xref: /linux/crypto/Kconfig (revision baaa68a9796ef2cadfe5caaf4c730412eda0f31c)
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6	tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17	tristate "Cryptographic API"
18	help
19	  This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26	bool "FIPS 200 compliance"
27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28	depends on (MODULE_SIG || !MODULES)
29	help
30	  This option enables the fips boot option which is
31	  required if you want the system to operate in a FIPS 200
32	  certification.  You should say no unless you know what
33	  this is.
34
35config CRYPTO_ALGAPI
36	tristate
37	select CRYPTO_ALGAPI2
38	help
39	  This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42	tristate
43
44config CRYPTO_AEAD
45	tristate
46	select CRYPTO_AEAD2
47	select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50	tristate
51	select CRYPTO_ALGAPI2
52	select CRYPTO_NULL2
53	select CRYPTO_RNG2
54
55config CRYPTO_SKCIPHER
56	tristate
57	select CRYPTO_SKCIPHER2
58	select CRYPTO_ALGAPI
59
60config CRYPTO_SKCIPHER2
61	tristate
62	select CRYPTO_ALGAPI2
63	select CRYPTO_RNG2
64
65config CRYPTO_HASH
66	tristate
67	select CRYPTO_HASH2
68	select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71	tristate
72	select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75	tristate
76	select CRYPTO_RNG2
77	select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80	tristate
81	select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84	tristate
85	select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88	tristate
89	select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92	tristate
93	select CRYPTO_AKCIPHER2
94	select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97	tristate
98	select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101	tristate
102	select CRYPTO_ALGAPI
103	select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106	tristate
107	select CRYPTO_ALGAPI2
108	select SGL_ALLOC
109
110config CRYPTO_ACOMP
111	tristate
112	select CRYPTO_ALGAPI
113	select CRYPTO_ACOMP2
114
115config CRYPTO_MANAGER
116	tristate "Cryptographic algorithm manager"
117	select CRYPTO_MANAGER2
118	help
119	  Create default cryptographic template instantiations such as
120	  cbc(aes).
121
122config CRYPTO_MANAGER2
123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124	select CRYPTO_AEAD2
125	select CRYPTO_HASH2
126	select CRYPTO_SKCIPHER2
127	select CRYPTO_AKCIPHER2
128	select CRYPTO_KPP2
129	select CRYPTO_ACOMP2
130
131config CRYPTO_USER
132	tristate "Userspace cryptographic algorithm configuration"
133	depends on NET
134	select CRYPTO_MANAGER
135	help
136	  Userspace configuration for cryptographic instantiations such as
137	  cbc(aes).
138
139config CRYPTO_MANAGER_DISABLE_TESTS
140	bool "Disable run-time self tests"
141	default y
142	help
143	  Disable run-time self tests that normally take place at
144	  algorithm registration.
145
146config CRYPTO_MANAGER_EXTRA_TESTS
147	bool "Enable extra run-time crypto self tests"
148	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
149	help
150	  Enable extra run-time self tests of registered crypto algorithms,
151	  including randomized fuzz tests.
152
153	  This is intended for developer use only, as these tests take much
154	  longer to run than the normal self tests.
155
156config CRYPTO_GF128MUL
157	tristate
158
159config CRYPTO_NULL
160	tristate "Null algorithms"
161	select CRYPTO_NULL2
162	help
163	  These are 'Null' algorithms, used by IPsec, which do nothing.
164
165config CRYPTO_NULL2
166	tristate
167	select CRYPTO_ALGAPI2
168	select CRYPTO_SKCIPHER2
169	select CRYPTO_HASH2
170
171config CRYPTO_PCRYPT
172	tristate "Parallel crypto engine"
173	depends on SMP
174	select PADATA
175	select CRYPTO_MANAGER
176	select CRYPTO_AEAD
177	help
178	  This converts an arbitrary crypto algorithm into a parallel
179	  algorithm that executes in kernel threads.
180
181config CRYPTO_CRYPTD
182	tristate "Software async crypto daemon"
183	select CRYPTO_SKCIPHER
184	select CRYPTO_HASH
185	select CRYPTO_MANAGER
186	help
187	  This is a generic software asynchronous crypto daemon that
188	  converts an arbitrary synchronous software crypto algorithm
189	  into an asynchronous algorithm that executes in a kernel thread.
190
191config CRYPTO_AUTHENC
192	tristate "Authenc support"
193	select CRYPTO_AEAD
194	select CRYPTO_SKCIPHER
195	select CRYPTO_MANAGER
196	select CRYPTO_HASH
197	select CRYPTO_NULL
198	help
199	  Authenc: Combined mode wrapper for IPsec.
200	  This is required for IPSec.
201
202config CRYPTO_TEST
203	tristate "Testing module"
204	depends on m || EXPERT
205	select CRYPTO_MANAGER
206	help
207	  Quick & dirty crypto test module.
208
209config CRYPTO_SIMD
210	tristate
211	select CRYPTO_CRYPTD
212
213config CRYPTO_ENGINE
214	tristate
215
216comment "Public-key cryptography"
217
218config CRYPTO_RSA
219	tristate "RSA algorithm"
220	select CRYPTO_AKCIPHER
221	select CRYPTO_MANAGER
222	select MPILIB
223	select ASN1
224	help
225	  Generic implementation of the RSA public key algorithm.
226
227config CRYPTO_DH
228	tristate "Diffie-Hellman algorithm"
229	select CRYPTO_KPP
230	select MPILIB
231	help
232	  Generic implementation of the Diffie-Hellman algorithm.
233
234config CRYPTO_DH_RFC7919_GROUPS
235	bool "Support for RFC 7919 FFDHE group parameters"
236	depends on CRYPTO_DH
237	select CRYPTO_RNG_DEFAULT
238	help
239	  Provide support for RFC 7919 FFDHE group parameters. If unsure, say N.
240
241config CRYPTO_ECC
242	tristate
243	select CRYPTO_RNG_DEFAULT
244
245config CRYPTO_ECDH
246	tristate "ECDH algorithm"
247	select CRYPTO_ECC
248	select CRYPTO_KPP
249	help
250	  Generic implementation of the ECDH algorithm
251
252config CRYPTO_ECDSA
253	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
254	select CRYPTO_ECC
255	select CRYPTO_AKCIPHER
256	select ASN1
257	help
258	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
259	  is A NIST cryptographic standard algorithm. Only signature verification
260	  is implemented.
261
262config CRYPTO_ECRDSA
263	tristate "EC-RDSA (GOST 34.10) algorithm"
264	select CRYPTO_ECC
265	select CRYPTO_AKCIPHER
266	select CRYPTO_STREEBOG
267	select OID_REGISTRY
268	select ASN1
269	help
270	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
271	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
272	  standard algorithms (called GOST algorithms). Only signature verification
273	  is implemented.
274
275config CRYPTO_SM2
276	tristate "SM2 algorithm"
277	select CRYPTO_LIB_SM3
278	select CRYPTO_AKCIPHER
279	select CRYPTO_MANAGER
280	select MPILIB
281	select ASN1
282	help
283	  Generic implementation of the SM2 public key algorithm. It was
284	  published by State Encryption Management Bureau, China.
