1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS 19 help 20 This option provides the core Cryptographic API. 21 22if CRYPTO 23 24comment "Crypto core or helper" 25 26config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 30 help 31 This option enables the fips boot option which is 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no unless you know what 34 this is. 35 36config CRYPTO_FIPS_NAME 37 string "FIPS Module Name" 38 default "Linux Kernel Cryptographic API" 39 depends on CRYPTO_FIPS 40 help 41 This option sets the FIPS Module name reported by the Crypto API via 42 the /proc/sys/crypto/fips_name file. 43 44config CRYPTO_FIPS_CUSTOM_VERSION 45 bool "Use Custom FIPS Module Version" 46 depends on CRYPTO_FIPS 47 default n 48 49config CRYPTO_FIPS_VERSION 50 string "FIPS Module Version" 51 default "(none)" 52 depends on CRYPTO_FIPS_CUSTOM_VERSION 53 help 54 This option provides the ability to override the FIPS Module Version. 55 By default the KERNELRELEASE value is used. 56 57config CRYPTO_ALGAPI 58 tristate 59 select CRYPTO_ALGAPI2 60 help 61 This option provides the API for cryptographic algorithms. 62 63config CRYPTO_ALGAPI2 64 tristate 65 66config CRYPTO_AEAD 67 tristate 68 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_AEAD2 72 tristate 73 select CRYPTO_ALGAPI2 74 select CRYPTO_NULL2 75 select CRYPTO_RNG2 76 77config CRYPTO_SKCIPHER 78 tristate 79 select CRYPTO_SKCIPHER2 80 select CRYPTO_ALGAPI 81 82config CRYPTO_SKCIPHER2 83 tristate 84 select CRYPTO_ALGAPI2 85 select CRYPTO_RNG2 86 87config CRYPTO_HASH 88 tristate 89 select CRYPTO_HASH2 90 select CRYPTO_ALGAPI 91 92config CRYPTO_HASH2 93 tristate 94 select CRYPTO_ALGAPI2 95 96config CRYPTO_RNG 97 tristate 98 select CRYPTO_RNG2 99 select CRYPTO_ALGAPI 100 101config CRYPTO_RNG2 102 tristate 103 select CRYPTO_ALGAPI2 104 105config CRYPTO_RNG_DEFAULT 106 tristate 107 select CRYPTO_DRBG_MENU 108 109config CRYPTO_AKCIPHER2 110 tristate 111 select CRYPTO_ALGAPI2 112 113config CRYPTO_AKCIPHER 114 tristate 115 select CRYPTO_AKCIPHER2 116 select CRYPTO_ALGAPI 117 118config CRYPTO_KPP2 119 tristate 120 select CRYPTO_ALGAPI2 121 122config CRYPTO_KPP 123 tristate 124 select CRYPTO_ALGAPI 125 select CRYPTO_KPP2 126 127config CRYPTO_ACOMP2 128 tristate 129 select CRYPTO_ALGAPI2 130 select SGL_ALLOC 131 132config CRYPTO_ACOMP 133 tristate 134 select CRYPTO_ALGAPI 135 select CRYPTO_ACOMP2 136 137config CRYPTO_MANAGER 138 tristate "Cryptographic algorithm manager" 139 select CRYPTO_MANAGER2 140 help 141 Create default cryptographic template instantiations such as 142 cbc(aes). 143 144config CRYPTO_MANAGER2 145 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 146 select CRYPTO_AEAD2 147 select CRYPTO_HASH2 148 select CRYPTO_SKCIPHER2 149 select CRYPTO_AKCIPHER2 150 select CRYPTO_KPP2 151 select CRYPTO_ACOMP2 152 153config CRYPTO_USER 154 tristate "Userspace cryptographic algorithm configuration" 155 depends on NET 156 select CRYPTO_MANAGER 157 help 158 Userspace configuration for cryptographic instantiations such as 159 cbc(aes). 160 161config CRYPTO_MANAGER_DISABLE_TESTS 162 bool "Disable run-time self tests" 163 default y 164 help 165 Disable run-time self tests that normally take place at 166 algorithm registration. 167 168config CRYPTO_MANAGER_EXTRA_TESTS 169 bool "Enable extra run-time crypto self tests" 170 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 171 help 172 Enable extra run-time self tests of registered crypto algorithms, 173 including randomized fuzz tests. 174 175 This is intended for developer use only, as these tests take much 176 longer to run than the normal self tests. 177 178config CRYPTO_GF128MUL 179 tristate 180 181config CRYPTO_NULL 182 tristate "Null algorithms" 183 select CRYPTO_NULL2 184 help 185 These are 'Null' algorithms, used by IPsec, which do nothing. 186 187config CRYPTO_NULL2 188 tristate 189 select CRYPTO_ALGAPI2 190 select CRYPTO_SKCIPHER2 191 select CRYPTO_HASH2 192 193config CRYPTO_PCRYPT 194 tristate "Parallel crypto engine" 195 depends on SMP 196 select PADATA 197 select CRYPTO_MANAGER 198 select CRYPTO_AEAD 199 help 200 This converts an arbitrary crypto algorithm into a parallel 201 algorithm that executes in kernel threads. 202 203config CRYPTO_CRYPTD 204 tristate "Software async crypto daemon" 205 select CRYPTO_SKCIPHER 206 select CRYPTO_HASH 207 select CRYPTO_MANAGER 208 help 209 This is a generic software asynchronous crypto daemon that 210 converts an arbitrary synchronous software crypto algorithm 211 into an asynchronous algorithm that executes in a kernel thread. 212 213config CRYPTO_AUTHENC 214 tristate "Authenc support" 215 select CRYPTO_AEAD 216 select CRYPTO_SKCIPHER 217 select CRYPTO_MANAGER 218 select CRYPTO_HASH 219 select CRYPTO_NULL 220 help 221 Authenc: Combined mode wrapper for IPsec. 222 This is required for IPSec. 223 224config CRYPTO_TEST 225 tristate "Testing module" 226 depends on m || EXPERT 227 select CRYPTO_MANAGER 228 help 229 Quick & dirty crypto test module. 230 231config CRYPTO_SIMD 232 tristate 233 select CRYPTO_CRYPTD 234 235config CRYPTO_ENGINE 236 tristate 237 238comment "Public-key cryptography" 239 240config CRYPTO_RSA 241 tristate "RSA algorithm" 242 select CRYPTO_AKCIPHER 243 select CRYPTO_MANAGER 244 select MPILIB 245 select ASN1 246 help 247 Generic implementation of the RSA public key algorithm. 248 249config CRYPTO_DH 250 tristate "Diffie-Hellman algorithm" 251 select CRYPTO_KPP 252 select MPILIB 253 help 254 Generic implementation of the Diffie-Hellman algorithm. 255 256config CRYPTO_DH_RFC7919_GROUPS 257 bool "Support for RFC 7919 FFDHE group parameters" 258 depends on CRYPTO_DH 259 select CRYPTO_RNG_DEFAULT 260 help 261 Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 262 263config CRYPTO_ECC 264 tristate 265 select CRYPTO_RNG_DEFAULT 266 267config CRYPTO_ECDH 268 tristate "ECDH algorithm" 269 select CRYPTO_ECC 270 select CRYPTO_KPP 271 help 272 Generic implementation of the ECDH algorithm 273 274config CRYPTO_ECDSA 275 tristate "ECDSA (NIST P192, P256 etc.) algorithm" 276 select CRYPTO_ECC 277 select CRYPTO_AKCIPHER 278 select ASN1 279 help 280 Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 281 is A NIST cryptographic standard algorithm. Only signature verification 282 is implemented. 283 284config CRYPTO_ECRDSA 285 tristate "EC-RDSA (GOST 34.10) algorithm" 286 select CRYPTO_ECC 287 select CRYPTO_AKCIPHER 288 select CRYPTO_STREEBOG 289 select OID_REGISTRY 290 select ASN1 291 help 292 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 293 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 294 standard algorithms (called GOST algorithms). Only signature verification 295 is implemented. 296 297config CRYPTO_SM2 298 tristate "SM2 algorithm" 299 select CRYPTO_SM3 300 select CRYPTO_AKCIPHER 301 select CRYPTO_MANAGER 302 select MPILIB 303 select ASN1 304 help 305 Generic implementation of the SM2 public key algorithm. It was 306 published by State Encryption Management Bureau, China. 307 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 308 309 References: 310 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 311 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 312 http://www.gmbz.org.cn/main/bzlb.html 313 314config CRYPTO_CURVE25519 315 tristate "Curve25519 algorithm" 316 select CRYPTO_KPP 317 select CRYPTO_LIB_CURVE25519_GENERIC 318 319config CRYPTO_CURVE25519_X86 320 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 321 depends on X86 && 64BIT 322 select CRYPTO_LIB_CURVE25519_GENERIC 323 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 324 325comment "Authenticated Encryption with Associated Data" 326 327config CRYPTO_CCM 328 tristate "CCM support" 329 select CRYPTO_CTR 330 select CRYPTO_HASH 331 select CRYPTO_AEAD 332 select CRYPTO_MANAGER 333 help 334 Support for Counter with CBC MAC. Required for IPsec. 335 336config CRYPTO_GCM 337 tristate "GCM/GMAC support" 338 select CRYPTO_CTR 339 select CRYPTO_AEAD 340 select CRYPTO_GHASH 341 select CRYPTO_NULL 342 select CRYPTO_MANAGER 343 help 344 Support for Galois/Counter Mode (GCM) and Galois Message 345 Authentication Code (GMAC). Required for IPSec. 