	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
321	depends on X86 && 64BIT
322	select CRYPTO_LIB_CURVE25519_GENERIC
323	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
324
325comment "Authenticated Encryption with Associated Data"
326
327config CRYPTO_CCM
328	tristate "CCM support"
329	select CRYPTO_CTR
330	select CRYPTO_HASH
331	select CRYPTO_AEAD
332	select CRYPTO_MANAGER
333	help
334	  Support for Counter with CBC MAC. Required for IPsec.
335
336config CRYPTO_GCM
337	tristate "GCM/GMAC support"
338	select CRYPTO_CTR
339	select CRYPTO_AEAD
340	select CRYPTO_GHASH
341	select CRYPTO_NULL
342	select CRYPTO_MANAGER
343	help
344	  Support for Galois/Counter Mode (GCM) and Galois Message
345	  Authentication Code (GMAC). Required for IPSec.
346
347config CRYPTO_CHACHA20POLY1305
348	tristate "ChaCha20-Poly1305 AEAD support"
349	select CRYPTO_CHACHA20
350	select CRYPTO_POLY1305
351	select CRYPTO_AEAD
352	select CRYPTO_MANAGER
353	help
354	  ChaCha20-Poly1305 AEAD support, RFC7539.
355
356	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
357	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
358	  IETF protocols.
359
360config CRYPTO_AEGIS128
361	tristate "AEGIS-128 AEAD algorithm"
362	select CRYPTO_AEAD
363	select CRYPTO_AES  # for AES S-box tables
364	help
365	 Support for the AEGIS-128 dedicated AEAD algorithm.
366
367config CRYPTO_AEGIS128_SIMD
368	bool "Support SIMD acceleration for AEGIS-128"
369	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
370	default y
371
372config CRYPTO_AEGIS128_AESNI_SSE2
373	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
374	depends on X86 && 64BIT
375	select CRYPTO_AEAD
376	select CRYPTO_SIMD
377	help
378	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
379
380config CRYPTO_SEQIV
381	tristate "Sequence Number IV Generator"
382	select CRYPTO_AEAD
383	select CRYPTO_SKCIPHER
384	select CRYPTO_NULL
385	select CRYPTO_RNG_DEFAULT
386	select CRYPTO_MANAGER
387	help
388	  This IV generator generates an IV based on a sequence number by
389	  xoring it with a salt.  This algorithm is mainly useful for CTR
390
391config CRYPTO_ECHAINIV
392	tristate "Encrypted Chain IV Generator"
393	select CRYPTO_AEAD
394	select CRYPTO_NULL
395	select CRYPTO_RNG_DEFAULT
396	select CRYPTO_MANAGER
397	help
398	  This IV generator generates an IV based on the encryption of
399	  a sequence number xored with a salt.  This is the default
400	  algorithm for CBC.
401
402comment "Block modes"
403
404config CRYPTO_CBC
405	tristate "CBC support"
406	select CRYPTO_SKCIPHER
407	select CRYPTO_MANAGER
408	help
409	  CBC: Cipher Block Chaining mode
410	  This block cipher algorithm is required for IPSec.
411
412config CRYPTO_CFB
413	tristate "CFB support"
414	select CRYPTO_SKCIPHER
415	select CRYPTO_MANAGER
416	help
417	  CFB: Cipher FeedBack mode
418	  This block cipher algorithm is required for TPM2 Cryptography.
419
420config CRYPTO_CTR
421	tristate "CTR support"
422	select CRYPTO_SKCIPHER
423	select CRYPTO_MANAGER
424	help
425	  CTR: Counter mode
426	  This block cipher algorithm is required for IPSec.
427
428config CRYPTO_CTS
429	tristate "CTS support"
430	select CRYPTO_SKCIPHER
431	select CRYPTO_MANAGER
432	help
433	  CTS: Cipher Text Stealing
434	  This is the Cipher Text Stealing mode as described by
435	  Section 8 of rfc2040 and referenced by rfc3962
436	  (rfc3962 includes errata information in its Appendix A) or
437	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
438	  This mode is required for Kerberos gss mechanism support
439	  for AES encryption.
440
441	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
442
443config CRYPTO_ECB
444	tristate "ECB support"
445	select CRYPTO_SKCIPHER
446	select CRYPTO_MANAGER
447	help
448	  ECB: Electronic CodeBook mode
449	  This is the simplest block cipher algorithm.  It simply encrypts
450	  the input block by block.
451
452config CRYPTO_LRW
453	tristate "LRW support"
454	select CRYPTO_SKCIPHER
455	select CRYPTO_MANAGER
456	select CRYPTO_GF128MUL
457	select CRYPTO_ECB
458	help
459	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
460	  narrow block cipher mode for dm-crypt.  Use it with cipher
461	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
462	  The first 128, 192 or 256 bits in the key are used for AES and the
463	  rest is used to tie each cipher block to its logical position.
464
465config CRYPTO_OFB
466	tristate "OFB support"
467	select CRYPTO_SKCIPHER
468	select CRYPTO_MANAGER
469	help
470	  OFB: the Output Feedback mode makes a block cipher into a synchronous
471	  stream cipher. It generates keystream blocks, which are then XORed
472	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
473	  ciphertext produces a flipped bit in the plaintext at the same
474	  location. This property allows many error correcting codes to function
475	  normally even when applied before encryption.
476
477config CRYPTO_PCBC
478	tristate "PCBC support"
479	select CRYPTO_SKCIPHER
480	select CRYPTO_MANAGER
481	help
482	  PCBC: Propagating Cipher Block Chaining mode
483	  This block cipher algorithm is required for RxRPC.
484
485config CRYPTO_XCTR
486	tristate
487	select CRYPTO_SKCIPHER
488	select CRYPTO_MANAGER
489	help
490	  XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode
491	  using XORs and little-endian addition rather than big-endian arithmetic.
492	  XCTR mode is used to implement HCTR2.
493
494config CRYPTO_XTS
495	tristate "XTS support"
496	select CRYPTO_SKCIPHER
497	select CRYPTO_MANAGER
498	select CRYPTO_ECB
499	help
500	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
501	  key size 256, 384 or 512 bits. This implementation currently
502	  can't handle a sectorsize which is not a multiple of 16 bytes.
503
504config CRYPTO_KEYWRAP
505	tristate "Key wrapping support"
506	select CRYPTO_SKCIPHER
507	select CRYPTO_MANAGER
508	help
509	  Support for key wrapping (NIST SP800-38F / RFC3394) without
510	  padding.
511
512config CRYPTO_NHPOLY1305
513	tristate
514	select CRYPTO_HASH
515	select CRYPTO_LIB_POLY1305_GENERIC
516
517config CRYPTO_NHPOLY1305_SSE2
518	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
519	depends on X86 && 64BIT
520	select CRYPTO_NHPOLY1305
521	help
522	  SSE2 optimized implementation of the hash function used by the
523	  Adiantum encryption mode.
524
525config CRYPTO_NHPOLY1305_AVX2
526	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
527	depends on X86 && 64BIT
528	select CRYPTO_NHPOLY1305
529	help
530	  AVX2 optimized implementation of the hash function used by the
531	  Adiantum encryption mode.
532
533config CRYPTO_ADIANTUM
534	tristate "Adiantum support"
535	select CRYPTO_CHACHA20
536	select CRYPTO_LIB_POLY1305_GENERIC
537	select CRYPTO_NHPOLY1305
538	select CRYPTO_MANAGER
539	help
540	  Adiantum is a tweakable, length-preserving encryption mode
541	  designed for fast and secure disk encryption, especially on
542	  CPUs without dedicated crypto instructions.  It encrypts
543	  each sector using the XChaCha12 stream cipher, two passes of
544	  an ε-almost-∆-universal hash function, and an invocation of
545	  the AES-256 block cipher on a single 16-byte block.  On CPUs
546	  without AES instructions, Adiantum is much faster than
547	  AES-XTS.
548
549	  Adiantum's security is provably reducible to that of its
550	  underlying stream and block ciphers, subject to a security
551	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
552	  mode, so it actually provides an even stronger notion of
553	  security than XTS, subject to the security bound.
