1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS 19 help 20 This option provides the core Cryptographic API. 21 22if CRYPTO 23 24menu "Crypto core or helper" 25 26config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 30 help 31 This option enables the fips boot option which is 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no unless you know what 34 this is. 35 36config CRYPTO_FIPS_NAME 37 string "FIPS Module Name" 38 default "Linux Kernel Cryptographic API" 39 depends on CRYPTO_FIPS 40 help 41 This option sets the FIPS Module name reported by the Crypto API via 42 the /proc/sys/crypto/fips_name file. 43 44config CRYPTO_FIPS_CUSTOM_VERSION 45 bool "Use Custom FIPS Module Version" 46 depends on CRYPTO_FIPS 47 default n 48 49config CRYPTO_FIPS_VERSION 50 string "FIPS Module Version" 51 default "(none)" 52 depends on CRYPTO_FIPS_CUSTOM_VERSION 53 help 54 This option provides the ability to override the FIPS Module Version. 55 By default the KERNELRELEASE value is used. 56 57config CRYPTO_ALGAPI 58 tristate 59 select CRYPTO_ALGAPI2 60 help 61 This option provides the API for cryptographic algorithms. 62 63config CRYPTO_ALGAPI2 64 tristate 65 66config CRYPTO_AEAD 67 tristate 68 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_AEAD2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_SIG 76 tristate 77 select CRYPTO_SIG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_SIG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_SKCIPHER 85 tristate 86 select CRYPTO_SKCIPHER2 87 select CRYPTO_ALGAPI 88 select CRYPTO_ECB 89 90config CRYPTO_SKCIPHER2 91 tristate 92 select CRYPTO_ALGAPI2 93 94config CRYPTO_HASH 95 tristate 96 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 98 99config CRYPTO_HASH2 100 tristate 101 select CRYPTO_ALGAPI2 102 103config CRYPTO_RNG 104 tristate 105 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 107 108config CRYPTO_RNG2 109 tristate 110 select CRYPTO_ALGAPI2 111 112config CRYPTO_RNG_DEFAULT 113 tristate 114 select CRYPTO_DRBG_MENU 115 116config CRYPTO_AKCIPHER2 117 tristate 118 select CRYPTO_ALGAPI2 119 120config CRYPTO_AKCIPHER 121 tristate 122 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 124 125config CRYPTO_KPP2 126 tristate 127 select CRYPTO_ALGAPI2 128 129config CRYPTO_KPP 130 tristate 131 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 133 134config CRYPTO_ACOMP2 135 tristate 136 select CRYPTO_ALGAPI2 137 select SGL_ALLOC 138 139config CRYPTO_ACOMP 140 tristate 141 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 143 144config CRYPTO_HKDF 145 tristate 146 select CRYPTO_SHA256 if !CONFIG_CRYPTO_MANAGER_DISABLE_TESTS 147 select CRYPTO_SHA512 if !CONFIG_CRYPTO_MANAGER_DISABLE_TESTS 148 select CRYPTO_HASH2 149 150config CRYPTO_MANAGER 151 tristate "Cryptographic algorithm manager" 152 select CRYPTO_MANAGER2 153 help 154 Create default cryptographic template instantiations such as 155 cbc(aes). 156 157config CRYPTO_MANAGER2 158 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 159 select CRYPTO_ACOMP2 160 select CRYPTO_AEAD2 161 select CRYPTO_AKCIPHER2 162 select CRYPTO_SIG2 163 select CRYPTO_HASH2 164 select CRYPTO_KPP2 165 select CRYPTO_RNG2 166 select CRYPTO_SKCIPHER2 167 168config CRYPTO_USER 169 tristate "Userspace cryptographic algorithm configuration" 170 depends on NET 171 select CRYPTO_MANAGER 172 help 173 Userspace configuration for cryptographic instantiations such as 174 cbc(aes). 175 176config CRYPTO_MANAGER_DISABLE_TESTS 177 bool "Disable run-time self tests" 178 default y 179 help 180 Disable run-time self tests that normally take place at 181 algorithm registration. 182 183config CRYPTO_MANAGER_EXTRA_TESTS 184 bool "Enable extra run-time crypto self tests" 185 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 186 help 187 Enable extra run-time self tests of registered crypto algorithms, 188 including randomized fuzz tests. 189 190 This is intended for developer use only, as these tests take much 191 longer to run than the normal self tests. 192 193config CRYPTO_NULL 194 tristate "Null algorithms" 195 select CRYPTO_NULL2 196 help 197 These are 'Null' algorithms, used by IPsec, which do nothing. 198 199config CRYPTO_NULL2 200 tristate 201 select CRYPTO_ALGAPI2 202 select CRYPTO_SKCIPHER2 203 select CRYPTO_HASH2 204 205config CRYPTO_PCRYPT 206 tristate "Parallel crypto engine" 207 depends on SMP 208 select PADATA 209 select CRYPTO_MANAGER 210 select CRYPTO_AEAD 211 help 212 This converts an arbitrary crypto algorithm into a parallel 213 algorithm that executes in kernel threads. 214 215config CRYPTO_CRYPTD 216 tristate "Software async crypto daemon" 217 select CRYPTO_SKCIPHER 218 select CRYPTO_HASH 219 select CRYPTO_MANAGER 220 help 221 This is a generic software asynchronous crypto daemon that 222 converts an arbitrary synchronous software crypto algorithm 223 into an asynchronous algorithm that executes in a kernel thread. 