346 347config CRYPTO_CHACHA20POLY1305 348 tristate "ChaCha20-Poly1305 AEAD support" 349 select CRYPTO_CHACHA20 350 select CRYPTO_POLY1305 351 select CRYPTO_AEAD 352 select CRYPTO_MANAGER 353 help 354 ChaCha20-Poly1305 AEAD support, RFC7539. 355 356 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 357 with the Poly1305 authenticator. It is defined in RFC7539 for use in 358 IETF protocols. 359 360config CRYPTO_AEGIS128 361 tristate "AEGIS-128 AEAD algorithm" 362 select CRYPTO_AEAD 363 select CRYPTO_AES # for AES S-box tables 364 help 365 Support for the AEGIS-128 dedicated AEAD algorithm. 366 367config CRYPTO_AEGIS128_SIMD 368 bool "Support SIMD acceleration for AEGIS-128" 369 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 370 default y 371 372config CRYPTO_AEGIS128_AESNI_SSE2 373 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 374 depends on X86 && 64BIT 375 select CRYPTO_AEAD 376 select CRYPTO_SIMD 377 help 378 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 379 380config CRYPTO_SEQIV 381 tristate "Sequence Number IV Generator" 382 select CRYPTO_AEAD 383 select CRYPTO_SKCIPHER 384 select CRYPTO_NULL 385 select CRYPTO_RNG_DEFAULT 386 select CRYPTO_MANAGER 387 help 388 This IV generator generates an IV based on a sequence number by 389 xoring it with a salt. This algorithm is mainly useful for CTR 390 391config CRYPTO_ECHAINIV 392 tristate "Encrypted Chain IV Generator" 393 select CRYPTO_AEAD 394 select CRYPTO_NULL 395 select CRYPTO_RNG_DEFAULT 396 select CRYPTO_MANAGER 397 help 398 This IV generator generates an IV based on the encryption of 399 a sequence number xored with a salt. This is the default 400 algorithm for CBC. 401 402comment "Block modes" 403 404config CRYPTO_CBC 405 tristate "CBC support" 406 select CRYPTO_SKCIPHER 407 select CRYPTO_MANAGER 408 help 409 CBC: Cipher Block Chaining mode 410 This block cipher algorithm is required for IPSec. 411 412config CRYPTO_CFB 413 tristate "CFB support" 414 select CRYPTO_SKCIPHER 415 select CRYPTO_MANAGER 416 help 417 CFB: Cipher FeedBack mode 418 This block cipher algorithm is required for TPM2 Cryptography. 419 420config CRYPTO_CTR 421 tristate "CTR support" 422 select CRYPTO_SKCIPHER 423 select CRYPTO_MANAGER 424 help 425 CTR: Counter mode 426 This block cipher algorithm is required for IPSec. 427 428config CRYPTO_CTS 429 tristate "CTS support" 430 select CRYPTO_SKCIPHER 431 select CRYPTO_MANAGER 432 help 433 CTS: Cipher Text Stealing 434 This is the Cipher Text Stealing mode as described by 435 Section 8 of rfc2040 and referenced by rfc3962 436 (rfc3962 includes errata information in its Appendix A) or 437 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 438 This mode is required for Kerberos gss mechanism support 439 for AES encryption. 440 441 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 442 443config CRYPTO_ECB 444 tristate "ECB support" 445 select CRYPTO_SKCIPHER 446 select CRYPTO_MANAGER 447 help 448 ECB: Electronic CodeBook mode 449 This is the simplest block cipher algorithm. It simply encrypts 450 the input block by block. 451 452config CRYPTO_LRW 453 tristate "LRW support" 454 select CRYPTO_SKCIPHER 455 select CRYPTO_MANAGER 456 select CRYPTO_GF128MUL 457 select CRYPTO_ECB 458 help 459 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 460 narrow block cipher mode for dm-crypt. Use it with cipher 461 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 462 The first 128, 192 or 256 bits in the key are used for AES and the 463 rest is used to tie each cipher block to its logical position. 464 465config CRYPTO_OFB 466 tristate "OFB support" 467 select CRYPTO_SKCIPHER 468 select CRYPTO_MANAGER 469 help 470 OFB: the Output Feedback mode makes a block cipher into a synchronous 471 stream cipher. It generates keystream blocks, which are then XORed 472 with the plaintext blocks to get the ciphertext. Flipping a bit in the 473 ciphertext produces a flipped bit in the plaintext at the same 474 location. This property allows many error correcting codes to function 475 normally even when applied before encryption. 476 477config CRYPTO_PCBC 478 tristate "PCBC support" 479 select CRYPTO_SKCIPHER 480 select CRYPTO_MANAGER 481 help 482 PCBC: Propagating Cipher Block Chaining mode 483 This block cipher algorithm is required for RxRPC. 484 485config CRYPTO_XCTR 486 tristate 487 select CRYPTO_SKCIPHER 488 select CRYPTO_MANAGER 489 help 490 XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode 491 using XORs and little-endian addition rather than big-endian arithmetic. 492 XCTR mode is used to implement HCTR2. 493 494config CRYPTO_XTS 495 tristate "XTS support" 496 select CRYPTO_SKCIPHER 497 select CRYPTO_MANAGER 498 select CRYPTO_ECB 499 help 500 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 501 key size 256, 384 or 512 bits. This implementation currently 502 can't handle a sectorsize which is not a multiple of 16 bytes. 503 504config CRYPTO_KEYWRAP 505 tristate "Key wrapping support" 506 select CRYPTO_SKCIPHER 507 select CRYPTO_MANAGER 508 help 509 Support for key wrapping (NIST SP800-38F / RFC3394) without 510 padding. 511 512config CRYPTO_NHPOLY1305 513 tristate 514 select CRYPTO_HASH 515 select CRYPTO_LIB_POLY1305_GENERIC 516 517config CRYPTO_NHPOLY1305_SSE2 518 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 519 depends on X86 && 64BIT 520 select CRYPTO_NHPOLY1305 521 help 522 SSE2 optimized implementation of the hash function used by the 523 Adiantum encryption mode. 524 525config CRYPTO_NHPOLY1305_AVX2 526 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 527 depends on X86 && 64BIT 528 select CRYPTO_NHPOLY1305 529 help 530 AVX2 optimized implementation of the hash function used by the 531 Adiantum encryption mode. 532 533config CRYPTO_ADIANTUM 534 tristate "Adiantum support" 535 select CRYPTO_CHACHA20 536 select CRYPTO_LIB_POLY1305_GENERIC 537 select CRYPTO_NHPOLY1305 538 select CRYPTO_MANAGER 539 help 540 Adiantum is a tweakable, length-preserving encryption mode 541 designed for fast and secure disk encryption, especially on 542 CPUs without dedicated crypto instructions. It encrypts 543 each sector using the XChaCha12 stream cipher, two passes of 544 an ε-almost-∆-universal hash function, and an invocation of 545 the AES-256 block cipher on a single 16-byte block. On CPUs 546 without AES instructions, Adiantum is much faster than 547 AES-XTS. 548 549 Adiantum's security is provably reducible to that of its 550 underlying stream and block ciphers, subject to a security 551 bound. Unlike XTS, Adiantum is a true wide-block encryption 552 mode, so it actually provides an even stronger notion of 553 security than XTS, subject to the security bound. 554 555 If unsure, say N. 556 557config CRYPTO_HCTR2 558 tristate "HCTR2 support" 559 select CRYPTO_XCTR 560 select CRYPTO_POLYVAL 561 select CRYPTO_MANAGER 562 help 563 HCTR2 is a length-preserving encryption mode for storage encryption that 564 is efficient on processors with instructions to accelerate AES and 565 carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and 566 ARM processors with the ARMv8 crypto extensions. 567 568config CRYPTO_ESSIV 569 tristate "ESSIV support for block encryption" 570 select CRYPTO_AUTHENC 571 help 572 Encrypted salt-sector initialization vector (ESSIV) is an IV 573 generation method that is used in some cases by fscrypt and/or 574 dm-crypt. It uses the hash of the block encryption key as the 575 symmetric key for a block encryption pass applied to the input 576 IV, making low entropy IV sources more suitable for block 577 encryption. 578 579 This driver implements a crypto API template that can be 580 instantiated either as an skcipher or as an AEAD (depending on the 581 type of the first template argument), and which defers encryption 582 and decryption requests to the encapsulated cipher after applying 583 ESSIV to the input IV. Note that in the AEAD case, it is assumed 584 that the keys are presented in the same format used by the authenc 585 template, and that the IV appears at the end of the authenticated 586 associated data (AAD) region (which is how dm-crypt uses it.) 587 588 Note that the use of ESSIV is not recommended for new deployments, 589 and so this only needs to be enabled when interoperability with 590 existing encrypted volumes of filesystems is required, or when 591 building for a particular system that requires it (e.g., when 592 the SoC in question has accelerated CBC but not XTS, making CBC 593 combined with ESSIV the only feasible mode for h/w accelerated 594 block encryption) 595 596comment "Hash modes" 597 598config CRYPTO_CMAC 599 tristate "CMAC support" 600 select CRYPTO_HASH 601 select CRYPTO_MANAGER 602 help 603 Cipher-based Message Authentication Code (CMAC) specified by 604 The National Institute of Standards and Technology (NIST). 