554
555	  If unsure, say N.
556
557config CRYPTO_HCTR2
558	tristate "HCTR2 support"
559	select CRYPTO_XCTR
560	select CRYPTO_POLYVAL
561	select CRYPTO_MANAGER
562	help
563	  HCTR2 is a length-preserving encryption mode for storage encryption that
564	  is efficient on processors with instructions to accelerate AES and
565	  carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and
566	  ARM processors with the ARMv8 crypto extensions.
567
568config CRYPTO_ESSIV
569	tristate "ESSIV support for block encryption"
570	select CRYPTO_AUTHENC
571	help
572	  Encrypted salt-sector initialization vector (ESSIV) is an IV
573	  generation method that is used in some cases by fscrypt and/or
574	  dm-crypt. It uses the hash of the block encryption key as the
575	  symmetric key for a block encryption pass applied to the input
576	  IV, making low entropy IV sources more suitable for block
577	  encryption.
578
579	  This driver implements a crypto API template that can be
580	  instantiated either as an skcipher or as an AEAD (depending on the
581	  type of the first template argument), and which defers encryption
582	  and decryption requests to the encapsulated cipher after applying
583	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
584	  that the keys are presented in the same format used by the authenc
585	  template, and that the IV appears at the end of the authenticated
586	  associated data (AAD) region (which is how dm-crypt uses it.)
587
588	  Note that the use of ESSIV is not recommended for new deployments,
589	  and so this only needs to be enabled when interoperability with
590	  existing encrypted volumes of filesystems is required, or when
591	  building for a particular system that requires it (e.g., when
592	  the SoC in question has accelerated CBC but not XTS, making CBC
593	  combined with ESSIV the only feasible mode for h/w accelerated
594	  block encryption)
595
596comment "Hash modes"
597
598config CRYPTO_CMAC
599	tristate "CMAC support"
600	select CRYPTO_HASH
601	select CRYPTO_MANAGER
602	help
603	  Cipher-based Message Authentication Code (CMAC) specified by
604	  The National Institute of Standards and Technology (NIST).
605
606	  https://tools.ietf.org/html/rfc4493
607	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
608
609config CRYPTO_HMAC
610	tristate "HMAC support"
611	select CRYPTO_HASH
612	select CRYPTO_MANAGER
613	help
614	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
615	  This is required for IPSec.
616
617config CRYPTO_XCBC
618	tristate "XCBC support"
619	select CRYPTO_HASH
620	select CRYPTO_MANAGER
621	help
622	  XCBC: Keyed-Hashing with encryption algorithm
623		https://www.ietf.org/rfc/rfc3566.txt
624		http://csrc.nist.gov/encryption/modes/proposedmodes/
625		 xcbc-mac/xcbc-mac-spec.pdf
626
627config CRYPTO_VMAC
628	tristate "VMAC support"
629	select CRYPTO_HASH
630	select CRYPTO_MANAGER
631	help
632	  VMAC is a message authentication algorithm designed for
633	  very high speed on 64-bit architectures.
634
635	  See also:
636	  <https://fastcrypto.org/vmac>
637
638comment "Digest"
639
640config CRYPTO_CRC32C
641	tristate "CRC32c CRC algorithm"
642	select CRYPTO_HASH
643	select CRC32
644	help
645	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
646	  by iSCSI for header and data digests and by others.
647	  See Castagnoli93.  Module will be crc32c.
648
649config CRYPTO_CRC32C_INTEL
650	tristate "CRC32c INTEL hardware acceleration"
651	depends on X86
652	select CRYPTO_HASH
653	help
654	  In Intel processor with SSE4.2 supported, the processor will
655	  support CRC32C implementation using hardware accelerated CRC32
656	  instruction. This option will create 'crc32c-intel' module,
657	  which will enable any routine to use the CRC32 instruction to
658	  gain performance compared with software implementation.
659	  Module will be crc32c-intel.
660
661config CRYPTO_CRC32C_VPMSUM
662	tristate "CRC32c CRC algorithm (powerpc64)"
663	depends on PPC64 && ALTIVEC
664	select CRYPTO_HASH
665	select CRC32
666	help
667	  CRC32c algorithm implemented using vector polynomial multiply-sum
668	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
669	  and newer processors for improved performance.
670
671
672config CRYPTO_CRC32C_SPARC64
673	tristate "CRC32c CRC algorithm (SPARC64)"
674	depends on SPARC64
675	select CRYPTO_HASH
676	select CRC32
677	help
678	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
679	  when available.
680
681config CRYPTO_CRC32
682	tristate "CRC32 CRC algorithm"
683	select CRYPTO_HASH
684	select CRC32
685	help
686	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
687	  Shash crypto api wrappers to crc32_le function.
688
689config CRYPTO_CRC32_PCLMUL
690	tristate "CRC32 PCLMULQDQ hardware acceleration"
691	depends on X86
692	select CRYPTO_HASH
693	select CRC32
694	help
695	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
696	  and PCLMULQDQ supported, the processor will support
697	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
698	  instruction. This option will create 'crc32-pclmul' module,
699	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
700	  and gain better performance as compared with the table implementation.
701
702config CRYPTO_CRC32_S390
703	tristate "CRC-32 algorithms"
704	depends on S390
705	select CRYPTO_HASH
706	select CRC32
707	help
708	  Select this option if you want to use hardware accelerated
709	  implementations of CRC algorithms.  With this option, you
710	  can optimize the computation of CRC-32 (IEEE 802.3 Ethernet)
711	  and CRC-32C (Castagnoli).
712
713	  It is available with IBM z13 or later.
714
715config CRYPTO_XXHASH
716	tristate "xxHash hash algorithm"
717	select CRYPTO_HASH
718	select XXHASH
719	help
720	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
721	  speeds close to RAM limits.
722
723config CRYPTO_BLAKE2B
724	tristate "BLAKE2b digest algorithm"
725	select CRYPTO_HASH
726	help
727	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
728	  optimized for 64bit platforms and can produce digests of any size
729	  between 1 to 64.  The keyed hash is also implemented.
730
731	  This module provides the following algorithms:
732
733	  - blake2b-160
734	  - blake2b-256
735	  - blake2b-384
736	  - blake2b-512
737
738	  See https://blake2.net for further information.
739
740config CRYPTO_BLAKE2S_X86
741	bool "BLAKE2s digest algorithm (x86 accelerated version)"
742	depends on X86 && 64BIT
743	select CRYPTO_LIB_BLAKE2S_GENERIC
744	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
745
746config CRYPTO_CRCT10DIF
747	tristate "CRCT10DIF algorithm"
748	select CRYPTO_HASH
749	help
750	  CRC T10 Data Integrity Field computation is being cast as
751	  a crypto transform.  This allows for faster crc t10 diff
752	  transforms to be used if they are available.