285	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
286
287	  References:
288	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
289	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
290	  http://www.gmbz.org.cn/main/bzlb.html
291
292config CRYPTO_CURVE25519
293	tristate "Curve25519 algorithm"
294	select CRYPTO_KPP
295	select CRYPTO_LIB_CURVE25519_GENERIC
296
297config CRYPTO_CURVE25519_X86
298	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
299	depends on X86 && 64BIT
300	select CRYPTO_LIB_CURVE25519_GENERIC
301	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
302
303comment "Authenticated Encryption with Associated Data"
304
305config CRYPTO_CCM
306	tristate "CCM support"
307	select CRYPTO_CTR
308	select CRYPTO_HASH
309	select CRYPTO_AEAD
310	select CRYPTO_MANAGER
311	help
312	  Support for Counter with CBC MAC. Required for IPsec.
313
314config CRYPTO_GCM
315	tristate "GCM/GMAC support"
316	select CRYPTO_CTR
317	select CRYPTO_AEAD
318	select CRYPTO_GHASH
319	select CRYPTO_NULL
320	select CRYPTO_MANAGER
321	help
322	  Support for Galois/Counter Mode (GCM) and Galois Message
323	  Authentication Code (GMAC). Required for IPSec.
324
325config CRYPTO_CHACHA20POLY1305
326	tristate "ChaCha20-Poly1305 AEAD support"
327	select CRYPTO_CHACHA20
328	select CRYPTO_POLY1305
329	select CRYPTO_AEAD
330	select CRYPTO_MANAGER
331	help
332	  ChaCha20-Poly1305 AEAD support, RFC7539.
333
334	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
335	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
336	  IETF protocols.
337
338config CRYPTO_AEGIS128
339	tristate "AEGIS-128 AEAD algorithm"
340	select CRYPTO_AEAD
341	select CRYPTO_AES  # for AES S-box tables
342	help
343	 Support for the AEGIS-128 dedicated AEAD algorithm.
344
345config CRYPTO_AEGIS128_SIMD
346	bool "Support SIMD acceleration for AEGIS-128"
347	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
348	default y
349
350config CRYPTO_AEGIS128_AESNI_SSE2
351	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
352	depends on X86 && 64BIT
353	select CRYPTO_AEAD
354	select CRYPTO_SIMD
355	help
356	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
357
358config CRYPTO_SEQIV
359	tristate "Sequence Number IV Generator"
360	select CRYPTO_AEAD
361	select CRYPTO_SKCIPHER
362	select CRYPTO_NULL
363	select CRYPTO_RNG_DEFAULT
364	select CRYPTO_MANAGER
365	help
366	  This IV generator generates an IV based on a sequence number by
367	  xoring it with a salt.  This algorithm is mainly useful for CTR
368
369config CRYPTO_ECHAINIV
370	tristate "Encrypted Chain IV Generator"
371	select CRYPTO_AEAD
372	select CRYPTO_NULL
373	select CRYPTO_RNG_DEFAULT
374	select CRYPTO_MANAGER
375	help
376	  This IV generator generates an IV based on the encryption of
377	  a sequence number xored with a salt.  This is the default
378	  algorithm for CBC.
379
380comment "Block modes"
381
382config CRYPTO_CBC
383	tristate "CBC support"
384	select CRYPTO_SKCIPHER
385	select CRYPTO_MANAGER
386	help
387	  CBC: Cipher Block Chaining mode
388	  This block cipher algorithm is required for IPSec.
389
390config CRYPTO_CFB
391	tristate "CFB support"
392	select CRYPTO_SKCIPHER
393	select CRYPTO_MANAGER
394	help
395	  CFB: Cipher FeedBack mode
396	  This block cipher algorithm is required for TPM2 Cryptography.
397
398config CRYPTO_CTR
399	tristate "CTR support"
400	select CRYPTO_SKCIPHER
401	select CRYPTO_MANAGER
402	help
403	  CTR: Counter mode
404	  This block cipher algorithm is required for IPSec.
405
406config CRYPTO_CTS
407	tristate "CTS support"
408	select CRYPTO_SKCIPHER
409	select CRYPTO_MANAGER
410	help
411	  CTS: Cipher Text Stealing
412	  This is the Cipher Text Stealing mode as described by
413	  Section 8 of rfc2040 and referenced by rfc3962
414	  (rfc3962 includes errata information in its Appendix A) or
415	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
416	  This mode is required for Kerberos gss mechanism support
417	  for AES encryption.
418
419	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
420
421config CRYPTO_ECB
422	tristate "ECB support"
423	select CRYPTO_SKCIPHER
424	select CRYPTO_MANAGER
425	help
426	  ECB: Electronic CodeBook mode
427	  This is the simplest block cipher algorithm.  It simply encrypts
428	  the input block by block.
429
430config CRYPTO_LRW
431	tristate "LRW support"
432	select CRYPTO_SKCIPHER
433	select CRYPTO_MANAGER
434	select CRYPTO_GF128MUL
435	select CRYPTO_ECB
436	help
437	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
438	  narrow block cipher mode for dm-crypt.  Use it with cipher
439	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
440	  The first 128, 192 or 256 bits in the key are used for AES and the
441	  rest is used to tie each cipher block to its logical position.
442
443config CRYPTO_OFB
444	tristate "OFB support"
445	select CRYPTO_SKCIPHER
446	select CRYPTO_MANAGER
447	help
448	  OFB: the Output Feedback mode makes a block cipher into a synchronous
449	  stream cipher. It generates keystream blocks, which are then XORed
450	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
451	  ciphertext produces a flipped bit in the plaintext at the same
452	  location. This property allows many error correcting codes to function
453	  normally even when applied before encryption.
454
455config CRYPTO_PCBC
456	tristate "PCBC support"
457	select CRYPTO_SKCIPHER
458	select CRYPTO_MANAGER
459	help
460	  PCBC: Propagating Cipher Block Chaining mode
461	  This block cipher algorithm is required for RxRPC.
462
463config CRYPTO_XTS
464	tristate "XTS support"
465	select CRYPTO_SKCIPHER
466	select CRYPTO_MANAGER
467	select CRYPTO_ECB
468	help
469	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
470	  key size 256, 384 or 512 bits. This implementation currently
471	  can't handle a sectorsize which is not a multiple of 16 bytes.
472
473config CRYPTO_KEYWRAP
474	tristate "Key wrapping support"
475	select CRYPTO_SKCIPHER
476	select CRYPTO_MANAGER
477	help
478	  Support for key wrapping (NIST SP800-38F / RFC3394) without
479	  padding.
480
481config CRYPTO_NHPOLY1305
482	tristate
483	select CRYPTO_HASH
484	select CRYPTO_LIB_POLY1305_GENERIC
485
486config CRYPTO_NHPOLY1305_SSE2
487	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
488	depends on X86 && 64BIT
489	select CRYPTO_NHPOLY1305
490	help
491	  SSE2 optimized implementation of the hash function used by the
492	  Adiantum encryption mode.
493
494config CRYPTO_NHPOLY1305_AVX2
495	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
496	depends on X86 && 64BIT
497	select CRYPTO_NHPOLY1305
498	help
499	  AVX2 optimized implementation of the hash function used by the
500	  Adiantum encryption mode.
501
502config CRYPTO_ADIANTUM
503	tristate "Adiantum support"
504	select CRYPTO_CHACHA20
505	select CRYPTO_LIB_POLY1305_GENERIC
506	select CRYPTO_NHPOLY1305
507	select CRYPTO_MANAGER
508	help
509	  Adiantum is a tweakable, length-preserving encryption mode
510	  designed for fast and secure disk encryption, especially on
511	  CPUs without dedicated crypto instructions.  It encrypts
512	  each sector using the XChaCha12 stream cipher, two passes of
513	  an ε-almost-∆-universal hash function, and an invocation of
514	  the AES-256 block cipher on a single 16-byte block.  On CPUs
515	  without AES instructions, Adiantum is much faster than
516	  AES-XTS.
517
518	  Adiantum's security is provably reducible to that of its
519	  underlying stream and block ciphers, subject to a security
520	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
521	  mode, so it actually provides an even stronger notion of
522	  security than XTS, subject to the security bound.
523
524	  If unsure, say N.
525
526config CRYPTO_ESSIV
527	tristate "ESSIV support for block encryption"
528	select CRYPTO_AUTHENC
529	help
530	  Encrypted salt-sector initialization vector (ESSIV) is an IV
531	  generation method that is used in some cases by fscrypt and/or
532	  dm-crypt. It uses the hash of the block encryption key as the
533	  symmetric key for a block encryption pass applied to the input
534	  IV, making low entropy IV sources more suitable for block
535	  encryption.