605 606 https://tools.ietf.org/html/rfc4493 607 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 608 609config CRYPTO_HMAC 610 tristate "HMAC support" 611 select CRYPTO_HASH 612 select CRYPTO_MANAGER 613 help 614 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 615 This is required for IPSec. 616 617config CRYPTO_XCBC 618 tristate "XCBC support" 619 select CRYPTO_HASH 620 select CRYPTO_MANAGER 621 help 622 XCBC: Keyed-Hashing with encryption algorithm 623 https://www.ietf.org/rfc/rfc3566.txt 624 http://csrc.nist.gov/encryption/modes/proposedmodes/ 625 xcbc-mac/xcbc-mac-spec.pdf 626 627config CRYPTO_VMAC 628 tristate "VMAC support" 629 select CRYPTO_HASH 630 select CRYPTO_MANAGER 631 help 632 VMAC is a message authentication algorithm designed for 633 very high speed on 64-bit architectures. 634 635 See also: 636 <https://fastcrypto.org/vmac> 637 638comment "Digest" 639 640config CRYPTO_CRC32C 641 tristate "CRC32c CRC algorithm" 642 select CRYPTO_HASH 643 select CRC32 644 help 645 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 646 by iSCSI for header and data digests and by others. 647 See Castagnoli93. Module will be crc32c. 648 649config CRYPTO_CRC32C_INTEL 650 tristate "CRC32c INTEL hardware acceleration" 651 depends on X86 652 select CRYPTO_HASH 653 help 654 In Intel processor with SSE4.2 supported, the processor will 655 support CRC32C implementation using hardware accelerated CRC32 656 instruction. This option will create 'crc32c-intel' module, 657 which will enable any routine to use the CRC32 instruction to 658 gain performance compared with software implementation. 659 Module will be crc32c-intel. 660 661config CRYPTO_CRC32C_VPMSUM 662 tristate "CRC32c CRC algorithm (powerpc64)" 663 depends on PPC64 && ALTIVEC 664 select CRYPTO_HASH 665 select CRC32 666 help 667 CRC32c algorithm implemented using vector polynomial multiply-sum 668 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 669 and newer processors for improved performance. 670 671 672config CRYPTO_CRC32C_SPARC64 673 tristate "CRC32c CRC algorithm (SPARC64)" 674 depends on SPARC64 675 select CRYPTO_HASH 676 select CRC32 677 help 678 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 679 when available. 680 681config CRYPTO_CRC32 682 tristate "CRC32 CRC algorithm" 683 select CRYPTO_HASH 684 select CRC32 685 help 686 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 687 Shash crypto api wrappers to crc32_le function. 688 689config CRYPTO_CRC32_PCLMUL 690 tristate "CRC32 PCLMULQDQ hardware acceleration" 691 depends on X86 692 select CRYPTO_HASH 693 select CRC32 694 help 695 From Intel Westmere and AMD Bulldozer processor with SSE4.2 696 and PCLMULQDQ supported, the processor will support 697 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 698 instruction. This option will create 'crc32-pclmul' module, 699 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 700 and gain better performance as compared with the table implementation. 701 702config CRYPTO_CRC32_S390 703 tristate "CRC-32 algorithms" 704 depends on S390 705 select CRYPTO_HASH 706 select CRC32 707 help 708 Select this option if you want to use hardware accelerated 709 implementations of CRC algorithms. With this option, you 710 can optimize the computation of CRC-32 (IEEE 802.3 Ethernet) 711 and CRC-32C (Castagnoli). 712 713 It is available with IBM z13 or later. 714 715config CRYPTO_XXHASH 716 tristate "xxHash hash algorithm" 717 select CRYPTO_HASH 718 select XXHASH 719 help 720 xxHash non-cryptographic hash algorithm. Extremely fast, working at 721 speeds close to RAM limits. 722 723config CRYPTO_BLAKE2B 724 tristate "BLAKE2b digest algorithm" 725 select CRYPTO_HASH 726 help 727 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 728 optimized for 64bit platforms and can produce digests of any size 729 between 1 to 64. The keyed hash is also implemented. 730 731 This module provides the following algorithms: 732 733 - blake2b-160 734 - blake2b-256 735 - blake2b-384 736 - blake2b-512 737 738 See https://blake2.net for further information. 739 740config CRYPTO_BLAKE2S_X86 741 bool "BLAKE2s digest algorithm (x86 accelerated version)" 742 depends on X86 && 64BIT 743 select CRYPTO_LIB_BLAKE2S_GENERIC 744 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 745 746config CRYPTO_CRCT10DIF 747 tristate "CRCT10DIF algorithm" 748 select CRYPTO_HASH 749 help 750 CRC T10 Data Integrity Field computation is being cast as 751 a crypto transform. This allows for faster crc t10 diff 752 transforms to be used if they are available. 753 754config CRYPTO_CRCT10DIF_PCLMUL 755 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 756 depends on X86 && 64BIT && CRC_T10DIF 757 select CRYPTO_HASH 758 help 759 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 760 CRC T10 DIF PCLMULQDQ computation can be hardware 761 accelerated PCLMULQDQ instruction. This option will create 762 'crct10dif-pclmul' module, which is faster when computing the 763 crct10dif checksum as compared with the generic table implementation. 764 765config CRYPTO_CRCT10DIF_VPMSUM 766 tristate "CRC32T10DIF powerpc64 hardware acceleration" 767 depends on PPC64 && ALTIVEC && CRC_T10DIF 768 select CRYPTO_HASH 769 help 770 CRC10T10DIF algorithm implemented using vector polynomial 771 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 772 POWER8 and newer processors for improved performance. 773 774config CRYPTO_CRC64_ROCKSOFT 775 tristate "Rocksoft Model CRC64 algorithm" 776 depends on CRC64 777 select CRYPTO_HASH 778 779config CRYPTO_VPMSUM_TESTER 780 tristate "Powerpc64 vpmsum hardware acceleration tester" 781 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 782 help 783 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 784 POWER8 vpmsum instructions. 785 Unless you are testing these algorithms, you don't need this. 786 787config CRYPTO_GHASH 788 tristate "GHASH hash function" 789 select CRYPTO_GF128MUL 790 select CRYPTO_HASH 791 help 792 GHASH is the hash function used in GCM (Galois/Counter Mode). 793 It is not a general-purpose cryptographic hash function. 794 795config CRYPTO_POLYVAL 796 tristate 797 select CRYPTO_GF128MUL 798 select CRYPTO_HASH 799 help 800 POLYVAL is the hash function used in HCTR2. It is not a general-purpose 801 cryptographic hash function. 802 803config CRYPTO_POLYVAL_CLMUL_NI 804 tristate "POLYVAL hash function (CLMUL-NI accelerated)" 805 depends on X86 && 64BIT 806 select CRYPTO_POLYVAL 807 help 808 This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is 809 used to efficiently implement HCTR2 on x86-64 processors that support 810 carry-less multiplication instructions. 811 812config CRYPTO_POLY1305 813 tristate "Poly1305 authenticator algorithm" 814 select CRYPTO_HASH 815 select CRYPTO_LIB_POLY1305_GENERIC 816 help 817 Poly1305 authenticator algorithm, RFC7539. 818 819 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 820 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 821 in IETF protocols. This is the portable C implementation of Poly1305. 822 823config CRYPTO_POLY1305_X86_64 824 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 825 depends on X86 && 64BIT 826 select CRYPTO_LIB_POLY1305_GENERIC 827 select CRYPTO_ARCH_HAVE_LIB_POLY1305 828 help 829 Poly1305 authenticator algorithm, RFC7539. 830 831 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 832 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 833 in IETF protocols. This is the x86_64 assembler implementation using SIMD 834 instructions. 835 836config CRYPTO_MD4 837 tristate "MD4 digest algorithm" 838 select CRYPTO_HASH 839 help 840 MD4 message digest algorithm (RFC1320). 