224 225config CRYPTO_AUTHENC 226 tristate "Authenc support" 227 select CRYPTO_AEAD 228 select CRYPTO_SKCIPHER 229 select CRYPTO_MANAGER 230 select CRYPTO_HASH 231 select CRYPTO_NULL 232 help 233 Authenc: Combined mode wrapper for IPsec. 234 235 This is required for IPSec ESP (XFRM_ESP). 236 237config CRYPTO_KRB5ENC 238 tristate "Kerberos 5 combined hash+cipher support" 239 select CRYPTO_AEAD 240 select CRYPTO_SKCIPHER 241 select CRYPTO_MANAGER 242 select CRYPTO_HASH 243 select CRYPTO_NULL 244 help 245 Combined hash and cipher support for Kerberos 5 RFC3961 simplified 246 profile. This is required for Kerberos 5-style encryption, used by 247 sunrpc/NFS and rxrpc/AFS. 248 249config CRYPTO_TEST 250 tristate "Testing module" 251 depends on m || EXPERT 252 select CRYPTO_MANAGER 253 help 254 Quick & dirty crypto test module. 255 256config CRYPTO_SIMD 257 tristate 258 select CRYPTO_CRYPTD 259 260config CRYPTO_ENGINE 261 tristate 262 263endmenu 264 265menu "Public-key cryptography" 266 267config CRYPTO_RSA 268 tristate "RSA (Rivest-Shamir-Adleman)" 269 select CRYPTO_AKCIPHER 270 select CRYPTO_MANAGER 271 select CRYPTO_SIG 272 select MPILIB 273 select ASN1 274 help 275 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017) 276 277config CRYPTO_DH 278 tristate "DH (Diffie-Hellman)" 279 select CRYPTO_KPP 280 select MPILIB 281 help 282 DH (Diffie-Hellman) key exchange algorithm 283 284config CRYPTO_DH_RFC7919_GROUPS 285 bool "RFC 7919 FFDHE groups" 286 depends on CRYPTO_DH 287 select CRYPTO_RNG_DEFAULT 288 help 289 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups 290 defined in RFC7919. 291 292 Support these finite-field groups in DH key exchanges: 293 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192 294 295 If unsure, say N. 296 297config CRYPTO_ECC 298 tristate 299 select CRYPTO_RNG_DEFAULT 300 301config CRYPTO_ECDH 302 tristate "ECDH (Elliptic Curve Diffie-Hellman)" 303 select CRYPTO_ECC 304 select CRYPTO_KPP 305 help 306 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm 307 using curves P-192, P-256, and P-384 (FIPS 186) 308 309config CRYPTO_ECDSA 310 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)" 311 select CRYPTO_ECC 312 select CRYPTO_SIG 313 select ASN1 314 help 315 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186, 316 ISO/IEC 14888-3) 317 using curves P-192, P-256, P-384 and P-521 318 319 Only signature verification is implemented. 320 321config CRYPTO_ECRDSA 322 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)" 323 select CRYPTO_ECC 324 select CRYPTO_SIG 325 select CRYPTO_STREEBOG 326 select OID_REGISTRY 327 select ASN1 328 help 329 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 330 RFC 7091, ISO/IEC 14888-3) 331 332 One of the Russian cryptographic standard algorithms (called GOST 333 algorithms). Only signature verification is implemented. 334 335config CRYPTO_CURVE25519 336 tristate "Curve25519" 337 select CRYPTO_KPP 338 select CRYPTO_LIB_CURVE25519_GENERIC 339 select CRYPTO_LIB_CURVE25519_INTERNAL 340 help 341 Curve25519 elliptic curve (RFC7748) 342 343endmenu 344 345menu "Block ciphers" 346 347config CRYPTO_AES 348 tristate "AES (Advanced Encryption Standard)" 349 select CRYPTO_ALGAPI 350 select CRYPTO_LIB_AES 351 help 352 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3) 353 354 Rijndael appears to be consistently a very good performer in 355 both hardware and software across a wide range of computing 356 environments regardless of its use in feedback or non-feedback 357 modes. Its key setup time is excellent, and its key agility is 358 good. Rijndael's very low memory requirements make it very well 359 suited for restricted-space environments, in which it also 360 demonstrates excellent performance. Rijndael's operations are 361 among the easiest to defend against power and timing attacks. 362 363 The AES specifies three key sizes: 128, 192 and 256 bits 364 365config CRYPTO_AES_TI 366 tristate "AES (Advanced Encryption Standard) (fixed time)" 367 select CRYPTO_ALGAPI 368 select CRYPTO_LIB_AES 369 help 370 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3) 371 372 This is a generic implementation of AES that attempts to eliminate 373 data dependent latencies as much as possible without affecting 374 performance too much. It is intended for use by the generic CCM 375 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 376 solely on encryption (although decryption is supported as well, but 377 with a more dramatic performance hit) 378 379 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 380 8 for decryption), this implementation only uses just two S-boxes of 381 256 bytes each, and attempts to eliminate data dependent latencies by 382 prefetching the entire table into the cache at the start of each 383 block. Interrupts are also disabled to avoid races where cachelines 384 are evicted when the CPU is interrupted to do something else. 385 386config CRYPTO_ANUBIS 387 tristate "Anubis" 388 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 389 select CRYPTO_ALGAPI 390 help 391 Anubis cipher algorithm 392 393 Anubis is a variable key length cipher which can use keys from 394 128 bits to 320 bits in length. It was evaluated as a entrant 395 in the NESSIE competition. 