536
537	  This driver implements a crypto API template that can be
538	  instantiated either as an skcipher or as an AEAD (depending on the
539	  type of the first template argument), and which defers encryption
540	  and decryption requests to the encapsulated cipher after applying
541	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
542	  that the keys are presented in the same format used by the authenc
543	  template, and that the IV appears at the end of the authenticated
544	  associated data (AAD) region (which is how dm-crypt uses it.)
545
546	  Note that the use of ESSIV is not recommended for new deployments,
547	  and so this only needs to be enabled when interoperability with
548	  existing encrypted volumes of filesystems is required, or when
549	  building for a particular system that requires it (e.g., when
550	  the SoC in question has accelerated CBC but not XTS, making CBC
551	  combined with ESSIV the only feasible mode for h/w accelerated
552	  block encryption)
553
554comment "Hash modes"
555
556config CRYPTO_CMAC
557	tristate "CMAC support"
558	select CRYPTO_HASH
559	select CRYPTO_MANAGER
560	help
561	  Cipher-based Message Authentication Code (CMAC) specified by
562	  The National Institute of Standards and Technology (NIST).
563
564	  https://tools.ietf.org/html/rfc4493
565	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
566
567config CRYPTO_HMAC
568	tristate "HMAC support"
569	select CRYPTO_HASH
570	select CRYPTO_MANAGER
571	help
572	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
573	  This is required for IPSec.
574
575config CRYPTO_XCBC
576	tristate "XCBC support"
577	select CRYPTO_HASH
578	select CRYPTO_MANAGER
579	help
580	  XCBC: Keyed-Hashing with encryption algorithm
581		https://www.ietf.org/rfc/rfc3566.txt
582		http://csrc.nist.gov/encryption/modes/proposedmodes/
583		 xcbc-mac/xcbc-mac-spec.pdf
584
585config CRYPTO_VMAC
586	tristate "VMAC support"
587	select CRYPTO_HASH
588	select CRYPTO_MANAGER
589	help
590	  VMAC is a message authentication algorithm designed for
591	  very high speed on 64-bit architectures.
592
593	  See also:
594	  <https://fastcrypto.org/vmac>
595
596comment "Digest"
597
598config CRYPTO_CRC32C
599	tristate "CRC32c CRC algorithm"
600	select CRYPTO_HASH
601	select CRC32
602	help
603	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
604	  by iSCSI for header and data digests and by others.
605	  See Castagnoli93.  Module will be crc32c.
606
607config CRYPTO_CRC32C_INTEL
608	tristate "CRC32c INTEL hardware acceleration"
609	depends on X86
610	select CRYPTO_HASH
611	help
612	  In Intel processor with SSE4.2 supported, the processor will
613	  support CRC32C implementation using hardware accelerated CRC32
614	  instruction. This option will create 'crc32c-intel' module,
615	  which will enable any routine to use the CRC32 instruction to
616	  gain performance compared with software implementation.
617	  Module will be crc32c-intel.
618
619config CRYPTO_CRC32C_VPMSUM
620	tristate "CRC32c CRC algorithm (powerpc64)"
621	depends on PPC64 && ALTIVEC
622	select CRYPTO_HASH
623	select CRC32
624	help
625	  CRC32c algorithm implemented using vector polynomial multiply-sum
626	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
627	  and newer processors for improved performance.
628
629
630config CRYPTO_CRC32C_SPARC64
631	tristate "CRC32c CRC algorithm (SPARC64)"
632	depends on SPARC64
633	select CRYPTO_HASH
634	select CRC32
635	help
636	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
637	  when available.
638
639config CRYPTO_CRC32
640	tristate "CRC32 CRC algorithm"
641	select CRYPTO_HASH
642	select CRC32
643	help
644	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
645	  Shash crypto api wrappers to crc32_le function.
646
647config CRYPTO_CRC32_PCLMUL
648	tristate "CRC32 PCLMULQDQ hardware acceleration"
649	depends on X86
650	select CRYPTO_HASH
651	select CRC32
652	help
653	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
654	  and PCLMULQDQ supported, the processor will support
655	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
656	  instruction. This option will create 'crc32-pclmul' module,
657	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
658	  and gain better performance as compared with the table implementation.
659
660config CRYPTO_CRC32_MIPS
661	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
662	depends on MIPS_CRC_SUPPORT
663	select CRYPTO_HASH
664	help
665	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
666	  instructions, when available.
667
668
669config CRYPTO_XXHASH
670	tristate "xxHash hash algorithm"
671	select CRYPTO_HASH
672	select XXHASH
673	help
674	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
675	  speeds close to RAM limits.
676
677config CRYPTO_BLAKE2B
678	tristate "BLAKE2b digest algorithm"
679	select CRYPTO_HASH
680	help
681	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
682	  optimized for 64bit platforms and can produce digests of any size
683	  between 1 to 64.  The keyed hash is also implemented.
684
685	  This module provides the following algorithms:
686
687	  - blake2b-160
688	  - blake2b-256
689	  - blake2b-384
690	  - blake2b-512
691
692	  See https://blake2.net for further information.
693
694config CRYPTO_BLAKE2S
695	tristate "BLAKE2s digest algorithm"
696	select CRYPTO_LIB_BLAKE2S_GENERIC
697	select CRYPTO_HASH
698	help
699	  Implementation of cryptographic hash function BLAKE2s
700	  optimized for 8-32bit platforms and can produce digests of any size
701	  between 1 to 32.  The keyed hash is also implemented.
702
703	  This module provides the following algorithms:
704
705	  - blake2s-128
706	  - blake2s-160
707	  - blake2s-224
708	  - blake2s-256
709
710	  See https://blake2.net for further information.
711
712config CRYPTO_BLAKE2S_X86
713	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
714	depends on X86 && 64BIT
715	select CRYPTO_LIB_BLAKE2S_GENERIC
716	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
717
718config CRYPTO_CRCT10DIF
719	tristate "CRCT10DIF algorithm"
720	select CRYPTO_HASH
721	help
722	  CRC T10 Data Integrity Field computation is being cast as
723	  a crypto transform.  This allows for faster crc t10 diff
724	  transforms to be used if they are available.
725
726config CRYPTO_CRCT10DIF_PCLMUL
727	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
728	depends on X86 && 64BIT && CRC_T10DIF
729	select CRYPTO_HASH
730	help
731	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
732	  CRC T10 DIF PCLMULQDQ computation can be hardware
733	  accelerated PCLMULQDQ instruction. This option will create
734	  'crct10dif-pclmul' module, which is faster when computing the
735	  crct10dif checksum as compared with the generic table implementation.
736
737config CRYPTO_CRCT10DIF_VPMSUM
738	tristate "CRC32T10DIF powerpc64 hardware acceleration"
739	depends on PPC64 && ALTIVEC && CRC_T10DIF
740	select CRYPTO_HASH
741	help
742	  CRC10T10DIF algorithm implemented using vector polynomial
743	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
744	  POWER8 and newer processors for improved performance.
745
746config CRYPTO_VPMSUM_TESTER
747	tristate "Powerpc64 vpmsum hardware acceleration tester"
748	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
749	help
750	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
751	  POWER8 vpmsum instructions.
752	  Unless you are testing these algorithms, you don't need this.
753
754config CRYPTO_GHASH
755	tristate "GHASH hash function"
756	select CRYPTO_GF128MUL
757	select CRYPTO_HASH
758	help
759	  GHASH is the hash function used in GCM (Galois/Counter Mode).
760	  It is not a general-purpose cryptographic hash function.
761
762config CRYPTO_POLY1305
763	tristate "Poly1305 authenticator algorithm"
764	select CRYPTO_HASH
765	select CRYPTO_LIB_POLY1305_GENERIC
766	help
767	  Poly1305 authenticator algorithm, RFC7539.
768
769	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
770	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
771	  in IETF protocols. This is the portable C implementation of Poly1305.
772
773config CRYPTO_POLY1305_X86_64
774	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
775	depends on X86 && 64BIT
776	select CRYPTO_LIB_POLY1305_GENERIC
777	select CRYPTO_ARCH_HAVE_LIB_POLY1305
778	help
779	  Poly1305 authenticator algorithm, RFC7539.
780
781	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
782	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
783	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
784	  instructions.