753
754config CRYPTO_CRCT10DIF_PCLMUL
755	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
756	depends on X86 && 64BIT && CRC_T10DIF
757	select CRYPTO_HASH
758	help
759	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
760	  CRC T10 DIF PCLMULQDQ computation can be hardware
761	  accelerated PCLMULQDQ instruction. This option will create
762	  'crct10dif-pclmul' module, which is faster when computing the
763	  crct10dif checksum as compared with the generic table implementation.
764
765config CRYPTO_CRCT10DIF_VPMSUM
766	tristate "CRC32T10DIF powerpc64 hardware acceleration"
767	depends on PPC64 && ALTIVEC && CRC_T10DIF
768	select CRYPTO_HASH
769	help
770	  CRC10T10DIF algorithm implemented using vector polynomial
771	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
772	  POWER8 and newer processors for improved performance.
773
774config CRYPTO_CRC64_ROCKSOFT
775	tristate "Rocksoft Model CRC64 algorithm"
776	depends on CRC64
777	select CRYPTO_HASH
778
779config CRYPTO_VPMSUM_TESTER
780	tristate "Powerpc64 vpmsum hardware acceleration tester"
781	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
782	help
783	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
784	  POWER8 vpmsum instructions.
785	  Unless you are testing these algorithms, you don't need this.
786
787config CRYPTO_GHASH
788	tristate "GHASH hash function"
789	select CRYPTO_GF128MUL
790	select CRYPTO_HASH
791	help
792	  GHASH is the hash function used in GCM (Galois/Counter Mode).
793	  It is not a general-purpose cryptographic hash function.
794
795config CRYPTO_POLYVAL
796	tristate
797	select CRYPTO_GF128MUL
798	select CRYPTO_HASH
799	help
800	  POLYVAL is the hash function used in HCTR2.  It is not a general-purpose
801	  cryptographic hash function.
802
803config CRYPTO_POLYVAL_CLMUL_NI
804	tristate "POLYVAL hash function (CLMUL-NI accelerated)"
805	depends on X86 && 64BIT
806	select CRYPTO_POLYVAL
807	help
808	  This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is
809	  used to efficiently implement HCTR2 on x86-64 processors that support
810	  carry-less multiplication instructions.
811
812config CRYPTO_POLY1305
813	tristate "Poly1305 authenticator algorithm"
814	select CRYPTO_HASH
815	select CRYPTO_LIB_POLY1305_GENERIC
816	help
817	  Poly1305 authenticator algorithm, RFC7539.
818
819	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
820	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
821	  in IETF protocols. This is the portable C implementation of Poly1305.
822
823config CRYPTO_POLY1305_X86_64
824	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
825	depends on X86 && 64BIT
826	select CRYPTO_LIB_POLY1305_GENERIC
827	select CRYPTO_ARCH_HAVE_LIB_POLY1305
828	help
829	  Poly1305 authenticator algorithm, RFC7539.
830
831	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
832	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
833	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
834	  instructions.
835
836config CRYPTO_MD4
837	tristate "MD4 digest algorithm"
838	select CRYPTO_HASH
839	help
840	  MD4 message digest algorithm (RFC1320).
841
842config CRYPTO_MD5
843	tristate "MD5 digest algorithm"
844	select CRYPTO_HASH
845	help
846	  MD5 message digest algorithm (RFC1321).
847
848config CRYPTO_MD5_PPC
849	tristate "MD5 digest algorithm (PPC)"
850	depends on PPC
851	select CRYPTO_HASH
852	help
853	  MD5 message digest algorithm (RFC1321) implemented
854	  in PPC assembler.
855
856config CRYPTO_MD5_SPARC64
857	tristate "MD5 digest algorithm (SPARC64)"
858	depends on SPARC64
859	select CRYPTO_MD5
860	select CRYPTO_HASH
861	help
862	  MD5 message digest algorithm (RFC1321) implemented
863	  using sparc64 crypto instructions, when available.
864
865config CRYPTO_MICHAEL_MIC
866	tristate "Michael MIC keyed digest algorithm"
867	select CRYPTO_HASH
868	help
869	  Michael MIC is used for message integrity protection in TKIP
870	  (IEEE 802.11i). This algorithm is required for TKIP, but it
871	  should not be used for other purposes because of the weakness
872	  of the algorithm.
873
874config CRYPTO_RMD160
875	tristate "RIPEMD-160 digest algorithm"
876	select CRYPTO_HASH
877	help
878	  RIPEMD-160 (ISO/IEC 10118-3:2004).
879
880	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
881	  to be used as a secure replacement for the 128-bit hash functions
882	  MD4, MD5 and its predecessor RIPEMD
883	  (not to be confused with RIPEMD-128).
884
885	  It's speed is comparable to SHA1 and there are no known attacks
886	  against RIPEMD-160.
887
888	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
889	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
890
891config CRYPTO_SHA1
892	tristate "SHA1 digest algorithm"
893	select CRYPTO_HASH
894	select CRYPTO_LIB_SHA1
895	help
896	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
897
898config CRYPTO_SHA1_SSSE3
899	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
900	depends on X86 && 64BIT
901	select CRYPTO_SHA1
902	select CRYPTO_HASH
903	help
904	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
905	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
906	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
907	  when available.
908
909config CRYPTO_SHA256_SSSE3
910	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
911	depends on X86 && 64BIT
912	select CRYPTO_SHA256
913	select CRYPTO_HASH
914	help
915	  SHA-256 secure hash standard (DFIPS 180-2) implemented
916	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
917	  Extensions version 1 (AVX1), or Advanced Vector Extensions
918	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
919	  Instructions) when available.
920
921config CRYPTO_SHA512_SSSE3
922	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
923	depends on X86 && 64BIT
924	select CRYPTO_SHA512
925	select CRYPTO_HASH
926	help
927	  SHA-512 secure hash standard (DFIPS 180-2) implemented
928	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
929	  Extensions version 1 (AVX1), or Advanced Vector Extensions
930	  version 2 (AVX2) instructions, when available.
931
932config CRYPTO_SHA512_S390
933	tristate "SHA384 and SHA512 digest algorithm"
934	depends on S390
935	select CRYPTO_HASH
936	help
937	  This is the s390 hardware accelerated implementation of the
938	  SHA512 secure hash standard.
939
940	  It is available as of z10.
941
942config CRYPTO_SHA1_SPARC64
943	tristate "SHA1 digest algorithm (SPARC64)"
944	depends on SPARC64
945	select CRYPTO_SHA1
946	select CRYPTO_HASH
947	help
948	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
949	  using sparc64 crypto instructions, when available.
950
951config CRYPTO_SHA1_PPC
952	tristate "SHA1 digest algorithm (powerpc)"
953	depends on PPC
954	help
955	  This is the powerpc hardware accelerated implementation of the
956	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
957
958config CRYPTO_SHA1_PPC_SPE
959	tristate "SHA1 digest algorithm (PPC SPE)"
960	depends on PPC && SPE
961	help
962	  SHA-1 secure hash standard (DFIPS 180-4) implemented
963	  using powerpc SPE SIMD instruction set.
964
965config CRYPTO_SHA1_S390
966	tristate "SHA1 digest algorithm"
967	depends on S390
968	select CRYPTO_HASH
969	help
970	  This is the s390 hardware accelerated implementation of the
971	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
972
973	  It is available as of z990.
974
975config CRYPTO_SHA256
976	tristate "SHA224 and SHA256 digest algorithm"
977	select CRYPTO_HASH
978	select CRYPTO_LIB_SHA256
979	help
980	  SHA256 secure hash standard (DFIPS 180-2).
981
982	  This version of SHA implements a 256 bit hash with 128 bits of
983	  security against collision attacks.