841 842config CRYPTO_MD5 843 tristate "MD5 digest algorithm" 844 select CRYPTO_HASH 845 help 846 MD5 message digest algorithm (RFC1321). 847 848config CRYPTO_MD5_PPC 849 tristate "MD5 digest algorithm (PPC)" 850 depends on PPC 851 select CRYPTO_HASH 852 help 853 MD5 message digest algorithm (RFC1321) implemented 854 in PPC assembler. 855 856config CRYPTO_MD5_SPARC64 857 tristate "MD5 digest algorithm (SPARC64)" 858 depends on SPARC64 859 select CRYPTO_MD5 860 select CRYPTO_HASH 861 help 862 MD5 message digest algorithm (RFC1321) implemented 863 using sparc64 crypto instructions, when available. 864 865config CRYPTO_MICHAEL_MIC 866 tristate "Michael MIC keyed digest algorithm" 867 select CRYPTO_HASH 868 help 869 Michael MIC is used for message integrity protection in TKIP 870 (IEEE 802.11i). This algorithm is required for TKIP, but it 871 should not be used for other purposes because of the weakness 872 of the algorithm. 873 874config CRYPTO_RMD160 875 tristate "RIPEMD-160 digest algorithm" 876 select CRYPTO_HASH 877 help 878 RIPEMD-160 (ISO/IEC 10118-3:2004). 879 880 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 881 to be used as a secure replacement for the 128-bit hash functions 882 MD4, MD5 and its predecessor RIPEMD 883 (not to be confused with RIPEMD-128). 884 885 It's speed is comparable to SHA1 and there are no known attacks 886 against RIPEMD-160. 887 888 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 889 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 890 891config CRYPTO_SHA1 892 tristate "SHA1 digest algorithm" 893 select CRYPTO_HASH 894 select CRYPTO_LIB_SHA1 895 help 896 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 897 898config CRYPTO_SHA1_SSSE3 899 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 900 depends on X86 && 64BIT 901 select CRYPTO_SHA1 902 select CRYPTO_HASH 903 help 904 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 905 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 906 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 907 when available. 908 909config CRYPTO_SHA256_SSSE3 910 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 911 depends on X86 && 64BIT 912 select CRYPTO_SHA256 913 select CRYPTO_HASH 914 help 915 SHA-256 secure hash standard (DFIPS 180-2) implemented 916 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 917 Extensions version 1 (AVX1), or Advanced Vector Extensions 918 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 919 Instructions) when available. 920 921config CRYPTO_SHA512_SSSE3 922 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 923 depends on X86 && 64BIT 924 select CRYPTO_SHA512 925 select CRYPTO_HASH 926 help 927 SHA-512 secure hash standard (DFIPS 180-2) implemented 928 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 929 Extensions version 1 (AVX1), or Advanced Vector Extensions 930 version 2 (AVX2) instructions, when available. 931 932config CRYPTO_SHA512_S390 933 tristate "SHA384 and SHA512 digest algorithm" 934 depends on S390 935 select CRYPTO_HASH 936 help 937 This is the s390 hardware accelerated implementation of the 938 SHA512 secure hash standard. 939 940 It is available as of z10. 941 942config CRYPTO_SHA1_SPARC64 943 tristate "SHA1 digest algorithm (SPARC64)" 944 depends on SPARC64 945 select CRYPTO_SHA1 946 select CRYPTO_HASH 947 help 948 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 949 using sparc64 crypto instructions, when available. 950 951config CRYPTO_SHA1_PPC 952 tristate "SHA1 digest algorithm (powerpc)" 953 depends on PPC 954 help 955 This is the powerpc hardware accelerated implementation of the 956 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 957 958config CRYPTO_SHA1_PPC_SPE 959 tristate "SHA1 digest algorithm (PPC SPE)" 960 depends on PPC && SPE 961 help 962 SHA-1 secure hash standard (DFIPS 180-4) implemented 963 using powerpc SPE SIMD instruction set. 964 965config CRYPTO_SHA1_S390 966 tristate "SHA1 digest algorithm" 967 depends on S390 968 select CRYPTO_HASH 969 help 970 This is the s390 hardware accelerated implementation of the 971 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 972 973 It is available as of z990. 974 975config CRYPTO_SHA256 976 tristate "SHA224 and SHA256 digest algorithm" 977 select CRYPTO_HASH 978 select CRYPTO_LIB_SHA256 979 help 980 SHA256 secure hash standard (DFIPS 180-2). 981 982 This version of SHA implements a 256 bit hash with 128 bits of 983 security against collision attacks. 984 985 This code also includes SHA-224, a 224 bit hash with 112 bits 986 of security against collision attacks. 987 988config CRYPTO_SHA256_PPC_SPE 989 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 990 depends on PPC && SPE 991 select CRYPTO_SHA256 992 select CRYPTO_HASH 993 help 994 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 995 implemented using powerpc SPE SIMD instruction set. 996 997config CRYPTO_SHA256_SPARC64 998 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 999 depends on SPARC64 1000 select CRYPTO_SHA256 1001 select CRYPTO_HASH 1002 help 1003 SHA-256 secure hash standard (DFIPS 180-2) implemented 1004 using sparc64 crypto instructions, when available. 1005 1006config CRYPTO_SHA256_S390 1007 tristate "SHA256 digest algorithm" 1008 depends on S390 1009 select CRYPTO_HASH 1010 help 1011 This is the s390 hardware accelerated implementation of the 1012 SHA256 secure hash standard (DFIPS 180-2). 1013 1014 It is available as of z9. 1015 1016config CRYPTO_SHA512 1017 tristate "SHA384 and SHA512 digest algorithms" 1018 select CRYPTO_HASH 1019 help 1020 SHA512 secure hash standard (DFIPS 180-2). 1021 1022 This version of SHA implements a 512 bit hash with 256 bits of 1023 security against collision attacks. 1024 1025 This code also includes SHA-384, a 384 bit hash with 192 bits 1026 of security against collision attacks. 1027 1028config CRYPTO_SHA512_SPARC64 1029 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1030 depends on SPARC64 1031 select CRYPTO_SHA512 1032 select CRYPTO_HASH 1033 help 1034 SHA-512 secure hash standard (DFIPS 180-2) implemented 1035 using sparc64 crypto instructions, when available. 1036 1037config CRYPTO_SHA3 1038 tristate "SHA3 digest algorithm" 1039 select CRYPTO_HASH 1040 help 1041 SHA-3 secure hash standard (DFIPS 202). It's based on 1042 cryptographic sponge function family called Keccak. 1043 1044 References: 1045 http://keccak.noekeon.org/ 1046 1047config CRYPTO_SHA3_256_S390 1048 tristate "SHA3_224 and SHA3_256 digest algorithm" 1049 depends on S390 1050 select CRYPTO_HASH 1051 help 1052 This is the s390 hardware accelerated implementation of the 1053 SHA3_256 secure hash standard. 1054 1055 It is available as of z14. 1056 1057config CRYPTO_SHA3_512_S390 1058 tristate "SHA3_384 and SHA3_512 digest algorithm" 1059 depends on S390 1060 select CRYPTO_HASH 1061 help 1062 This is the s390 hardware accelerated implementation of the 1063 SHA3_512 secure hash standard. 1064 1065 It is available as of z14. 1066 1067config CRYPTO_SM3 1068 tristate 1069 1070config CRYPTO_SM3_GENERIC 1071 tristate "SM3 digest algorithm" 1072 select CRYPTO_HASH 1073 select CRYPTO_SM3 1074 help 1075 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1076 It is part of the Chinese Commercial Cryptography suite. 1077 1078 References: 1079 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1080 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1081 1082config CRYPTO_SM3_AVX_X86_64 1083 tristate "SM3 digest algorithm (x86_64/AVX)" 1084 depends on X86 && 64BIT 1085 select CRYPTO_HASH 1086 select CRYPTO_SM3 1087 help 1088 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1089 It is part of the Chinese Commercial Cryptography suite. This is 1090 SM3 optimized implementation using Advanced Vector Extensions (AVX) 1091 when available. 1092 1093 If unsure, say N. 1094 1095config CRYPTO_STREEBOG 1096 tristate "Streebog Hash Function" 1097 select CRYPTO_HASH 1098 help 1099 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1100 cryptographic standard algorithms (called GOST algorithms). 1101 This setting enables two hash algorithms with 256 and 512 bits output. 