785
786config CRYPTO_POLY1305_MIPS
787	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
788	depends on MIPS
789	select CRYPTO_ARCH_HAVE_LIB_POLY1305
790
791config CRYPTO_MD4
792	tristate "MD4 digest algorithm"
793	select CRYPTO_HASH
794	help
795	  MD4 message digest algorithm (RFC1320).
796
797config CRYPTO_MD5
798	tristate "MD5 digest algorithm"
799	select CRYPTO_HASH
800	help
801	  MD5 message digest algorithm (RFC1321).
802
803config CRYPTO_MD5_OCTEON
804	tristate "MD5 digest algorithm (OCTEON)"
805	depends on CPU_CAVIUM_OCTEON
806	select CRYPTO_MD5
807	select CRYPTO_HASH
808	help
809	  MD5 message digest algorithm (RFC1321) implemented
810	  using OCTEON crypto instructions, when available.
811
812config CRYPTO_MD5_PPC
813	tristate "MD5 digest algorithm (PPC)"
814	depends on PPC
815	select CRYPTO_HASH
816	help
817	  MD5 message digest algorithm (RFC1321) implemented
818	  in PPC assembler.
819
820config CRYPTO_MD5_SPARC64
821	tristate "MD5 digest algorithm (SPARC64)"
822	depends on SPARC64
823	select CRYPTO_MD5
824	select CRYPTO_HASH
825	help
826	  MD5 message digest algorithm (RFC1321) implemented
827	  using sparc64 crypto instructions, when available.
828
829config CRYPTO_MICHAEL_MIC
830	tristate "Michael MIC keyed digest algorithm"
831	select CRYPTO_HASH
832	help
833	  Michael MIC is used for message integrity protection in TKIP
834	  (IEEE 802.11i). This algorithm is required for TKIP, but it
835	  should not be used for other purposes because of the weakness
836	  of the algorithm.
837
838config CRYPTO_RMD160
839	tristate "RIPEMD-160 digest algorithm"
840	select CRYPTO_HASH
841	help
842	  RIPEMD-160 (ISO/IEC 10118-3:2004).
843
844	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
845	  to be used as a secure replacement for the 128-bit hash functions
846	  MD4, MD5 and it's predecessor RIPEMD
847	  (not to be confused with RIPEMD-128).
848
849	  It's speed is comparable to SHA1 and there are no known attacks
850	  against RIPEMD-160.
851
852	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
853	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
854
855config CRYPTO_SHA1
856	tristate "SHA1 digest algorithm"
857	select CRYPTO_HASH
858	help
859	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
860
861config CRYPTO_SHA1_SSSE3
862	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
863	depends on X86 && 64BIT
864	select CRYPTO_SHA1
865	select CRYPTO_HASH
866	help
867	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
868	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
869	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
870	  when available.
871
872config CRYPTO_SHA256_SSSE3
873	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
874	depends on X86 && 64BIT
875	select CRYPTO_SHA256
876	select CRYPTO_HASH
877	help
878	  SHA-256 secure hash standard (DFIPS 180-2) implemented
879	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
880	  Extensions version 1 (AVX1), or Advanced Vector Extensions
881	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
882	  Instructions) when available.
883
884config CRYPTO_SHA512_SSSE3
885	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
886	depends on X86 && 64BIT
887	select CRYPTO_SHA512
888	select CRYPTO_HASH
889	help
890	  SHA-512 secure hash standard (DFIPS 180-2) implemented
891	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
892	  Extensions version 1 (AVX1), or Advanced Vector Extensions
893	  version 2 (AVX2) instructions, when available.
894
895config CRYPTO_SHA1_OCTEON
896	tristate "SHA1 digest algorithm (OCTEON)"
897	depends on CPU_CAVIUM_OCTEON
898	select CRYPTO_SHA1
899	select CRYPTO_HASH
900	help
901	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
902	  using OCTEON crypto instructions, when available.
903
904config CRYPTO_SHA1_SPARC64
905	tristate "SHA1 digest algorithm (SPARC64)"
906	depends on SPARC64
907	select CRYPTO_SHA1
908	select CRYPTO_HASH
909	help
910	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
911	  using sparc64 crypto instructions, when available.
912
913config CRYPTO_SHA1_PPC
914	tristate "SHA1 digest algorithm (powerpc)"
915	depends on PPC
916	help
917	  This is the powerpc hardware accelerated implementation of the
918	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
919
920config CRYPTO_SHA1_PPC_SPE
921	tristate "SHA1 digest algorithm (PPC SPE)"
922	depends on PPC && SPE
923	help
924	  SHA-1 secure hash standard (DFIPS 180-4) implemented
925	  using powerpc SPE SIMD instruction set.
926
927config CRYPTO_SHA256
928	tristate "SHA224 and SHA256 digest algorithm"
929	select CRYPTO_HASH
930	select CRYPTO_LIB_SHA256
931	help
932	  SHA256 secure hash standard (DFIPS 180-2).
933
934	  This version of SHA implements a 256 bit hash with 128 bits of
935	  security against collision attacks.
936
937	  This code also includes SHA-224, a 224 bit hash with 112 bits
938	  of security against collision attacks.
939
940config CRYPTO_SHA256_PPC_SPE
941	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
942	depends on PPC && SPE
943	select CRYPTO_SHA256
944	select CRYPTO_HASH
945	help
946	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
947	  implemented using powerpc SPE SIMD instruction set.
948
949config CRYPTO_SHA256_OCTEON
950	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
951	depends on CPU_CAVIUM_OCTEON
952	select CRYPTO_SHA256
953	select CRYPTO_HASH
954	help
955	  SHA-256 secure hash standard (DFIPS 180-2) implemented
956	  using OCTEON crypto instructions, when available.
957
958config CRYPTO_SHA256_SPARC64
959	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
960	depends on SPARC64
961	select CRYPTO_SHA256
962	select CRYPTO_HASH
963	help
964	  SHA-256 secure hash standard (DFIPS 180-2) implemented
965	  using sparc64 crypto instructions, when available.
966
967config CRYPTO_SHA512
968	tristate "SHA384 and SHA512 digest algorithms"
969	select CRYPTO_HASH
970	help
971	  SHA512 secure hash standard (DFIPS 180-2).
972
973	  This version of SHA implements a 512 bit hash with 256 bits of
974	  security against collision attacks.
975
976	  This code also includes SHA-384, a 384 bit hash with 192 bits
977	  of security against collision attacks.
978
979config CRYPTO_SHA512_OCTEON
980	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
981	depends on CPU_CAVIUM_OCTEON
982	select CRYPTO_SHA512
983	select CRYPTO_HASH
984	help
985	  SHA-512 secure hash standard (DFIPS 180-2) implemented
986	  using OCTEON crypto instructions, when available.
987
988config CRYPTO_SHA512_SPARC64
989	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
990	depends on SPARC64
991	select CRYPTO_SHA512
992	select CRYPTO_HASH
993	help
994	  SHA-512 secure hash standard (DFIPS 180-2) implemented
995	  using sparc64 crypto instructions, when available.
996
997config CRYPTO_SHA3
998	tristate "SHA3 digest algorithm"
999	select CRYPTO_HASH
1000	help
1001	  SHA-3 secure hash standard (DFIPS 202). It's based on
1002	  cryptographic sponge function family called Keccak.
1003
1004	  References:
1005	  http://keccak.noekeon.org/
1006
1007config CRYPTO_SM3
1008	tristate "SM3 digest algorithm"
1009	select CRYPTO_HASH
1010	select CRYPTO_LIB_SM3
1011	help
1012	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1013	  It is part of the Chinese Commercial Cryptography suite.