984
985	  This code also includes SHA-224, a 224 bit hash with 112 bits
986	  of security against collision attacks.
987
988config CRYPTO_SHA256_PPC_SPE
989	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
990	depends on PPC && SPE
991	select CRYPTO_SHA256
992	select CRYPTO_HASH
993	help
994	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
995	  implemented using powerpc SPE SIMD instruction set.
996
997config CRYPTO_SHA256_SPARC64
998	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
999	depends on SPARC64
1000	select CRYPTO_SHA256
1001	select CRYPTO_HASH
1002	help
1003	  SHA-256 secure hash standard (DFIPS 180-2) implemented
1004	  using sparc64 crypto instructions, when available.
1005
1006config CRYPTO_SHA256_S390
1007	tristate "SHA256 digest algorithm"
1008	depends on S390
1009	select CRYPTO_HASH
1010	help
1011	  This is the s390 hardware accelerated implementation of the
1012	  SHA256 secure hash standard (DFIPS 180-2).
1013
1014	  It is available as of z9.
1015
1016config CRYPTO_SHA512
1017	tristate "SHA384 and SHA512 digest algorithms"
1018	select CRYPTO_HASH
1019	help
1020	  SHA512 secure hash standard (DFIPS 180-2).
1021
1022	  This version of SHA implements a 512 bit hash with 256 bits of
1023	  security against collision attacks.
1024
1025	  This code also includes SHA-384, a 384 bit hash with 192 bits
1026	  of security against collision attacks.
1027
1028config CRYPTO_SHA512_SPARC64
1029	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
1030	depends on SPARC64
1031	select CRYPTO_SHA512
1032	select CRYPTO_HASH
1033	help
1034	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1035	  using sparc64 crypto instructions, when available.
1036
1037config CRYPTO_SHA3
1038	tristate "SHA3 digest algorithm"
1039	select CRYPTO_HASH
1040	help
1041	  SHA-3 secure hash standard (DFIPS 202). It's based on
1042	  cryptographic sponge function family called Keccak.
1043
1044	  References:
1045	  http://keccak.noekeon.org/
1046
1047config CRYPTO_SHA3_256_S390
1048	tristate "SHA3_224 and SHA3_256 digest algorithm"
1049	depends on S390
1050	select CRYPTO_HASH
1051	help
1052	  This is the s390 hardware accelerated implementation of the
1053	  SHA3_256 secure hash standard.
1054
1055	  It is available as of z14.
1056
1057config CRYPTO_SHA3_512_S390
1058	tristate "SHA3_384 and SHA3_512 digest algorithm"
1059	depends on S390
1060	select CRYPTO_HASH
1061	help
1062	  This is the s390 hardware accelerated implementation of the
1063	  SHA3_512 secure hash standard.
1064
1065	  It is available as of z14.
1066
1067config CRYPTO_SM3
1068	tristate
1069
1070config CRYPTO_SM3_GENERIC
1071	tristate "SM3 digest algorithm"
1072	select CRYPTO_HASH
1073	select CRYPTO_SM3
1074	help
1075	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1076	  It is part of the Chinese Commercial Cryptography suite.
1077
1078	  References:
1079	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1080	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1081
1082config CRYPTO_SM3_AVX_X86_64
1083	tristate "SM3 digest algorithm (x86_64/AVX)"
1084	depends on X86 && 64BIT
1085	select CRYPTO_HASH
1086	select CRYPTO_SM3
1087	help
1088	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1089	  It is part of the Chinese Commercial Cryptography suite. This is
1090	  SM3 optimized implementation using Advanced Vector Extensions (AVX)
1091	  when available.
1092
1093	  If unsure, say N.
1094
1095config CRYPTO_STREEBOG
1096	tristate "Streebog Hash Function"
1097	select CRYPTO_HASH
1098	help
1099	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1100	  cryptographic standard algorithms (called GOST algorithms).
1101	  This setting enables two hash algorithms with 256 and 512 bits output.
1102
1103	  References:
1104	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1105	  https://tools.ietf.org/html/rfc6986
1106
1107config CRYPTO_WP512
1108	tristate "Whirlpool digest algorithms"
1109	select CRYPTO_HASH
1110	help
1111	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1112
1113	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1114	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1115
1116	  See also:
1117	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1118
1119config CRYPTO_GHASH_CLMUL_NI_INTEL
1120	tristate "GHASH hash function (CLMUL-NI accelerated)"
1121	depends on X86 && 64BIT
1122	select CRYPTO_CRYPTD
1123	help
1124	  This is the x86_64 CLMUL-NI accelerated implementation of
1125	  GHASH, the hash function used in GCM (Galois/Counter mode).
1126
1127config CRYPTO_GHASH_S390
1128	tristate "GHASH hash function"
1129	depends on S390
1130	select CRYPTO_HASH
1131	help
1132	  This is the s390 hardware accelerated implementation of GHASH,
1133	  the hash function used in GCM (Galois/Counter mode).
1134
1135	  It is available as of z196.
1136
1137comment "Ciphers"
1138
1139config CRYPTO_AES
1140	tristate "AES cipher algorithms"
1141	select CRYPTO_ALGAPI
1142	select CRYPTO_LIB_AES
1143	help
1144	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1145	  algorithm.
1146
1147	  Rijndael appears to be consistently a very good performer in
1148	  both hardware and software across a wide range of computing
1149	  environments regardless of its use in feedback or non-feedback
1150	  modes. Its key setup time is excellent, and its key agility is
1151	  good. Rijndael's very low memory requirements make it very well
1152	  suited for restricted-space environments, in which it also
1153	  demonstrates excellent performance. Rijndael's operations are
1154	  among the easiest to defend against power and timing attacks.
1155
1156	  The AES specifies three key sizes: 128, 192 and 256 bits
1157
1158	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1159
1160config CRYPTO_AES_TI
1161	tristate "Fixed time AES cipher"
1162	select CRYPTO_ALGAPI
1163	select CRYPTO_LIB_AES
1164	help
1165	  This is a generic implementation of AES that attempts to eliminate
1166	  data dependent latencies as much as possible without affecting
1167	  performance too much. It is intended for use by the generic CCM
1168	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1169	  solely on encryption (although decryption is supported as well, but
1170	  with a more dramatic performance hit)
1171
1172	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1173	  8 for decryption), this implementation only uses just two S-boxes of
1174	  256 bytes each, and attempts to eliminate data dependent latencies by
1175	  prefetching the entire table into the cache at the start of each
1176	  block. Interrupts are also disabled to avoid races where cachelines
1177	  are evicted when the CPU is interrupted to do something else.
1178
1179config CRYPTO_AES_NI_INTEL
1180	tristate "AES cipher algorithms (AES-NI)"
1181	depends on X86
1182	select CRYPTO_AEAD
1183	select CRYPTO_LIB_AES
1184	select CRYPTO_ALGAPI
1185	select CRYPTO_SKCIPHER
1186	select CRYPTO_SIMD
1187	help
1188	  Use Intel AES-NI instructions for AES algorithm.
1189
1190	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1191	  algorithm.
1192
1193	  Rijndael appears to be consistently a very good performer in
1194	  both hardware and software across a wide range of computing
1195	  environments regardless of its use in feedback or non-feedback
1196	  modes. Its key setup time is excellent, and its key agility is
1197	  good. Rijndael's very low memory requirements make it very well
1198	  suited for restricted-space environments, in which it also
1199	  demonstrates excellent performance. Rijndael's operations are
1200	  among the easiest to defend against power and timing attacks.