1102 1103 References: 1104 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1105 https://tools.ietf.org/html/rfc6986 1106 1107config CRYPTO_WP512 1108 tristate "Whirlpool digest algorithms" 1109 select CRYPTO_HASH 1110 help 1111 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1112 1113 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1114 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1115 1116 See also: 1117 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1118 1119config CRYPTO_GHASH_CLMUL_NI_INTEL 1120 tristate "GHASH hash function (CLMUL-NI accelerated)" 1121 depends on X86 && 64BIT 1122 select CRYPTO_CRYPTD 1123 help 1124 This is the x86_64 CLMUL-NI accelerated implementation of 1125 GHASH, the hash function used in GCM (Galois/Counter mode). 1126 1127config CRYPTO_GHASH_S390 1128 tristate "GHASH hash function" 1129 depends on S390 1130 select CRYPTO_HASH 1131 help 1132 This is the s390 hardware accelerated implementation of GHASH, 1133 the hash function used in GCM (Galois/Counter mode). 1134 1135 It is available as of z196. 1136 1137comment "Ciphers" 1138 1139config CRYPTO_AES 1140 tristate "AES cipher algorithms" 1141 select CRYPTO_ALGAPI 1142 select CRYPTO_LIB_AES 1143 help 1144 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1145 algorithm. 1146 1147 Rijndael appears to be consistently a very good performer in 1148 both hardware and software across a wide range of computing 1149 environments regardless of its use in feedback or non-feedback 1150 modes. Its key setup time is excellent, and its key agility is 1151 good. Rijndael's very low memory requirements make it very well 1152 suited for restricted-space environments, in which it also 1153 demonstrates excellent performance. Rijndael's operations are 1154 among the easiest to defend against power and timing attacks. 1155 1156 The AES specifies three key sizes: 128, 192 and 256 bits 1157 1158 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1159 1160config CRYPTO_AES_TI 1161 tristate "Fixed time AES cipher" 1162 select CRYPTO_ALGAPI 1163 select CRYPTO_LIB_AES 1164 help 1165 This is a generic implementation of AES that attempts to eliminate 1166 data dependent latencies as much as possible without affecting 1167 performance too much. It is intended for use by the generic CCM 1168 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1169 solely on encryption (although decryption is supported as well, but 1170 with a more dramatic performance hit) 1171 1172 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1173 8 for decryption), this implementation only uses just two S-boxes of 1174 256 bytes each, and attempts to eliminate data dependent latencies by 1175 prefetching the entire table into the cache at the start of each 1176 block. Interrupts are also disabled to avoid races where cachelines 1177 are evicted when the CPU is interrupted to do something else. 1178 1179config CRYPTO_AES_NI_INTEL 1180 tristate "AES cipher algorithms (AES-NI)" 1181 depends on X86 1182 select CRYPTO_AEAD 1183 select CRYPTO_LIB_AES 1184 select CRYPTO_ALGAPI 1185 select CRYPTO_SKCIPHER 1186 select CRYPTO_SIMD 1187 help 1188 Use Intel AES-NI instructions for AES algorithm. 1189 1190 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1191 algorithm. 1192 1193 Rijndael appears to be consistently a very good performer in 1194 both hardware and software across a wide range of computing 1195 environments regardless of its use in feedback or non-feedback 1196 modes. Its key setup time is excellent, and its key agility is 1197 good. Rijndael's very low memory requirements make it very well 1198 suited for restricted-space environments, in which it also 1199 demonstrates excellent performance. Rijndael's operations are 1200 among the easiest to defend against power and timing attacks. 1201 1202 The AES specifies three key sizes: 128, 192 and 256 bits 1203 1204 See <http://csrc.nist.gov/encryption/aes/> for more information. 1205 1206 In addition to AES cipher algorithm support, the acceleration 1207 for some popular block cipher mode is supported too, including 1208 ECB, CBC, LRW, XTS. The 64 bit version has additional 1209 acceleration for CTR and XCTR. 1210 1211config CRYPTO_AES_SPARC64 1212 tristate "AES cipher algorithms (SPARC64)" 1213 depends on SPARC64 1214 select CRYPTO_SKCIPHER 1215 help 1216 Use SPARC64 crypto opcodes for AES algorithm. 1217 1218 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1219 algorithm. 1220 1221 Rijndael appears to be consistently a very good performer in 1222 both hardware and software across a wide range of computing 1223 environments regardless of its use in feedback or non-feedback 1224 modes. Its key setup time is excellent, and its key agility is 1225 good. Rijndael's very low memory requirements make it very well 1226 suited for restricted-space environments, in which it also 1227 demonstrates excellent performance. Rijndael's operations are 1228 among the easiest to defend against power and timing attacks. 1229 1230 The AES specifies three key sizes: 128, 192 and 256 bits 1231 1232 See <http://csrc.nist.gov/encryption/aes/> for more information. 1233 1234 In addition to AES cipher algorithm support, the acceleration 1235 for some popular block cipher mode is supported too, including 1236 ECB and CBC. 1237 1238config CRYPTO_AES_PPC_SPE 1239 tristate "AES cipher algorithms (PPC SPE)" 1240 depends on PPC && SPE 1241 select CRYPTO_SKCIPHER 1242 help 1243 AES cipher algorithms (FIPS-197). Additionally the acceleration 1244 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1245 This module should only be used for low power (router) devices 1246 without hardware AES acceleration (e.g. caam crypto). It reduces the 1247 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1248 timining attacks. Nevertheless it might be not as secure as other 1249 architecture specific assembler implementations that work on 1KB 1250 tables or 256 bytes S-boxes. 1251 1252config CRYPTO_AES_S390 1253 tristate "AES cipher algorithms" 1254 depends on S390 1255 select CRYPTO_ALGAPI 1256 select CRYPTO_SKCIPHER 1257 help 1258 This is the s390 hardware accelerated implementation of the 1259 AES cipher algorithms (FIPS-197). 1260 1261 As of z9 the ECB and CBC modes are hardware accelerated 1262 for 128 bit keys. 1263 As of z10 the ECB and CBC modes are hardware accelerated 1264 for all AES key sizes. 1265 As of z196 the CTR mode is hardware accelerated for all AES 1266 key sizes and XTS mode is hardware accelerated for 256 and 1267 512 bit keys. 1268 1269config CRYPTO_ANUBIS 1270 tristate "Anubis cipher algorithm" 1271 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1272 select CRYPTO_ALGAPI 1273 help 1274 Anubis cipher algorithm. 1275 1276 Anubis is a variable key length cipher which can use keys from 1277 128 bits to 320 bits in length. It was evaluated as a entrant 1278 in the NESSIE competition. 1279 1280 See also: 1281 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1282 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1283 1284config CRYPTO_ARC4 1285 tristate "ARC4 cipher algorithm" 1286 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1287 select CRYPTO_SKCIPHER 1288 select CRYPTO_LIB_ARC4 1289 help 1290 ARC4 cipher algorithm. 1291 1292 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1293 bits in length. This algorithm is required for driver-based 1294 WEP, but it should not be for other purposes because of the 1295 weakness of the algorithm. 1296 1297config CRYPTO_BLOWFISH 1298 tristate "Blowfish cipher algorithm" 1299 select CRYPTO_ALGAPI 1300 select CRYPTO_BLOWFISH_COMMON 1301 help 1302 Blowfish cipher algorithm, by Bruce Schneier. 1303 1304 This is a variable key length cipher which can use keys from 32 1305 bits to 448 bits in length. It's fast, simple and specifically 1306 designed for use on "large microprocessors". 1307 1308 See also: 1309 <https://www.schneier.com/blowfish.html> 1310 1311config CRYPTO_BLOWFISH_COMMON 1312 tristate 1313 help 1314 Common parts of the Blowfish cipher algorithm shared by the 1315 generic c and the assembler implementations. 