1014
1015	  References:
1016	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1017	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1018
1019config CRYPTO_SM3_AVX_X86_64
1020	tristate "SM3 digest algorithm (x86_64/AVX)"
1021	depends on X86 && 64BIT
1022	select CRYPTO_HASH
1023	select CRYPTO_LIB_SM3
1024	help
1025	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1026	  It is part of the Chinese Commercial Cryptography suite. This is
1027	  SM3 optimized implementation using Advanced Vector Extensions (AVX)
1028	  when available.
1029
1030	  If unsure, say N.
1031
1032config CRYPTO_STREEBOG
1033	tristate "Streebog Hash Function"
1034	select CRYPTO_HASH
1035	help
1036	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1037	  cryptographic standard algorithms (called GOST algorithms).
1038	  This setting enables two hash algorithms with 256 and 512 bits output.
1039
1040	  References:
1041	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1042	  https://tools.ietf.org/html/rfc6986
1043
1044config CRYPTO_WP512
1045	tristate "Whirlpool digest algorithms"
1046	select CRYPTO_HASH
1047	help
1048	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1049
1050	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1051	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1052
1053	  See also:
1054	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1055
1056config CRYPTO_GHASH_CLMUL_NI_INTEL
1057	tristate "GHASH hash function (CLMUL-NI accelerated)"
1058	depends on X86 && 64BIT
1059	select CRYPTO_CRYPTD
1060	help
1061	  This is the x86_64 CLMUL-NI accelerated implementation of
1062	  GHASH, the hash function used in GCM (Galois/Counter mode).
1063
1064comment "Ciphers"
1065
1066config CRYPTO_AES
1067	tristate "AES cipher algorithms"
1068	select CRYPTO_ALGAPI
1069	select CRYPTO_LIB_AES
1070	help
1071	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1072	  algorithm.
1073
1074	  Rijndael appears to be consistently a very good performer in
1075	  both hardware and software across a wide range of computing
1076	  environments regardless of its use in feedback or non-feedback
1077	  modes. Its key setup time is excellent, and its key agility is
1078	  good. Rijndael's very low memory requirements make it very well
1079	  suited for restricted-space environments, in which it also
1080	  demonstrates excellent performance. Rijndael's operations are
1081	  among the easiest to defend against power and timing attacks.
1082
1083	  The AES specifies three key sizes: 128, 192 and 256 bits
1084
1085	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1086
1087config CRYPTO_AES_TI
1088	tristate "Fixed time AES cipher"
1089	select CRYPTO_ALGAPI
1090	select CRYPTO_LIB_AES
1091	help
1092	  This is a generic implementation of AES that attempts to eliminate
1093	  data dependent latencies as much as possible without affecting
1094	  performance too much. It is intended for use by the generic CCM
1095	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1096	  solely on encryption (although decryption is supported as well, but
1097	  with a more dramatic performance hit)
1098
1099	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1100	  8 for decryption), this implementation only uses just two S-boxes of
1101	  256 bytes each, and attempts to eliminate data dependent latencies by
1102	  prefetching the entire table into the cache at the start of each
1103	  block. Interrupts are also disabled to avoid races where cachelines
1104	  are evicted when the CPU is interrupted to do something else.
1105
1106config CRYPTO_AES_NI_INTEL
1107	tristate "AES cipher algorithms (AES-NI)"
1108	depends on X86
1109	select CRYPTO_AEAD
1110	select CRYPTO_LIB_AES
1111	select CRYPTO_ALGAPI
1112	select CRYPTO_SKCIPHER
1113	select CRYPTO_SIMD
1114	help
1115	  Use Intel AES-NI instructions for AES algorithm.
1116
1117	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1118	  algorithm.
1119
1120	  Rijndael appears to be consistently a very good performer in
1121	  both hardware and software across a wide range of computing
1122	  environments regardless of its use in feedback or non-feedback
1123	  modes. Its key setup time is excellent, and its key agility is
1124	  good. Rijndael's very low memory requirements make it very well
1125	  suited for restricted-space environments, in which it also
1126	  demonstrates excellent performance. Rijndael's operations are
1127	  among the easiest to defend against power and timing attacks.
1128
1129	  The AES specifies three key sizes: 128, 192 and 256 bits
1130
1131	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1132
1133	  In addition to AES cipher algorithm support, the acceleration
1134	  for some popular block cipher mode is supported too, including
1135	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1136	  acceleration for CTR.
1137
1138config CRYPTO_AES_SPARC64
1139	tristate "AES cipher algorithms (SPARC64)"
1140	depends on SPARC64
1141	select CRYPTO_SKCIPHER
1142	help
1143	  Use SPARC64 crypto opcodes for AES algorithm.
1144
1145	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1146	  algorithm.
1147
1148	  Rijndael appears to be consistently a very good performer in
1149	  both hardware and software across a wide range of computing
1150	  environments regardless of its use in feedback or non-feedback
1151	  modes. Its key setup time is excellent, and its key agility is
1152	  good. Rijndael's very low memory requirements make it very well
1153	  suited for restricted-space environments, in which it also
1154	  demonstrates excellent performance. Rijndael's operations are
1155	  among the easiest to defend against power and timing attacks.
1156
1157	  The AES specifies three key sizes: 128, 192 and 256 bits
1158
1159	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1160
1161	  In addition to AES cipher algorithm support, the acceleration
1162	  for some popular block cipher mode is supported too, including
1163	  ECB and CBC.
1164
1165config CRYPTO_AES_PPC_SPE
1166	tristate "AES cipher algorithms (PPC SPE)"
1167	depends on PPC && SPE
1168	select CRYPTO_SKCIPHER
1169	help
1170	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1171	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1172	  This module should only be used for low power (router) devices
1173	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1174	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1175	  timining attacks. Nevertheless it might be not as secure as other
1176	  architecture specific assembler implementations that work on 1KB
1177	  tables or 256 bytes S-boxes.
1178
1179config CRYPTO_ANUBIS
1180	tristate "Anubis cipher algorithm"
1181	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1182	select CRYPTO_ALGAPI
1183	help
1184	  Anubis cipher algorithm.
1185
1186	  Anubis is a variable key length cipher which can use keys from
1187	  128 bits to 320 bits in length.  It was evaluated as a entrant
1188	  in the NESSIE competition.
1189
1190	  See also:
1191	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1192	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1193
1194config CRYPTO_ARC4
1195	tristate "ARC4 cipher algorithm"
1196	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1197	select CRYPTO_SKCIPHER
1198	select CRYPTO_LIB_ARC4
1199	help
1200	  ARC4 cipher algorithm.
1201
1202	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1203	  bits in length.  This algorithm is required for driver-based
1204	  WEP, but it should not be for other purposes because of the
1205	  weakness of the algorithm.
1206
1207config CRYPTO_BLOWFISH
1208	tristate "Blowfish cipher algorithm"
1209	select CRYPTO_ALGAPI
1210	select CRYPTO_BLOWFISH_COMMON
1211	help
1212	  Blowfish cipher algorithm, by Bruce Schneier.
1213
1214	  This is a variable key length cipher which can use keys from 32
1215	  bits to 448 bits in length.  It's fast, simple and specifically
1216	  designed for use on "large microprocessors".
1217
1218	  See also:
1219	  <https://www.schneier.com/blowfish.html>
1220
1221config CRYPTO_BLOWFISH_COMMON
1222	tristate
1223	help
1224	  Common parts of the Blowfish cipher algorithm shared by the
1225	  generic c and the assembler implementations.
1226
1227	  See also:
1228	  <https://www.schneier.com/blowfish.html>
1229
1230config CRYPTO_BLOWFISH_X86_64
1231	tristate "Blowfish cipher algorithm (x86_64)"
1232	depends on X86 && 64BIT
1233	select CRYPTO_SKCIPHER
1234	select CRYPTO_BLOWFISH_COMMON
1235	imply CRYPTO_CTR
1236	help
1237	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1238
1239	  This is a variable key length cipher which can use keys from 32
1240	  bits to 448 bits in length.  It's fast, simple and specifically
1241	  designed for use on "large microprocessors".