1201
1202	  The AES specifies three key sizes: 128, 192 and 256 bits
1203
1204	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1205
1206	  In addition to AES cipher algorithm support, the acceleration
1207	  for some popular block cipher mode is supported too, including
1208	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1209	  acceleration for CTR and XCTR.
1210
1211config CRYPTO_AES_SPARC64
1212	tristate "AES cipher algorithms (SPARC64)"
1213	depends on SPARC64
1214	select CRYPTO_SKCIPHER
1215	help
1216	  Use SPARC64 crypto opcodes for AES algorithm.
1217
1218	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1219	  algorithm.
1220
1221	  Rijndael appears to be consistently a very good performer in
1222	  both hardware and software across a wide range of computing
1223	  environments regardless of its use in feedback or non-feedback
1224	  modes. Its key setup time is excellent, and its key agility is
1225	  good. Rijndael's very low memory requirements make it very well
1226	  suited for restricted-space environments, in which it also
1227	  demonstrates excellent performance. Rijndael's operations are
1228	  among the easiest to defend against power and timing attacks.
1229
1230	  The AES specifies three key sizes: 128, 192 and 256 bits
1231
1232	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1233
1234	  In addition to AES cipher algorithm support, the acceleration
1235	  for some popular block cipher mode is supported too, including
1236	  ECB and CBC.
1237
1238config CRYPTO_AES_PPC_SPE
1239	tristate "AES cipher algorithms (PPC SPE)"
1240	depends on PPC && SPE
1241	select CRYPTO_SKCIPHER
1242	help
1243	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1244	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1245	  This module should only be used for low power (router) devices
1246	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1247	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1248	  timining attacks. Nevertheless it might be not as secure as other
1249	  architecture specific assembler implementations that work on 1KB
1250	  tables or 256 bytes S-boxes.
1251
1252config CRYPTO_AES_S390
1253	tristate "AES cipher algorithms"
1254	depends on S390
1255	select CRYPTO_ALGAPI
1256	select CRYPTO_SKCIPHER
1257	help
1258	  This is the s390 hardware accelerated implementation of the
1259	  AES cipher algorithms (FIPS-197).
1260
1261	  As of z9 the ECB and CBC modes are hardware accelerated
1262	  for 128 bit keys.
1263	  As of z10 the ECB and CBC modes are hardware accelerated
1264	  for all AES key sizes.
1265	  As of z196 the CTR mode is hardware accelerated for all AES
1266	  key sizes and XTS mode is hardware accelerated for 256 and
1267	  512 bit keys.
1268
1269config CRYPTO_ANUBIS
1270	tristate "Anubis cipher algorithm"
1271	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1272	select CRYPTO_ALGAPI
1273	help
1274	  Anubis cipher algorithm.
1275
1276	  Anubis is a variable key length cipher which can use keys from
1277	  128 bits to 320 bits in length.  It was evaluated as a entrant
1278	  in the NESSIE competition.
1279
1280	  See also:
1281	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1282	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1283
1284config CRYPTO_ARC4
1285	tristate "ARC4 cipher algorithm"
1286	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1287	select CRYPTO_SKCIPHER
1288	select CRYPTO_LIB_ARC4
1289	help
1290	  ARC4 cipher algorithm.
1291
1292	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1293	  bits in length.  This algorithm is required for driver-based
1294	  WEP, but it should not be for other purposes because of the
1295	  weakness of the algorithm.
1296
1297config CRYPTO_BLOWFISH
1298	tristate "Blowfish cipher algorithm"
1299	select CRYPTO_ALGAPI
1300	select CRYPTO_BLOWFISH_COMMON
1301	help
1302	  Blowfish cipher algorithm, by Bruce Schneier.
1303
1304	  This is a variable key length cipher which can use keys from 32
1305	  bits to 448 bits in length.  It's fast, simple and specifically
1306	  designed for use on "large microprocessors".
1307
1308	  See also:
1309	  <https://www.schneier.com/blowfish.html>
1310
1311config CRYPTO_BLOWFISH_COMMON
1312	tristate
1313	help
1314	  Common parts of the Blowfish cipher algorithm shared by the
1315	  generic c and the assembler implementations.
1316
1317	  See also:
1318	  <https://www.schneier.com/blowfish.html>
1319
1320config CRYPTO_BLOWFISH_X86_64
1321	tristate "Blowfish cipher algorithm (x86_64)"
1322	depends on X86 && 64BIT
1323	select CRYPTO_SKCIPHER
1324	select CRYPTO_BLOWFISH_COMMON
1325	imply CRYPTO_CTR
1326	help
1327	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1328
1329	  This is a variable key length cipher which can use keys from 32
1330	  bits to 448 bits in length.  It's fast, simple and specifically
1331	  designed for use on "large microprocessors".
1332
1333	  See also:
1334	  <https://www.schneier.com/blowfish.html>
1335
1336config CRYPTO_CAMELLIA
1337	tristate "Camellia cipher algorithms"
1338	select CRYPTO_ALGAPI
1339	help
1340	  Camellia cipher algorithms module.
1341
1342	  Camellia is a symmetric key block cipher developed jointly
1343	  at NTT and Mitsubishi Electric Corporation.
1344
1345	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1346
1347	  See also:
1348	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1349
1350config CRYPTO_CAMELLIA_X86_64
1351	tristate "Camellia cipher algorithm (x86_64)"
1352	depends on X86 && 64BIT
1353	select CRYPTO_SKCIPHER
1354	imply CRYPTO_CTR
1355	help
1356	  Camellia cipher algorithm module (x86_64).
1357
1358	  Camellia is a symmetric key block cipher developed jointly
1359	  at NTT and Mitsubishi Electric Corporation.
1360
1361	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1362
1363	  See also:
1364	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1365
1366config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1367	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1368	depends on X86 && 64BIT
1369	select CRYPTO_SKCIPHER
1370	select CRYPTO_CAMELLIA_X86_64
1371	select CRYPTO_SIMD
1372	imply CRYPTO_XTS
1373	help
1374	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1375
1376	  Camellia is a symmetric key block cipher developed jointly
1377	  at NTT and Mitsubishi Electric Corporation.
1378
1379	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1380
1381	  See also:
1382	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1383
1384config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1385	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1386	depends on X86 && 64BIT
1387	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1388	help
1389	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1390
1391	  Camellia is a symmetric key block cipher developed jointly
1392	  at NTT and Mitsubishi Electric Corporation.
1393
1394	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1395
1396	  See also:
1397	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1398
1399config CRYPTO_CAMELLIA_SPARC64
1400	tristate "Camellia cipher algorithm (SPARC64)"
1401	depends on SPARC64
1402	select CRYPTO_ALGAPI
1403	select CRYPTO_SKCIPHER
1404	help
1405	  Camellia cipher algorithm module (SPARC64).
1406
1407	  Camellia is a symmetric key block cipher developed jointly
1408	  at NTT and Mitsubishi Electric Corporation.
1409
1410	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1411
1412	  See also:
1413	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1414
1415config CRYPTO_CAST_COMMON
1416	tristate
1417	help
1418	  Common parts of the CAST cipher algorithms shared by the
1419	  generic c and the assembler implementations.
1420
1421config CRYPTO_CAST5
1422	tristate "CAST5 (CAST-128) cipher algorithm"
1423	select CRYPTO_ALGAPI
1424	select CRYPTO_CAST_COMMON
1425	help
1426	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1427	  described in RFC2144.