1316 1317 See also: 1318 <https://www.schneier.com/blowfish.html> 1319 1320config CRYPTO_BLOWFISH_X86_64 1321 tristate "Blowfish cipher algorithm (x86_64)" 1322 depends on X86 && 64BIT 1323 select CRYPTO_SKCIPHER 1324 select CRYPTO_BLOWFISH_COMMON 1325 imply CRYPTO_CTR 1326 help 1327 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1328 1329 This is a variable key length cipher which can use keys from 32 1330 bits to 448 bits in length. It's fast, simple and specifically 1331 designed for use on "large microprocessors". 1332 1333 See also: 1334 <https://www.schneier.com/blowfish.html> 1335 1336config CRYPTO_CAMELLIA 1337 tristate "Camellia cipher algorithms" 1338 select CRYPTO_ALGAPI 1339 help 1340 Camellia cipher algorithms module. 1341 1342 Camellia is a symmetric key block cipher developed jointly 1343 at NTT and Mitsubishi Electric Corporation. 1344 1345 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1346 1347 See also: 1348 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1349 1350config CRYPTO_CAMELLIA_X86_64 1351 tristate "Camellia cipher algorithm (x86_64)" 1352 depends on X86 && 64BIT 1353 select CRYPTO_SKCIPHER 1354 imply CRYPTO_CTR 1355 help 1356 Camellia cipher algorithm module (x86_64). 1357 1358 Camellia is a symmetric key block cipher developed jointly 1359 at NTT and Mitsubishi Electric Corporation. 1360 1361 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1362 1363 See also: 1364 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1365 1366config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1367 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1368 depends on X86 && 64BIT 1369 select CRYPTO_SKCIPHER 1370 select CRYPTO_CAMELLIA_X86_64 1371 select CRYPTO_SIMD 1372 imply CRYPTO_XTS 1373 help 1374 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1375 1376 Camellia is a symmetric key block cipher developed jointly 1377 at NTT and Mitsubishi Electric Corporation. 1378 1379 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1380 1381 See also: 1382 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1383 1384config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1385 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1386 depends on X86 && 64BIT 1387 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1388 help 1389 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1390 1391 Camellia is a symmetric key block cipher developed jointly 1392 at NTT and Mitsubishi Electric Corporation. 1393 1394 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1395 1396 See also: 1397 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1398 1399config CRYPTO_CAMELLIA_SPARC64 1400 tristate "Camellia cipher algorithm (SPARC64)" 1401 depends on SPARC64 1402 select CRYPTO_ALGAPI 1403 select CRYPTO_SKCIPHER 1404 help 1405 Camellia cipher algorithm module (SPARC64). 1406 1407 Camellia is a symmetric key block cipher developed jointly 1408 at NTT and Mitsubishi Electric Corporation. 1409 1410 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1411 1412 See also: 1413 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1414 1415config CRYPTO_CAST_COMMON 1416 tristate 1417 help 1418 Common parts of the CAST cipher algorithms shared by the 1419 generic c and the assembler implementations. 1420 1421config CRYPTO_CAST5 1422 tristate "CAST5 (CAST-128) cipher algorithm" 1423 select CRYPTO_ALGAPI 1424 select CRYPTO_CAST_COMMON 1425 help 1426 The CAST5 encryption algorithm (synonymous with CAST-128) is 1427 described in RFC2144. 1428 1429config CRYPTO_CAST5_AVX_X86_64 1430 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1431 depends on X86 && 64BIT 1432 select CRYPTO_SKCIPHER 1433 select CRYPTO_CAST5 1434 select CRYPTO_CAST_COMMON 1435 select CRYPTO_SIMD 1436 imply CRYPTO_CTR 1437 help 1438 The CAST5 encryption algorithm (synonymous with CAST-128) is 1439 described in RFC2144. 1440 1441 This module provides the Cast5 cipher algorithm that processes 1442 sixteen blocks parallel using the AVX instruction set. 1443 1444config CRYPTO_CAST6 1445 tristate "CAST6 (CAST-256) cipher algorithm" 1446 select CRYPTO_ALGAPI 1447 select CRYPTO_CAST_COMMON 1448 help 1449 The CAST6 encryption algorithm (synonymous with CAST-256) is 1450 described in RFC2612. 1451 1452config CRYPTO_CAST6_AVX_X86_64 1453 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1454 depends on X86 && 64BIT 1455 select CRYPTO_SKCIPHER 1456 select CRYPTO_CAST6 1457 select CRYPTO_CAST_COMMON 1458 select CRYPTO_SIMD 1459 imply CRYPTO_XTS 1460 imply CRYPTO_CTR 1461 help 1462 The CAST6 encryption algorithm (synonymous with CAST-256) is 1463 described in RFC2612. 1464 1465 This module provides the Cast6 cipher algorithm that processes 1466 eight blocks parallel using the AVX instruction set. 1467 1468config CRYPTO_DES 1469 tristate "DES and Triple DES EDE cipher algorithms" 1470 select CRYPTO_ALGAPI 1471 select CRYPTO_LIB_DES 1472 help 1473 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1474 1475config CRYPTO_DES_SPARC64 1476 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1477 depends on SPARC64 1478 select CRYPTO_ALGAPI 1479 select CRYPTO_LIB_DES 1480 select CRYPTO_SKCIPHER 1481 help 1482 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1483 optimized using SPARC64 crypto opcodes. 1484 1485config CRYPTO_DES3_EDE_X86_64 1486 tristate "Triple DES EDE cipher algorithm (x86-64)" 1487 depends on X86 && 64BIT 1488 select CRYPTO_SKCIPHER 1489 select CRYPTO_LIB_DES 1490 imply CRYPTO_CTR 1491 help 1492 Triple DES EDE (FIPS 46-3) algorithm. 1493 1494 This module provides implementation of the Triple DES EDE cipher 1495 algorithm that is optimized for x86-64 processors. Two versions of 1496 algorithm are provided; regular processing one input block and 1497 one that processes three blocks parallel. 1498 1499config CRYPTO_DES_S390 1500 tristate "DES and Triple DES cipher algorithms" 1501 depends on S390 1502 select CRYPTO_ALGAPI 1503 select CRYPTO_SKCIPHER 1504 select CRYPTO_LIB_DES 1505 help 1506 This is the s390 hardware accelerated implementation of the 1507 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1508 1509 As of z990 the ECB and CBC mode are hardware accelerated. 1510 As of z196 the CTR mode is hardware accelerated. 1511 1512config CRYPTO_FCRYPT 1513 tristate "FCrypt cipher algorithm" 1514 select CRYPTO_ALGAPI 1515 select CRYPTO_SKCIPHER 1516 help 1517 FCrypt algorithm used by RxRPC. 1518 1519config CRYPTO_KHAZAD 1520 tristate "Khazad cipher algorithm" 1521 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1522 select CRYPTO_ALGAPI 1523 help 1524 Khazad cipher algorithm. 1525 1526 Khazad was a finalist in the initial NESSIE competition. It is 1527 an algorithm optimized for 64-bit processors with good performance 1528 on 32-bit processors. Khazad uses an 128 bit key size. 1529 1530 See also: 1531 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1532 1533config CRYPTO_CHACHA20 1534 tristate "ChaCha stream cipher algorithms" 1535 select CRYPTO_LIB_CHACHA_GENERIC 1536 select CRYPTO_SKCIPHER 1537 help 1538 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1539 1540 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1541 Bernstein and further specified in RFC7539 for use in IETF protocols. 1542 This is the portable C implementation of ChaCha20. See also: 1543 <https://cr.yp.to/chacha/chacha-20080128.pdf> 1544 1545 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1546 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1547 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1548 while provably retaining ChaCha20's security. See also: 1549 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1550 1551 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1552 reduced security margin but increased performance. It can be needed 1553 in some performance-sensitive scenarios. 1554 1555config CRYPTO_CHACHA20_X86_64 1556 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1557 depends on X86 && 64BIT 1558 select CRYPTO_SKCIPHER 1559 select CRYPTO_LIB_CHACHA_GENERIC 1560 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1561 help 1562 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1563 XChaCha20, and XChaCha12 stream ciphers. 