1242
1243	  See also:
1244	  <https://www.schneier.com/blowfish.html>
1245
1246config CRYPTO_CAMELLIA
1247	tristate "Camellia cipher algorithms"
1248	select CRYPTO_ALGAPI
1249	help
1250	  Camellia cipher algorithms module.
1251
1252	  Camellia is a symmetric key block cipher developed jointly
1253	  at NTT and Mitsubishi Electric Corporation.
1254
1255	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1256
1257	  See also:
1258	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1259
1260config CRYPTO_CAMELLIA_X86_64
1261	tristate "Camellia cipher algorithm (x86_64)"
1262	depends on X86 && 64BIT
1263	select CRYPTO_SKCIPHER
1264	imply CRYPTO_CTR
1265	help
1266	  Camellia cipher algorithm module (x86_64).
1267
1268	  Camellia is a symmetric key block cipher developed jointly
1269	  at NTT and Mitsubishi Electric Corporation.
1270
1271	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1272
1273	  See also:
1274	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1275
1276config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1277	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1278	depends on X86 && 64BIT
1279	select CRYPTO_SKCIPHER
1280	select CRYPTO_CAMELLIA_X86_64
1281	select CRYPTO_SIMD
1282	imply CRYPTO_XTS
1283	help
1284	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1285
1286	  Camellia is a symmetric key block cipher developed jointly
1287	  at NTT and Mitsubishi Electric Corporation.
1288
1289	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1290
1291	  See also:
1292	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1293
1294config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1295	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1296	depends on X86 && 64BIT
1297	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1298	help
1299	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1300
1301	  Camellia is a symmetric key block cipher developed jointly
1302	  at NTT and Mitsubishi Electric Corporation.
1303
1304	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1305
1306	  See also:
1307	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1308
1309config CRYPTO_CAMELLIA_SPARC64
1310	tristate "Camellia cipher algorithm (SPARC64)"
1311	depends on SPARC64
1312	select CRYPTO_ALGAPI
1313	select CRYPTO_SKCIPHER
1314	help
1315	  Camellia cipher algorithm module (SPARC64).
1316
1317	  Camellia is a symmetric key block cipher developed jointly
1318	  at NTT and Mitsubishi Electric Corporation.
1319
1320	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1321
1322	  See also:
1323	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1324
1325config CRYPTO_CAST_COMMON
1326	tristate
1327	help
1328	  Common parts of the CAST cipher algorithms shared by the
1329	  generic c and the assembler implementations.
1330
1331config CRYPTO_CAST5
1332	tristate "CAST5 (CAST-128) cipher algorithm"
1333	select CRYPTO_ALGAPI
1334	select CRYPTO_CAST_COMMON
1335	help
1336	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1337	  described in RFC2144.
1338
1339config CRYPTO_CAST5_AVX_X86_64
1340	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1341	depends on X86 && 64BIT
1342	select CRYPTO_SKCIPHER
1343	select CRYPTO_CAST5
1344	select CRYPTO_CAST_COMMON
1345	select CRYPTO_SIMD
1346	imply CRYPTO_CTR
1347	help
1348	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1349	  described in RFC2144.
1350
1351	  This module provides the Cast5 cipher algorithm that processes
1352	  sixteen blocks parallel using the AVX instruction set.
1353
1354config CRYPTO_CAST6
1355	tristate "CAST6 (CAST-256) cipher algorithm"
1356	select CRYPTO_ALGAPI
1357	select CRYPTO_CAST_COMMON
1358	help
1359	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1360	  described in RFC2612.
1361
1362config CRYPTO_CAST6_AVX_X86_64
1363	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1364	depends on X86 && 64BIT
1365	select CRYPTO_SKCIPHER
1366	select CRYPTO_CAST6
1367	select CRYPTO_CAST_COMMON
1368	select CRYPTO_SIMD
1369	imply CRYPTO_XTS
1370	imply CRYPTO_CTR
1371	help
1372	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1373	  described in RFC2612.
1374
1375	  This module provides the Cast6 cipher algorithm that processes
1376	  eight blocks parallel using the AVX instruction set.
1377
1378config CRYPTO_DES
1379	tristate "DES and Triple DES EDE cipher algorithms"
1380	select CRYPTO_ALGAPI
1381	select CRYPTO_LIB_DES
1382	help
1383	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1384
1385config CRYPTO_DES_SPARC64
1386	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1387	depends on SPARC64
1388	select CRYPTO_ALGAPI
1389	select CRYPTO_LIB_DES
1390	select CRYPTO_SKCIPHER
1391	help
1392	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1393	  optimized using SPARC64 crypto opcodes.
1394
1395config CRYPTO_DES3_EDE_X86_64
1396	tristate "Triple DES EDE cipher algorithm (x86-64)"
1397	depends on X86 && 64BIT
1398	select CRYPTO_SKCIPHER
1399	select CRYPTO_LIB_DES
1400	imply CRYPTO_CTR
1401	help
1402	  Triple DES EDE (FIPS 46-3) algorithm.
1403
1404	  This module provides implementation of the Triple DES EDE cipher
1405	  algorithm that is optimized for x86-64 processors. Two versions of
1406	  algorithm are provided; regular processing one input block and
1407	  one that processes three blocks parallel.
1408
1409config CRYPTO_FCRYPT
1410	tristate "FCrypt cipher algorithm"
1411	select CRYPTO_ALGAPI
1412	select CRYPTO_SKCIPHER
1413	help
1414	  FCrypt algorithm used by RxRPC.
1415
1416config CRYPTO_KHAZAD
1417	tristate "Khazad cipher algorithm"
1418	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1419	select CRYPTO_ALGAPI
1420	help
1421	  Khazad cipher algorithm.
1422
1423	  Khazad was a finalist in the initial NESSIE competition.  It is
1424	  an algorithm optimized for 64-bit processors with good performance
1425	  on 32-bit processors.  Khazad uses an 128 bit key size.
1426
1427	  See also:
1428	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1429
1430config CRYPTO_CHACHA20
1431	tristate "ChaCha stream cipher algorithms"
1432	select CRYPTO_LIB_CHACHA_GENERIC
1433	select CRYPTO_SKCIPHER
1434	help
1435	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1436
1437	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1438	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1439	  This is the portable C implementation of ChaCha20.  See also:
1440	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1441
1442	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1443	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1444	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1445	  while provably retaining ChaCha20's security.  See also:
1446	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1447
1448	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1449	  reduced security margin but increased performance.  It can be needed
1450	  in some performance-sensitive scenarios.
1451
1452config CRYPTO_CHACHA20_X86_64
1453	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1454	depends on X86 && 64BIT
1455	select CRYPTO_SKCIPHER
1456	select CRYPTO_LIB_CHACHA_GENERIC
1457	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1458	help
1459	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1460	  XChaCha20, and XChaCha12 stream ciphers.
1461
1462config CRYPTO_CHACHA_MIPS
1463	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1464	depends on CPU_MIPS32_R2
1465	select CRYPTO_SKCIPHER
1466	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1467
1468config CRYPTO_SEED
1469	tristate "SEED cipher algorithm"
1470	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1471	select CRYPTO_ALGAPI
1472	help
1473	  SEED cipher algorithm (RFC4269).
1474
1475	  SEED is a 128-bit symmetric key block cipher that has been
1476	  developed by KISA (Korea Information Security Agency) as a
1477	  national standard encryption algorithm of the Republic of Korea.
1478	  It is a 16 round block cipher with the key size of 128 bit.
1479
1480	  See also:
1481	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1482
1483config CRYPTO_SERPENT
1484	tristate "Serpent cipher algorithm"
1485	select CRYPTO_ALGAPI
1486	help
1487	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1488
1489	  Keys are allowed to be from 0 to 256 bits in length, in steps
1490	  of 8 bits.
1491
1492	  See also:
1493	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1494
1495config CRYPTO_SERPENT_SSE2_X86_64
1496	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1497	depends on X86 && 64BIT
1498	select CRYPTO_SKCIPHER
1499	select CRYPTO_SERPENT
1500	select CRYPTO_SIMD
1501	imply CRYPTO_CTR
1502	help
1503	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1504
1505	  Keys are allowed to be from 0 to 256 bits in length, in steps
1506	  of 8 bits.