1428
1429config CRYPTO_CAST5_AVX_X86_64
1430	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1431	depends on X86 && 64BIT
1432	select CRYPTO_SKCIPHER
1433	select CRYPTO_CAST5
1434	select CRYPTO_CAST_COMMON
1435	select CRYPTO_SIMD
1436	imply CRYPTO_CTR
1437	help
1438	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1439	  described in RFC2144.
1440
1441	  This module provides the Cast5 cipher algorithm that processes
1442	  sixteen blocks parallel using the AVX instruction set.
1443
1444config CRYPTO_CAST6
1445	tristate "CAST6 (CAST-256) cipher algorithm"
1446	select CRYPTO_ALGAPI
1447	select CRYPTO_CAST_COMMON
1448	help
1449	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1450	  described in RFC2612.
1451
1452config CRYPTO_CAST6_AVX_X86_64
1453	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1454	depends on X86 && 64BIT
1455	select CRYPTO_SKCIPHER
1456	select CRYPTO_CAST6
1457	select CRYPTO_CAST_COMMON
1458	select CRYPTO_SIMD
1459	imply CRYPTO_XTS
1460	imply CRYPTO_CTR
1461	help
1462	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1463	  described in RFC2612.
1464
1465	  This module provides the Cast6 cipher algorithm that processes
1466	  eight blocks parallel using the AVX instruction set.
1467
1468config CRYPTO_DES
1469	tristate "DES and Triple DES EDE cipher algorithms"
1470	select CRYPTO_ALGAPI
1471	select CRYPTO_LIB_DES
1472	help
1473	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1474
1475config CRYPTO_DES_SPARC64
1476	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1477	depends on SPARC64
1478	select CRYPTO_ALGAPI
1479	select CRYPTO_LIB_DES
1480	select CRYPTO_SKCIPHER
1481	help
1482	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1483	  optimized using SPARC64 crypto opcodes.
1484
1485config CRYPTO_DES3_EDE_X86_64
1486	tristate "Triple DES EDE cipher algorithm (x86-64)"
1487	depends on X86 && 64BIT
1488	select CRYPTO_SKCIPHER
1489	select CRYPTO_LIB_DES
1490	imply CRYPTO_CTR
1491	help
1492	  Triple DES EDE (FIPS 46-3) algorithm.
1493
1494	  This module provides implementation of the Triple DES EDE cipher
1495	  algorithm that is optimized for x86-64 processors. Two versions of
1496	  algorithm are provided; regular processing one input block and
1497	  one that processes three blocks parallel.
1498
1499config CRYPTO_DES_S390
1500	tristate "DES and Triple DES cipher algorithms"
1501	depends on S390
1502	select CRYPTO_ALGAPI
1503	select CRYPTO_SKCIPHER
1504	select CRYPTO_LIB_DES
1505	help
1506	  This is the s390 hardware accelerated implementation of the
1507	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1508
1509	  As of z990 the ECB and CBC mode are hardware accelerated.
1510	  As of z196 the CTR mode is hardware accelerated.
1511
1512config CRYPTO_FCRYPT
1513	tristate "FCrypt cipher algorithm"
1514	select CRYPTO_ALGAPI
1515	select CRYPTO_SKCIPHER
1516	help
1517	  FCrypt algorithm used by RxRPC.
1518
1519config CRYPTO_KHAZAD
1520	tristate "Khazad cipher algorithm"
1521	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1522	select CRYPTO_ALGAPI
1523	help
1524	  Khazad cipher algorithm.
1525
1526	  Khazad was a finalist in the initial NESSIE competition.  It is
1527	  an algorithm optimized for 64-bit processors with good performance
1528	  on 32-bit processors.  Khazad uses an 128 bit key size.
1529
1530	  See also:
1531	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1532
1533config CRYPTO_CHACHA20
1534	tristate "ChaCha stream cipher algorithms"
1535	select CRYPTO_LIB_CHACHA_GENERIC
1536	select CRYPTO_SKCIPHER
1537	help
1538	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1539
1540	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1541	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1542	  This is the portable C implementation of ChaCha20.  See also:
1543	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1544
1545	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1546	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1547	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1548	  while provably retaining ChaCha20's security.  See also:
1549	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1550
1551	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1552	  reduced security margin but increased performance.  It can be needed
1553	  in some performance-sensitive scenarios.
1554
1555config CRYPTO_CHACHA20_X86_64
1556	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1557	depends on X86 && 64BIT
1558	select CRYPTO_SKCIPHER
1559	select CRYPTO_LIB_CHACHA_GENERIC
1560	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1561	help
1562	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1563	  XChaCha20, and XChaCha12 stream ciphers.
1564
1565config CRYPTO_CHACHA_S390
1566	tristate "ChaCha20 stream cipher"
1567	depends on S390
1568	select CRYPTO_SKCIPHER
1569	select CRYPTO_LIB_CHACHA_GENERIC
1570	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1571	help
1572	  This is the s390 SIMD implementation of the ChaCha20 stream
1573	  cipher (RFC 7539).
1574
1575	  It is available as of z13.
1576
1577config CRYPTO_SEED
1578	tristate "SEED cipher algorithm"
1579	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1580	select CRYPTO_ALGAPI
1581	help
1582	  SEED cipher algorithm (RFC4269).
1583
1584	  SEED is a 128-bit symmetric key block cipher that has been
1585	  developed by KISA (Korea Information Security Agency) as a
1586	  national standard encryption algorithm of the Republic of Korea.
1587	  It is a 16 round block cipher with the key size of 128 bit.
1588
1589	  See also:
1590	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1591
1592config CRYPTO_ARIA
1593	tristate "ARIA cipher algorithm"
1594	select CRYPTO_ALGAPI
1595	help
1596	  ARIA cipher algorithm (RFC5794).
1597
1598	  ARIA is a standard encryption algorithm of the Republic of Korea.
1599	  The ARIA specifies three key sizes and rounds.
1600	  128-bit: 12 rounds.
1601	  192-bit: 14 rounds.
1602	  256-bit: 16 rounds.
1603
1604	  See also:
1605	  <https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do>
1606
1607config CRYPTO_SERPENT
1608	tristate "Serpent cipher algorithm"
1609	select CRYPTO_ALGAPI
1610	help
1611	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1612
1613	  Keys are allowed to be from 0 to 256 bits in length, in steps
1614	  of 8 bits.
1615
1616	  See also:
1617	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1618
1619config CRYPTO_SERPENT_SSE2_X86_64
1620	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1621	depends on X86 && 64BIT
1622	select CRYPTO_SKCIPHER
1623	select CRYPTO_SERPENT
1624	select CRYPTO_SIMD
1625	imply CRYPTO_CTR
1626	help
1627	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1628
1629	  Keys are allowed to be from 0 to 256 bits in length, in steps
1630	  of 8 bits.
1631
1632	  This module provides Serpent cipher algorithm that processes eight
1633	  blocks parallel using SSE2 instruction set.
1634
1635	  See also:
1636	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1637
1638config CRYPTO_SERPENT_SSE2_586
1639	tristate "Serpent cipher algorithm (i586/SSE2)"
1640	depends on X86 && !64BIT
1641	select CRYPTO_SKCIPHER
1642	select CRYPTO_SERPENT
1643	select CRYPTO_SIMD
1644	imply CRYPTO_CTR
1645	help
1646	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1647
1648	  Keys are allowed to be from 0 to 256 bits in length, in steps
1649	  of 8 bits.
1650
1651	  This module provides Serpent cipher algorithm that processes four
1652	  blocks parallel using SSE2 instruction set.