1564 1565config CRYPTO_CHACHA_S390 1566 tristate "ChaCha20 stream cipher" 1567 depends on S390 1568 select CRYPTO_SKCIPHER 1569 select CRYPTO_LIB_CHACHA_GENERIC 1570 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1571 help 1572 This is the s390 SIMD implementation of the ChaCha20 stream 1573 cipher (RFC 7539). 1574 1575 It is available as of z13. 1576 1577config CRYPTO_SEED 1578 tristate "SEED cipher algorithm" 1579 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1580 select CRYPTO_ALGAPI 1581 help 1582 SEED cipher algorithm (RFC4269). 1583 1584 SEED is a 128-bit symmetric key block cipher that has been 1585 developed by KISA (Korea Information Security Agency) as a 1586 national standard encryption algorithm of the Republic of Korea. 1587 It is a 16 round block cipher with the key size of 128 bit. 1588 1589 See also: 1590 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1591 1592config CRYPTO_ARIA 1593 tristate "ARIA cipher algorithm" 1594 select CRYPTO_ALGAPI 1595 help 1596 ARIA cipher algorithm (RFC5794). 1597 1598 ARIA is a standard encryption algorithm of the Republic of Korea. 1599 The ARIA specifies three key sizes and rounds. 1600 128-bit: 12 rounds. 1601 192-bit: 14 rounds. 1602 256-bit: 16 rounds. 1603 1604 See also: 1605 <https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do> 1606 1607config CRYPTO_SERPENT 1608 tristate "Serpent cipher algorithm" 1609 select CRYPTO_ALGAPI 1610 help 1611 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1612 1613 Keys are allowed to be from 0 to 256 bits in length, in steps 1614 of 8 bits. 1615 1616 See also: 1617 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1618 1619config CRYPTO_SERPENT_SSE2_X86_64 1620 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1621 depends on X86 && 64BIT 1622 select CRYPTO_SKCIPHER 1623 select CRYPTO_SERPENT 1624 select CRYPTO_SIMD 1625 imply CRYPTO_CTR 1626 help 1627 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1628 1629 Keys are allowed to be from 0 to 256 bits in length, in steps 1630 of 8 bits. 1631 1632 This module provides Serpent cipher algorithm that processes eight 1633 blocks parallel using SSE2 instruction set. 1634 1635 See also: 1636 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1637 1638config CRYPTO_SERPENT_SSE2_586 1639 tristate "Serpent cipher algorithm (i586/SSE2)" 1640 depends on X86 && !64BIT 1641 select CRYPTO_SKCIPHER 1642 select CRYPTO_SERPENT 1643 select CRYPTO_SIMD 1644 imply CRYPTO_CTR 1645 help 1646 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1647 1648 Keys are allowed to be from 0 to 256 bits in length, in steps 1649 of 8 bits. 1650 1651 This module provides Serpent cipher algorithm that processes four 1652 blocks parallel using SSE2 instruction set. 1653 1654 See also: 1655 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1656 1657config CRYPTO_SERPENT_AVX_X86_64 1658 tristate "Serpent cipher algorithm (x86_64/AVX)" 1659 depends on X86 && 64BIT 1660 select CRYPTO_SKCIPHER 1661 select CRYPTO_SERPENT 1662 select CRYPTO_SIMD 1663 imply CRYPTO_XTS 1664 imply CRYPTO_CTR 1665 help 1666 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1667 1668 Keys are allowed to be from 0 to 256 bits in length, in steps 1669 of 8 bits. 1670 1671 This module provides the Serpent cipher algorithm that processes 1672 eight blocks parallel using the AVX instruction set. 1673 1674 See also: 1675 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1676 1677config CRYPTO_SERPENT_AVX2_X86_64 1678 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1679 depends on X86 && 64BIT 1680 select CRYPTO_SERPENT_AVX_X86_64 1681 help 1682 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1683 1684 Keys are allowed to be from 0 to 256 bits in length, in steps 1685 of 8 bits. 1686 1687 This module provides Serpent cipher algorithm that processes 16 1688 blocks parallel using AVX2 instruction set. 1689 1690 See also: 1691 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1692 1693config CRYPTO_SM4 1694 tristate 1695 1696config CRYPTO_SM4_GENERIC 1697 tristate "SM4 cipher algorithm" 1698 select CRYPTO_ALGAPI 1699 select CRYPTO_SM4 1700 help 1701 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1702 1703 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1704 Organization of State Commercial Administration of China (OSCCA) 1705 as an authorized cryptographic algorithms for the use within China. 1706 1707 SMS4 was originally created for use in protecting wireless 1708 networks, and is mandated in the Chinese National Standard for 1709 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1710 (GB.15629.11-2003). 1711 1712 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1713 standardized through TC 260 of the Standardization Administration 1714 of the People's Republic of China (SAC). 1715 1716 The input, output, and key of SMS4 are each 128 bits. 1717 1718 See also: <https://eprint.iacr.org/2008/329.pdf> 1719 1720 If unsure, say N. 1721 1722config CRYPTO_SM4_AESNI_AVX_X86_64 1723 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1724 depends on X86 && 64BIT 1725 select CRYPTO_SKCIPHER 1726 select CRYPTO_SIMD 1727 select CRYPTO_ALGAPI 1728 select CRYPTO_SM4 1729 help 1730 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1731 1732 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1733 Organization of State Commercial Administration of China (OSCCA) 1734 as an authorized cryptographic algorithms for the use within China. 1735 1736 This is SM4 optimized implementation using AES-NI/AVX/x86_64 1737 instruction set for block cipher. Through two affine transforms, 1738 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1739 effect of instruction acceleration. 1740 1741 If unsure, say N. 1742 1743config CRYPTO_SM4_AESNI_AVX2_X86_64 1744 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 1745 depends on X86 && 64BIT 1746 select CRYPTO_SKCIPHER 1747 select CRYPTO_SIMD 1748 select CRYPTO_ALGAPI 1749 select CRYPTO_SM4 1750 select CRYPTO_SM4_AESNI_AVX_X86_64 1751 help 1752 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 1753 1754 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1755 Organization of State Commercial Administration of China (OSCCA) 1756 as an authorized cryptographic algorithms for the use within China. 1757 1758 This is SM4 optimized implementation using AES-NI/AVX2/x86_64 1759 instruction set for block cipher. Through two affine transforms, 1760 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1761 effect of instruction acceleration. 1762 1763 If unsure, say N. 1764 1765config CRYPTO_TEA 1766 tristate "TEA, XTEA and XETA cipher algorithms" 1767 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1768 select CRYPTO_ALGAPI 1769 help 1770 TEA cipher algorithm. 1771 1772 Tiny Encryption Algorithm is a simple cipher that uses 1773 many rounds for security. It is very fast and uses 1774 little memory. 1775 1776 Xtendend Tiny Encryption Algorithm is a modification to 1777 the TEA algorithm to address a potential key weakness 1778 in the TEA algorithm. 1779 1780 Xtendend Encryption Tiny Algorithm is a mis-implementation 1781 of the XTEA algorithm for compatibility purposes. 1782 1783config CRYPTO_TWOFISH 1784 tristate "Twofish cipher algorithm" 1785 select CRYPTO_ALGAPI 1786 select CRYPTO_TWOFISH_COMMON 1787 help 1788 Twofish cipher algorithm. 1789 1790 Twofish was submitted as an AES (Advanced Encryption Standard) 1791 candidate cipher by researchers at CounterPane Systems. It is a 1792 16 round block cipher supporting key sizes of 128, 192, and 256 1793 bits. 1794 1795 See also: 1796 <https://www.schneier.com/twofish.html> 1797 1798config CRYPTO_TWOFISH_COMMON 1799 tristate 1800 help 1801 Common parts of the Twofish cipher algorithm shared by the 1802 generic c and the assembler implementations. 1803 1804config CRYPTO_TWOFISH_586 1805 tristate "Twofish cipher algorithms (i586)" 1806 depends on (X86 || UML_X86) && !64BIT 1807 select CRYPTO_ALGAPI 1808 select CRYPTO_TWOFISH_COMMON 1809 imply CRYPTO_CTR 1810 help 1811 Twofish cipher algorithm. 