1507
1508	  This module provides Serpent cipher algorithm that processes eight
1509	  blocks parallel using SSE2 instruction set.
1510
1511	  See also:
1512	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1513
1514config CRYPTO_SERPENT_SSE2_586
1515	tristate "Serpent cipher algorithm (i586/SSE2)"
1516	depends on X86 && !64BIT
1517	select CRYPTO_SKCIPHER
1518	select CRYPTO_SERPENT
1519	select CRYPTO_SIMD
1520	imply CRYPTO_CTR
1521	help
1522	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1523
1524	  Keys are allowed to be from 0 to 256 bits in length, in steps
1525	  of 8 bits.
1526
1527	  This module provides Serpent cipher algorithm that processes four
1528	  blocks parallel using SSE2 instruction set.
1529
1530	  See also:
1531	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1532
1533config CRYPTO_SERPENT_AVX_X86_64
1534	tristate "Serpent cipher algorithm (x86_64/AVX)"
1535	depends on X86 && 64BIT
1536	select CRYPTO_SKCIPHER
1537	select CRYPTO_SERPENT
1538	select CRYPTO_SIMD
1539	imply CRYPTO_XTS
1540	imply CRYPTO_CTR
1541	help
1542	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1543
1544	  Keys are allowed to be from 0 to 256 bits in length, in steps
1545	  of 8 bits.
1546
1547	  This module provides the Serpent cipher algorithm that processes
1548	  eight blocks parallel using the AVX instruction set.
1549
1550	  See also:
1551	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1552
1553config CRYPTO_SERPENT_AVX2_X86_64
1554	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1555	depends on X86 && 64BIT
1556	select CRYPTO_SERPENT_AVX_X86_64
1557	help
1558	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1559
1560	  Keys are allowed to be from 0 to 256 bits in length, in steps
1561	  of 8 bits.
1562
1563	  This module provides Serpent cipher algorithm that processes 16
1564	  blocks parallel using AVX2 instruction set.
1565
1566	  See also:
1567	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1568
1569config CRYPTO_SM4
1570	tristate "SM4 cipher algorithm"
1571	select CRYPTO_ALGAPI
1572	select CRYPTO_LIB_SM4
1573	help
1574	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1575
1576	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1577	  Organization of State Commercial Administration of China (OSCCA)
1578	  as an authorized cryptographic algorithms for the use within China.
1579
1580	  SMS4 was originally created for use in protecting wireless
1581	  networks, and is mandated in the Chinese National Standard for
1582	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1583	  (GB.15629.11-2003).
1584
1585	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1586	  standardized through TC 260 of the Standardization Administration
1587	  of the People's Republic of China (SAC).
1588
1589	  The input, output, and key of SMS4 are each 128 bits.
1590
1591	  See also: <https://eprint.iacr.org/2008/329.pdf>
1592
1593	  If unsure, say N.
1594
1595config CRYPTO_SM4_AESNI_AVX_X86_64
1596	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1597	depends on X86 && 64BIT
1598	select CRYPTO_SKCIPHER
1599	select CRYPTO_SIMD
1600	select CRYPTO_ALGAPI
1601	select CRYPTO_LIB_SM4
1602	help
1603	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1604
1605	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1606	  Organization of State Commercial Administration of China (OSCCA)
1607	  as an authorized cryptographic algorithms for the use within China.
1608
1609	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1610	  instruction set for block cipher. Through two affine transforms,
1611	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1612	  effect of instruction acceleration.
1613
1614	  If unsure, say N.
1615
1616config CRYPTO_SM4_AESNI_AVX2_X86_64
1617	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
1618	depends on X86 && 64BIT
1619	select CRYPTO_SKCIPHER
1620	select CRYPTO_SIMD
1621	select CRYPTO_ALGAPI
1622	select CRYPTO_LIB_SM4
1623	select CRYPTO_SM4_AESNI_AVX_X86_64
1624	help
1625	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
1626
1627	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1628	  Organization of State Commercial Administration of China (OSCCA)
1629	  as an authorized cryptographic algorithms for the use within China.
1630
1631	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
1632	  instruction set for block cipher. Through two affine transforms,
1633	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1634	  effect of instruction acceleration.
1635
1636	  If unsure, say N.
1637
1638config CRYPTO_TEA
1639	tristate "TEA, XTEA and XETA cipher algorithms"
1640	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1641	select CRYPTO_ALGAPI
1642	help
1643	  TEA cipher algorithm.
1644
1645	  Tiny Encryption Algorithm is a simple cipher that uses
1646	  many rounds for security.  It is very fast and uses
1647	  little memory.
1648
1649	  Xtendend Tiny Encryption Algorithm is a modification to
1650	  the TEA algorithm to address a potential key weakness
1651	  in the TEA algorithm.
1652
1653	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1654	  of the XTEA algorithm for compatibility purposes.
1655
1656config CRYPTO_TWOFISH
1657	tristate "Twofish cipher algorithm"
1658	select CRYPTO_ALGAPI
1659	select CRYPTO_TWOFISH_COMMON
1660	help
1661	  Twofish cipher algorithm.
1662
1663	  Twofish was submitted as an AES (Advanced Encryption Standard)
1664	  candidate cipher by researchers at CounterPane Systems.  It is a
1665	  16 round block cipher supporting key sizes of 128, 192, and 256
1666	  bits.
1667
1668	  See also:
1669	  <https://www.schneier.com/twofish.html>
1670
1671config CRYPTO_TWOFISH_COMMON
1672	tristate
1673	help
1674	  Common parts of the Twofish cipher algorithm shared by the
1675	  generic c and the assembler implementations.
1676
1677config CRYPTO_TWOFISH_586
1678	tristate "Twofish cipher algorithms (i586)"
1679	depends on (X86 || UML_X86) && !64BIT
1680	select CRYPTO_ALGAPI
1681	select CRYPTO_TWOFISH_COMMON
1682	imply CRYPTO_CTR
1683	help
1684	  Twofish cipher algorithm.
1685
1686	  Twofish was submitted as an AES (Advanced Encryption Standard)
1687	  candidate cipher by researchers at CounterPane Systems.  It is a
1688	  16 round block cipher supporting key sizes of 128, 192, and 256
1689	  bits.
1690
1691	  See also:
1692	  <https://www.schneier.com/twofish.html>
1693
1694config CRYPTO_TWOFISH_X86_64
1695	tristate "Twofish cipher algorithm (x86_64)"
1696	depends on (X86 || UML_X86) && 64BIT
1697	select CRYPTO_ALGAPI
1698	select CRYPTO_TWOFISH_COMMON
1699	imply CRYPTO_CTR
1700	help
1701	  Twofish cipher algorithm (x86_64).
1702
1703	  Twofish was submitted as an AES (Advanced Encryption Standard)
1704	  candidate cipher by researchers at CounterPane Systems.  It is a
1705	  16 round block cipher supporting key sizes of 128, 192, and 256
1706	  bits.
1707
1708	  See also:
1709	  <https://www.schneier.com/twofish.html>
1710
1711config CRYPTO_TWOFISH_X86_64_3WAY
1712	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1713	depends on X86 && 64BIT
1714	select CRYPTO_SKCIPHER
1715	select CRYPTO_TWOFISH_COMMON
1716	select CRYPTO_TWOFISH_X86_64
1717	help
1718	  Twofish cipher algorithm (x86_64, 3-way parallel).
1719
1720	  Twofish was submitted as an AES (Advanced Encryption Standard)
1721	  candidate cipher by researchers at CounterPane Systems.  It is a
1722	  16 round block cipher supporting key sizes of 128, 192, and 256
1723	  bits.
1724
1725	  This module provides Twofish cipher algorithm that processes three
1726	  blocks parallel, utilizing resources of out-of-order CPUs better.