1653
1654	  See also:
1655	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1656
1657config CRYPTO_SERPENT_AVX_X86_64
1658	tristate "Serpent cipher algorithm (x86_64/AVX)"
1659	depends on X86 && 64BIT
1660	select CRYPTO_SKCIPHER
1661	select CRYPTO_SERPENT
1662	select CRYPTO_SIMD
1663	imply CRYPTO_XTS
1664	imply CRYPTO_CTR
1665	help
1666	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1667
1668	  Keys are allowed to be from 0 to 256 bits in length, in steps
1669	  of 8 bits.
1670
1671	  This module provides the Serpent cipher algorithm that processes
1672	  eight blocks parallel using the AVX instruction set.
1673
1674	  See also:
1675	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1676
1677config CRYPTO_SERPENT_AVX2_X86_64
1678	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1679	depends on X86 && 64BIT
1680	select CRYPTO_SERPENT_AVX_X86_64
1681	help
1682	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1683
1684	  Keys are allowed to be from 0 to 256 bits in length, in steps
1685	  of 8 bits.
1686
1687	  This module provides Serpent cipher algorithm that processes 16
1688	  blocks parallel using AVX2 instruction set.
1689
1690	  See also:
1691	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1692
1693config CRYPTO_SM4
1694	tristate
1695
1696config CRYPTO_SM4_GENERIC
1697	tristate "SM4 cipher algorithm"
1698	select CRYPTO_ALGAPI
1699	select CRYPTO_SM4
1700	help
1701	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1702
1703	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1704	  Organization of State Commercial Administration of China (OSCCA)
1705	  as an authorized cryptographic algorithms for the use within China.
1706
1707	  SMS4 was originally created for use in protecting wireless
1708	  networks, and is mandated in the Chinese National Standard for
1709	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1710	  (GB.15629.11-2003).
1711
1712	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1713	  standardized through TC 260 of the Standardization Administration
1714	  of the People's Republic of China (SAC).
1715
1716	  The input, output, and key of SMS4 are each 128 bits.
1717
1718	  See also: <https://eprint.iacr.org/2008/329.pdf>
1719
1720	  If unsure, say N.
1721
1722config CRYPTO_SM4_AESNI_AVX_X86_64
1723	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1724	depends on X86 && 64BIT
1725	select CRYPTO_SKCIPHER
1726	select CRYPTO_SIMD
1727	select CRYPTO_ALGAPI
1728	select CRYPTO_SM4
1729	help
1730	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1731
1732	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1733	  Organization of State Commercial Administration of China (OSCCA)
1734	  as an authorized cryptographic algorithms for the use within China.
1735
1736	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1737	  instruction set for block cipher. Through two affine transforms,
1738	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1739	  effect of instruction acceleration.
1740
1741	  If unsure, say N.
1742
1743config CRYPTO_SM4_AESNI_AVX2_X86_64
1744	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
1745	depends on X86 && 64BIT
1746	select CRYPTO_SKCIPHER
1747	select CRYPTO_SIMD
1748	select CRYPTO_ALGAPI
1749	select CRYPTO_SM4
1750	select CRYPTO_SM4_AESNI_AVX_X86_64
1751	help
1752	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
1753
1754	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1755	  Organization of State Commercial Administration of China (OSCCA)
1756	  as an authorized cryptographic algorithms for the use within China.
1757
1758	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
1759	  instruction set for block cipher. Through two affine transforms,
1760	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1761	  effect of instruction acceleration.
1762
1763	  If unsure, say N.
1764
1765config CRYPTO_TEA
1766	tristate "TEA, XTEA and XETA cipher algorithms"
1767	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1768	select CRYPTO_ALGAPI
1769	help
1770	  TEA cipher algorithm.
1771
1772	  Tiny Encryption Algorithm is a simple cipher that uses
1773	  many rounds for security.  It is very fast and uses
1774	  little memory.
1775
1776	  Xtendend Tiny Encryption Algorithm is a modification to
1777	  the TEA algorithm to address a potential key weakness
1778	  in the TEA algorithm.
1779
1780	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1781	  of the XTEA algorithm for compatibility purposes.
1782
1783config CRYPTO_TWOFISH
1784	tristate "Twofish cipher algorithm"
1785	select CRYPTO_ALGAPI
1786	select CRYPTO_TWOFISH_COMMON
1787	help
1788	  Twofish cipher algorithm.
1789
1790	  Twofish was submitted as an AES (Advanced Encryption Standard)
1791	  candidate cipher by researchers at CounterPane Systems.  It is a
1792	  16 round block cipher supporting key sizes of 128, 192, and 256
1793	  bits.
1794
1795	  See also:
1796	  <https://www.schneier.com/twofish.html>
1797
1798config CRYPTO_TWOFISH_COMMON
1799	tristate
1800	help
1801	  Common parts of the Twofish cipher algorithm shared by the
1802	  generic c and the assembler implementations.
1803
1804config CRYPTO_TWOFISH_586
1805	tristate "Twofish cipher algorithms (i586)"
1806	depends on (X86 || UML_X86) && !64BIT
1807	select CRYPTO_ALGAPI
1808	select CRYPTO_TWOFISH_COMMON
1809	imply CRYPTO_CTR
1810	help
1811	  Twofish cipher algorithm.
1812
1813	  Twofish was submitted as an AES (Advanced Encryption Standard)
1814	  candidate cipher by researchers at CounterPane Systems.  It is a
1815	  16 round block cipher supporting key sizes of 128, 192, and 256
1816	  bits.
1817
1818	  See also:
1819	  <https://www.schneier.com/twofish.html>
1820
1821config CRYPTO_TWOFISH_X86_64
1822	tristate "Twofish cipher algorithm (x86_64)"
1823	depends on (X86 || UML_X86) && 64BIT
1824	select CRYPTO_ALGAPI
1825	select CRYPTO_TWOFISH_COMMON
1826	imply CRYPTO_CTR
1827	help
1828	  Twofish cipher algorithm (x86_64).
1829
1830	  Twofish was submitted as an AES (Advanced Encryption Standard)
1831	  candidate cipher by researchers at CounterPane Systems.  It is a
1832	  16 round block cipher supporting key sizes of 128, 192, and 256
1833	  bits.
1834
1835	  See also:
1836	  <https://www.schneier.com/twofish.html>
1837
1838config CRYPTO_TWOFISH_X86_64_3WAY
1839	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1840	depends on X86 && 64BIT
1841	select CRYPTO_SKCIPHER
1842	select CRYPTO_TWOFISH_COMMON
1843	select CRYPTO_TWOFISH_X86_64
1844	help
1845	  Twofish cipher algorithm (x86_64, 3-way parallel).
1846
1847	  Twofish was submitted as an AES (Advanced Encryption Standard)
1848	  candidate cipher by researchers at CounterPane Systems.  It is a
1849	  16 round block cipher supporting key sizes of 128, 192, and 256
1850	  bits.
1851
1852	  This module provides Twofish cipher algorithm that processes three
1853	  blocks parallel, utilizing resources of out-of-order CPUs better.
1854
1855	  See also:
1856	  <https://www.schneier.com/twofish.html>
1857
1858config CRYPTO_TWOFISH_AVX_X86_64
1859	tristate "Twofish cipher algorithm (x86_64/AVX)"
1860	depends on X86 && 64BIT
1861	select CRYPTO_SKCIPHER
1862	select CRYPTO_SIMD
1863	select CRYPTO_TWOFISH_COMMON
1864	select CRYPTO_TWOFISH_X86_64
1865	select CRYPTO_TWOFISH_X86_64_3WAY
1866	imply CRYPTO_XTS
1867	help
1868	  Twofish cipher algorithm (x86_64/AVX).
1869
1870	  Twofish was submitted as an AES (Advanced Encryption Standard)
1871	  candidate cipher by researchers at CounterPane Systems.  It is a
1872	  16 round block cipher supporting key sizes of 128, 192, and 256
1873	  bits.