1812 1813 Twofish was submitted as an AES (Advanced Encryption Standard) 1814 candidate cipher by researchers at CounterPane Systems. It is a 1815 16 round block cipher supporting key sizes of 128, 192, and 256 1816 bits. 1817 1818 See also: 1819 <https://www.schneier.com/twofish.html> 1820 1821config CRYPTO_TWOFISH_X86_64 1822 tristate "Twofish cipher algorithm (x86_64)" 1823 depends on (X86 || UML_X86) && 64BIT 1824 select CRYPTO_ALGAPI 1825 select CRYPTO_TWOFISH_COMMON 1826 imply CRYPTO_CTR 1827 help 1828 Twofish cipher algorithm (x86_64). 1829 1830 Twofish was submitted as an AES (Advanced Encryption Standard) 1831 candidate cipher by researchers at CounterPane Systems. It is a 1832 16 round block cipher supporting key sizes of 128, 192, and 256 1833 bits. 1834 1835 See also: 1836 <https://www.schneier.com/twofish.html> 1837 1838config CRYPTO_TWOFISH_X86_64_3WAY 1839 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1840 depends on X86 && 64BIT 1841 select CRYPTO_SKCIPHER 1842 select CRYPTO_TWOFISH_COMMON 1843 select CRYPTO_TWOFISH_X86_64 1844 help 1845 Twofish cipher algorithm (x86_64, 3-way parallel). 1846 1847 Twofish was submitted as an AES (Advanced Encryption Standard) 1848 candidate cipher by researchers at CounterPane Systems. It is a 1849 16 round block cipher supporting key sizes of 128, 192, and 256 1850 bits. 1851 1852 This module provides Twofish cipher algorithm that processes three 1853 blocks parallel, utilizing resources of out-of-order CPUs better. 1854 1855 See also: 1856 <https://www.schneier.com/twofish.html> 1857 1858config CRYPTO_TWOFISH_AVX_X86_64 1859 tristate "Twofish cipher algorithm (x86_64/AVX)" 1860 depends on X86 && 64BIT 1861 select CRYPTO_SKCIPHER 1862 select CRYPTO_SIMD 1863 select CRYPTO_TWOFISH_COMMON 1864 select CRYPTO_TWOFISH_X86_64 1865 select CRYPTO_TWOFISH_X86_64_3WAY 1866 imply CRYPTO_XTS 1867 help 1868 Twofish cipher algorithm (x86_64/AVX). 1869 1870 Twofish was submitted as an AES (Advanced Encryption Standard) 1871 candidate cipher by researchers at CounterPane Systems. It is a 1872 16 round block cipher supporting key sizes of 128, 192, and 256 1873 bits. 1874 1875 This module provides the Twofish cipher algorithm that processes 1876 eight blocks parallel using the AVX Instruction Set. 1877 1878 See also: 1879 <https://www.schneier.com/twofish.html> 1880 1881comment "Compression" 1882 1883config CRYPTO_DEFLATE 1884 tristate "Deflate compression algorithm" 1885 select CRYPTO_ALGAPI 1886 select CRYPTO_ACOMP2 1887 select ZLIB_INFLATE 1888 select ZLIB_DEFLATE 1889 help 1890 This is the Deflate algorithm (RFC1951), specified for use in 1891 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1892 1893 You will most probably want this if using IPSec. 1894 1895config CRYPTO_LZO 1896 tristate "LZO compression algorithm" 1897 select CRYPTO_ALGAPI 1898 select CRYPTO_ACOMP2 1899 select LZO_COMPRESS 1900 select LZO_DECOMPRESS 1901 help 1902 This is the LZO algorithm. 1903 1904config CRYPTO_842 1905 tristate "842 compression algorithm" 1906 select CRYPTO_ALGAPI 1907 select CRYPTO_ACOMP2 1908 select 842_COMPRESS 1909 select 842_DECOMPRESS 1910 help 1911 This is the 842 algorithm. 1912 1913config CRYPTO_LZ4 1914 tristate "LZ4 compression algorithm" 1915 select CRYPTO_ALGAPI 1916 select CRYPTO_ACOMP2 1917 select LZ4_COMPRESS 1918 select LZ4_DECOMPRESS 1919 help 1920 This is the LZ4 algorithm. 1921 1922config CRYPTO_LZ4HC 1923 tristate "LZ4HC compression algorithm" 1924 select CRYPTO_ALGAPI 1925 select CRYPTO_ACOMP2 1926 select LZ4HC_COMPRESS 1927 select LZ4_DECOMPRESS 1928 help 1929 This is the LZ4 high compression mode algorithm. 1930 1931config CRYPTO_ZSTD 1932 tristate "Zstd compression algorithm" 1933 select CRYPTO_ALGAPI 1934 select CRYPTO_ACOMP2 1935 select ZSTD_COMPRESS 1936 select ZSTD_DECOMPRESS 1937 help 1938 This is the zstd algorithm. 1939 1940comment "Random Number Generation" 1941 1942config CRYPTO_ANSI_CPRNG 1943 tristate "Pseudo Random Number Generation for Cryptographic modules" 1944 select CRYPTO_AES 1945 select CRYPTO_RNG 1946 help 1947 This option enables the generic pseudo random number generator 1948 for cryptographic modules. Uses the Algorithm specified in 1949 ANSI X9.31 A.2.4. Note that this option must be enabled if 1950 CRYPTO_FIPS is selected 1951 1952menuconfig CRYPTO_DRBG_MENU 1953 tristate "NIST SP800-90A DRBG" 1954 help 1955 NIST SP800-90A compliant DRBG. In the following submenu, one or 1956 more of the DRBG types must be selected. 1957 1958if CRYPTO_DRBG_MENU 1959 1960config CRYPTO_DRBG_HMAC 1961 bool 1962 default y 1963 select CRYPTO_HMAC 1964 select CRYPTO_SHA512 1965 1966config CRYPTO_DRBG_HASH 1967 bool "Enable Hash DRBG" 1968 select CRYPTO_SHA256 1969 help 1970 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1971 1972config CRYPTO_DRBG_CTR 1973 bool "Enable CTR DRBG" 1974 select CRYPTO_AES 1975 select CRYPTO_CTR 1976 help 1977 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1978 1979config CRYPTO_DRBG 1980 tristate 1981 default CRYPTO_DRBG_MENU 1982 select CRYPTO_RNG 1983 select CRYPTO_JITTERENTROPY 1984 1985endif # if CRYPTO_DRBG_MENU 1986 1987config CRYPTO_JITTERENTROPY 1988 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1989 select CRYPTO_RNG 1990 help 1991 The Jitterentropy RNG is a noise that is intended 1992 to provide seed to another RNG. The RNG does not 1993 perform any cryptographic whitening of the generated 1994 random numbers. This Jitterentropy RNG registers with 1995 the kernel crypto API and can be used by any caller. 1996 1997config CRYPTO_KDF800108_CTR 1998 tristate 1999 select CRYPTO_HMAC 2000 select CRYPTO_SHA256 2001 2002config CRYPTO_USER_API 2003 tristate 2004 2005config CRYPTO_USER_API_HASH 2006 tristate "User-space interface for hash algorithms" 2007 depends on NET 2008 select CRYPTO_HASH 2009 select CRYPTO_USER_API 2010 help 2011 This option enables the user-spaces interface for hash 2012 algorithms. 2013 2014config CRYPTO_USER_API_SKCIPHER 2015 tristate "User-space interface for symmetric key cipher algorithms" 2016 depends on NET 2017 select CRYPTO_SKCIPHER 2018 select CRYPTO_USER_API 2019 help 2020 This option enables the user-spaces interface for symmetric 2021 key cipher algorithms. 2022 2023config CRYPTO_USER_API_RNG 2024 tristate "User-space interface for random number generator algorithms" 2025 depends on NET 2026 select CRYPTO_RNG 2027 select CRYPTO_USER_API 2028 help 2029 This option enables the user-spaces interface for random 2030 number generator algorithms. 2031 2032config CRYPTO_USER_API_RNG_CAVP 2033 bool "Enable CAVP testing of DRBG" 2034 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 2035 help 2036 This option enables extra API for CAVP testing via the user-space 2037 interface: resetting of DRBG entropy, and providing Additional Data. 2038 This should only be enabled for CAVP testing. You should say 2039 no unless you know what this is. 2040 2041config CRYPTO_USER_API_AEAD 2042 tristate "User-space interface for AEAD cipher algorithms" 2043 depends on NET 2044 select CRYPTO_AEAD 2045 select CRYPTO_SKCIPHER 2046 select CRYPTO_NULL 2047 select CRYPTO_USER_API 2048 help 2049 This option enables the user-spaces interface for AEAD 2050 cipher algorithms. 2051 2052config CRYPTO_USER_API_ENABLE_OBSOLETE 2053 bool "Enable obsolete cryptographic algorithms for userspace" 2054 depends on CRYPTO_USER_API 2055 default y 2056 help 2057 Allow obsolete cryptographic algorithms to be selected that have 2058 already been phased out from internal use by the kernel, and are 2059 only useful for userspace clients that still rely on them. 2060 2061config CRYPTO_STATS 2062 bool "Crypto usage statistics for User-space" 2063 depends on CRYPTO_USER 2064 help 2065 This option enables the gathering of crypto stats. 2066 This will collect: 2067 - encrypt/decrypt size and numbers of symmeric operations 2068 - compress/decompress size and numbers of compress operations 2069 - size and numbers of hash operations 2070 - encrypt/decrypt/sign/verify numbers for asymmetric operations 2071 - generate/seed numbers for rng operations 2072 2073config CRYPTO_HASH_INFO 2074 bool 2075 2076if MIPS 2077source "arch/mips/crypto/Kconfig" 2078endif 2079 2080source "drivers/crypto/Kconfig" 2081source "crypto/asymmetric_keys/Kconfig" 2082source "certs/Kconfig" 2083 2084endif # if CRYPTO 2085