1727
1728	  See also:
1729	  <https://www.schneier.com/twofish.html>
1730
1731config CRYPTO_TWOFISH_AVX_X86_64
1732	tristate "Twofish cipher algorithm (x86_64/AVX)"
1733	depends on X86 && 64BIT
1734	select CRYPTO_SKCIPHER
1735	select CRYPTO_SIMD
1736	select CRYPTO_TWOFISH_COMMON
1737	select CRYPTO_TWOFISH_X86_64
1738	select CRYPTO_TWOFISH_X86_64_3WAY
1739	imply CRYPTO_XTS
1740	help
1741	  Twofish cipher algorithm (x86_64/AVX).
1742
1743	  Twofish was submitted as an AES (Advanced Encryption Standard)
1744	  candidate cipher by researchers at CounterPane Systems.  It is a
1745	  16 round block cipher supporting key sizes of 128, 192, and 256
1746	  bits.
1747
1748	  This module provides the Twofish cipher algorithm that processes
1749	  eight blocks parallel using the AVX Instruction Set.
1750
1751	  See also:
1752	  <https://www.schneier.com/twofish.html>
1753
1754comment "Compression"
1755
1756config CRYPTO_DEFLATE
1757	tristate "Deflate compression algorithm"
1758	select CRYPTO_ALGAPI
1759	select CRYPTO_ACOMP2
1760	select ZLIB_INFLATE
1761	select ZLIB_DEFLATE
1762	help
1763	  This is the Deflate algorithm (RFC1951), specified for use in
1764	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1765
1766	  You will most probably want this if using IPSec.
1767
1768config CRYPTO_LZO
1769	tristate "LZO compression algorithm"
1770	select CRYPTO_ALGAPI
1771	select CRYPTO_ACOMP2
1772	select LZO_COMPRESS
1773	select LZO_DECOMPRESS
1774	help
1775	  This is the LZO algorithm.
1776
1777config CRYPTO_842
1778	tristate "842 compression algorithm"
1779	select CRYPTO_ALGAPI
1780	select CRYPTO_ACOMP2
1781	select 842_COMPRESS
1782	select 842_DECOMPRESS
1783	help
1784	  This is the 842 algorithm.
1785
1786config CRYPTO_LZ4
1787	tristate "LZ4 compression algorithm"
1788	select CRYPTO_ALGAPI
1789	select CRYPTO_ACOMP2
1790	select LZ4_COMPRESS
1791	select LZ4_DECOMPRESS
1792	help
1793	  This is the LZ4 algorithm.
1794
1795config CRYPTO_LZ4HC
1796	tristate "LZ4HC compression algorithm"
1797	select CRYPTO_ALGAPI
1798	select CRYPTO_ACOMP2
1799	select LZ4HC_COMPRESS
1800	select LZ4_DECOMPRESS
1801	help
1802	  This is the LZ4 high compression mode algorithm.
1803
1804config CRYPTO_ZSTD
1805	tristate "Zstd compression algorithm"
1806	select CRYPTO_ALGAPI
1807	select CRYPTO_ACOMP2
1808	select ZSTD_COMPRESS
1809	select ZSTD_DECOMPRESS
1810	help
1811	  This is the zstd algorithm.
1812
1813comment "Random Number Generation"
1814
1815config CRYPTO_ANSI_CPRNG
1816	tristate "Pseudo Random Number Generation for Cryptographic modules"
1817	select CRYPTO_AES
1818	select CRYPTO_RNG
1819	help
1820	  This option enables the generic pseudo random number generator
1821	  for cryptographic modules.  Uses the Algorithm specified in
1822	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1823	  CRYPTO_FIPS is selected
1824
1825menuconfig CRYPTO_DRBG_MENU
1826	tristate "NIST SP800-90A DRBG"
1827	help
1828	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1829	  more of the DRBG types must be selected.
1830
1831if CRYPTO_DRBG_MENU
1832
1833config CRYPTO_DRBG_HMAC
1834	bool
1835	default y
1836	select CRYPTO_HMAC
1837	select CRYPTO_SHA512
1838
1839config CRYPTO_DRBG_HASH
1840	bool "Enable Hash DRBG"
1841	select CRYPTO_SHA256
1842	help
1843	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1844
1845config CRYPTO_DRBG_CTR
1846	bool "Enable CTR DRBG"
1847	select CRYPTO_AES
1848	select CRYPTO_CTR
1849	help
1850	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1851
1852config CRYPTO_DRBG
1853	tristate
1854	default CRYPTO_DRBG_MENU
1855	select CRYPTO_RNG
1856	select CRYPTO_JITTERENTROPY
1857
1858endif	# if CRYPTO_DRBG_MENU
1859
1860config CRYPTO_JITTERENTROPY
1861	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1862	select CRYPTO_RNG
1863	help
1864	  The Jitterentropy RNG is a noise that is intended
1865	  to provide seed to another RNG. The RNG does not
1866	  perform any cryptographic whitening of the generated
1867	  random numbers. This Jitterentropy RNG registers with
1868	  the kernel crypto API and can be used by any caller.
1869
1870config CRYPTO_KDF800108_CTR
1871	tristate
1872	select CRYPTO_HMAC
1873	select CRYPTO_SHA256
1874
1875config CRYPTO_USER_API
1876	tristate
1877
1878config CRYPTO_USER_API_HASH
1879	tristate "User-space interface for hash algorithms"
1880	depends on NET
1881	select CRYPTO_HASH
1882	select CRYPTO_USER_API
1883	help
1884	  This option enables the user-spaces interface for hash
1885	  algorithms.
1886
1887config CRYPTO_USER_API_SKCIPHER
1888	tristate "User-space interface for symmetric key cipher algorithms"
1889	depends on NET
1890	select CRYPTO_SKCIPHER
1891	select CRYPTO_USER_API
1892	help
1893	  This option enables the user-spaces interface for symmetric
1894	  key cipher algorithms.
1895
1896config CRYPTO_USER_API_RNG
1897	tristate "User-space interface for random number generator algorithms"
1898	depends on NET
1899	select CRYPTO_RNG
1900	select CRYPTO_USER_API
1901	help
1902	  This option enables the user-spaces interface for random
1903	  number generator algorithms.
1904
1905config CRYPTO_USER_API_RNG_CAVP
1906	bool "Enable CAVP testing of DRBG"
1907	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1908	help
1909	  This option enables extra API for CAVP testing via the user-space
1910	  interface: resetting of DRBG entropy, and providing Additional Data.
1911	  This should only be enabled for CAVP testing. You should say
1912	  no unless you know what this is.
1913
1914config CRYPTO_USER_API_AEAD
1915	tristate "User-space interface for AEAD cipher algorithms"
1916	depends on NET
1917	select CRYPTO_AEAD
1918	select CRYPTO_SKCIPHER
1919	select CRYPTO_NULL
1920	select CRYPTO_USER_API
1921	help
1922	  This option enables the user-spaces interface for AEAD
1923	  cipher algorithms.
1924
1925config CRYPTO_USER_API_ENABLE_OBSOLETE
1926	bool "Enable obsolete cryptographic algorithms for userspace"
1927	depends on CRYPTO_USER_API
1928	default y
1929	help
1930	  Allow obsolete cryptographic algorithms to be selected that have
1931	  already been phased out from internal use by the kernel, and are
1932	  only useful for userspace clients that still rely on them.
1933
1934config CRYPTO_STATS
1935	bool "Crypto usage statistics for User-space"
1936	depends on CRYPTO_USER
1937	help
1938	  This option enables the gathering of crypto stats.
1939	  This will collect:
1940	  - encrypt/decrypt size and numbers of symmeric operations
1941	  - compress/decompress size and numbers of compress operations
1942	  - size and numbers of hash operations
1943	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1944	  - generate/seed numbers for rng operations
1945
1946config CRYPTO_HASH_INFO
1947	bool
1948
1949source "drivers/crypto/Kconfig"
1950source "crypto/asymmetric_keys/Kconfig"
1951source "certs/Kconfig"
1952
1953endif	# if CRYPTO
1954