1874
1875	  This module provides the Twofish cipher algorithm that processes
1876	  eight blocks parallel using the AVX Instruction Set.
1877
1878	  See also:
1879	  <https://www.schneier.com/twofish.html>
1880
1881comment "Compression"
1882
1883config CRYPTO_DEFLATE
1884	tristate "Deflate compression algorithm"
1885	select CRYPTO_ALGAPI
1886	select CRYPTO_ACOMP2
1887	select ZLIB_INFLATE
1888	select ZLIB_DEFLATE
1889	help
1890	  This is the Deflate algorithm (RFC1951), specified for use in
1891	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1892
1893	  You will most probably want this if using IPSec.
1894
1895config CRYPTO_LZO
1896	tristate "LZO compression algorithm"
1897	select CRYPTO_ALGAPI
1898	select CRYPTO_ACOMP2
1899	select LZO_COMPRESS
1900	select LZO_DECOMPRESS
1901	help
1902	  This is the LZO algorithm.
1903
1904config CRYPTO_842
1905	tristate "842 compression algorithm"
1906	select CRYPTO_ALGAPI
1907	select CRYPTO_ACOMP2
1908	select 842_COMPRESS
1909	select 842_DECOMPRESS
1910	help
1911	  This is the 842 algorithm.
1912
1913config CRYPTO_LZ4
1914	tristate "LZ4 compression algorithm"
1915	select CRYPTO_ALGAPI
1916	select CRYPTO_ACOMP2
1917	select LZ4_COMPRESS
1918	select LZ4_DECOMPRESS
1919	help
1920	  This is the LZ4 algorithm.
1921
1922config CRYPTO_LZ4HC
1923	tristate "LZ4HC compression algorithm"
1924	select CRYPTO_ALGAPI
1925	select CRYPTO_ACOMP2
1926	select LZ4HC_COMPRESS
1927	select LZ4_DECOMPRESS
1928	help
1929	  This is the LZ4 high compression mode algorithm.
1930
1931config CRYPTO_ZSTD
1932	tristate "Zstd compression algorithm"
1933	select CRYPTO_ALGAPI
1934	select CRYPTO_ACOMP2
1935	select ZSTD_COMPRESS
1936	select ZSTD_DECOMPRESS
1937	help
1938	  This is the zstd algorithm.
1939
1940comment "Random Number Generation"
1941
1942config CRYPTO_ANSI_CPRNG
1943	tristate "Pseudo Random Number Generation for Cryptographic modules"
1944	select CRYPTO_AES
1945	select CRYPTO_RNG
1946	help
1947	  This option enables the generic pseudo random number generator
1948	  for cryptographic modules.  Uses the Algorithm specified in
1949	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1950	  CRYPTO_FIPS is selected
1951
1952menuconfig CRYPTO_DRBG_MENU
1953	tristate "NIST SP800-90A DRBG"
1954	help
1955	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1956	  more of the DRBG types must be selected.
1957
1958if CRYPTO_DRBG_MENU
1959
1960config CRYPTO_DRBG_HMAC
1961	bool
1962	default y
1963	select CRYPTO_HMAC
1964	select CRYPTO_SHA512
1965
1966config CRYPTO_DRBG_HASH
1967	bool "Enable Hash DRBG"
1968	select CRYPTO_SHA256
1969	help
1970	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1971
1972config CRYPTO_DRBG_CTR
1973	bool "Enable CTR DRBG"
1974	select CRYPTO_AES
1975	select CRYPTO_CTR
1976	help
1977	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1978
1979config CRYPTO_DRBG
1980	tristate
1981	default CRYPTO_DRBG_MENU
1982	select CRYPTO_RNG
1983	select CRYPTO_JITTERENTROPY
1984
1985endif	# if CRYPTO_DRBG_MENU
1986
1987config CRYPTO_JITTERENTROPY
1988	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1989	select CRYPTO_RNG
1990	help
1991	  The Jitterentropy RNG is a noise that is intended
1992	  to provide seed to another RNG. The RNG does not
1993	  perform any cryptographic whitening of the generated
1994	  random numbers. This Jitterentropy RNG registers with
1995	  the kernel crypto API and can be used by any caller.
1996
1997config CRYPTO_KDF800108_CTR
1998	tristate
1999	select CRYPTO_HMAC
2000	select CRYPTO_SHA256
2001
2002config CRYPTO_USER_API
2003	tristate
2004
2005config CRYPTO_USER_API_HASH
2006	tristate "User-space interface for hash algorithms"
2007	depends on NET
2008	select CRYPTO_HASH
2009	select CRYPTO_USER_API
2010	help
2011	  This option enables the user-spaces interface for hash
2012	  algorithms.
2013
2014config CRYPTO_USER_API_SKCIPHER
2015	tristate "User-space interface for symmetric key cipher algorithms"
2016	depends on NET
2017	select CRYPTO_SKCIPHER
2018	select CRYPTO_USER_API
2019	help
2020	  This option enables the user-spaces interface for symmetric
2021	  key cipher algorithms.
2022
2023config CRYPTO_USER_API_RNG
2024	tristate "User-space interface for random number generator algorithms"
2025	depends on NET
2026	select CRYPTO_RNG
2027	select CRYPTO_USER_API
2028	help
2029	  This option enables the user-spaces interface for random
2030	  number generator algorithms.
2031
2032config CRYPTO_USER_API_RNG_CAVP
2033	bool "Enable CAVP testing of DRBG"
2034	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
2035	help
2036	  This option enables extra API for CAVP testing via the user-space
2037	  interface: resetting of DRBG entropy, and providing Additional Data.
2038	  This should only be enabled for CAVP testing. You should say
2039	  no unless you know what this is.
2040
2041config CRYPTO_USER_API_AEAD
2042	tristate "User-space interface for AEAD cipher algorithms"
2043	depends on NET
2044	select CRYPTO_AEAD
2045	select CRYPTO_SKCIPHER
2046	select CRYPTO_NULL
2047	select CRYPTO_USER_API
2048	help
2049	  This option enables the user-spaces interface for AEAD
2050	  cipher algorithms.
2051
2052config CRYPTO_USER_API_ENABLE_OBSOLETE
2053	bool "Enable obsolete cryptographic algorithms for userspace"
2054	depends on CRYPTO_USER_API
2055	default y
2056	help
2057	  Allow obsolete cryptographic algorithms to be selected that have
2058	  already been phased out from internal use by the kernel, and are
2059	  only useful for userspace clients that still rely on them.
2060
2061config CRYPTO_STATS
2062	bool "Crypto usage statistics for User-space"
2063	depends on CRYPTO_USER
2064	help
2065	  This option enables the gathering of crypto stats.
2066	  This will collect:
2067	  - encrypt/decrypt size and numbers of symmeric operations
2068	  - compress/decompress size and numbers of compress operations
2069	  - size and numbers of hash operations
2070	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
2071	  - generate/seed numbers for rng operations
2072
2073config CRYPTO_HASH_INFO
2074	bool
2075
2076if MIPS
2077source "arch/mips/crypto/Kconfig"
2078endif
2079
2080source "drivers/crypto/Kconfig"
2081source "crypto/asymmetric_keys/Kconfig"
2082source "certs/Kconfig"
2083
2084endif	# if CRYPTO
2085