396 397 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html 398 for further information. 399 400config CRYPTO_ARIA 401 tristate "ARIA" 402 select CRYPTO_ALGAPI 403 help 404 ARIA cipher algorithm (RFC5794) 405 406 ARIA is a standard encryption algorithm of the Republic of Korea. 407 The ARIA specifies three key sizes and rounds. 408 128-bit: 12 rounds. 409 192-bit: 14 rounds. 410 256-bit: 16 rounds. 411 412 See: 413 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do 414 415config CRYPTO_BLOWFISH 416 tristate "Blowfish" 417 select CRYPTO_ALGAPI 418 select CRYPTO_BLOWFISH_COMMON 419 help 420 Blowfish cipher algorithm, by Bruce Schneier 421 422 This is a variable key length cipher which can use keys from 32 423 bits to 448 bits in length. It's fast, simple and specifically 424 designed for use on "large microprocessors". 425 426 See https://www.schneier.com/blowfish.html for further information. 427 428config CRYPTO_BLOWFISH_COMMON 429 tristate 430 help 431 Common parts of the Blowfish cipher algorithm shared by the 432 generic c and the assembler implementations. 433 434config CRYPTO_CAMELLIA 435 tristate "Camellia" 436 select CRYPTO_ALGAPI 437 help 438 Camellia cipher algorithms (ISO/IEC 18033-3) 439 440 Camellia is a symmetric key block cipher developed jointly 441 at NTT and Mitsubishi Electric Corporation. 442 443 The Camellia specifies three key sizes: 128, 192 and 256 bits. 444 445 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information. 446 447config CRYPTO_CAST_COMMON 448 tristate 449 help 450 Common parts of the CAST cipher algorithms shared by the 451 generic c and the assembler implementations. 452 453config CRYPTO_CAST5 454 tristate "CAST5 (CAST-128)" 455 select CRYPTO_ALGAPI 456 select CRYPTO_CAST_COMMON 457 help 458 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3) 459 460config CRYPTO_CAST6 461 tristate "CAST6 (CAST-256)" 462 select CRYPTO_ALGAPI 463 select CRYPTO_CAST_COMMON 464 help 465 CAST6 (CAST-256) encryption algorithm (RFC2612) 466 467config CRYPTO_DES 468 tristate "DES and Triple DES EDE" 469 select CRYPTO_ALGAPI 470 select CRYPTO_LIB_DES 471 help 472 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and 473 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3) 474 cipher algorithms 475 476config CRYPTO_FCRYPT 477 tristate "FCrypt" 478 select CRYPTO_ALGAPI 479 select CRYPTO_SKCIPHER 480 help 481 FCrypt algorithm used by RxRPC 482 483 See https://ota.polyonymo.us/fcrypt-paper.txt 484 485config CRYPTO_KHAZAD 486 tristate "Khazad" 487 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 488 select CRYPTO_ALGAPI 489 help 490 Khazad cipher algorithm 491 492 Khazad was a finalist in the initial NESSIE competition. It is 493 an algorithm optimized for 64-bit processors with good performance 494 on 32-bit processors. Khazad uses an 128 bit key size. 495 496 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html 497 for further information. 498 499config CRYPTO_SEED 500 tristate "SEED" 501 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 502 select CRYPTO_ALGAPI 503 help 504 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3) 505 506 SEED is a 128-bit symmetric key block cipher that has been 507 developed by KISA (Korea Information Security Agency) as a 508 national standard encryption algorithm of the Republic of Korea. 509 It is a 16 round block cipher with the key size of 128 bit. 510 511 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do 512 for further information. 513 514config CRYPTO_SERPENT 515 tristate "Serpent" 516 select CRYPTO_ALGAPI 517 help 518 Serpent cipher algorithm, by Anderson, Biham & Knudsen 519 520 Keys are allowed to be from 0 to 256 bits in length, in steps 521 of 8 bits. 522 523 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information. 524 525config CRYPTO_SM4 526 tristate 527 528config CRYPTO_SM4_GENERIC 529 tristate "SM4 (ShangMi 4)" 530 select CRYPTO_ALGAPI 531 select CRYPTO_SM4 532 help 533 SM4 cipher algorithms (OSCCA GB/T 32907-2016, 534 ISO/IEC 18033-3:2010/Amd 1:2021) 535 536 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 537 Organization of State Commercial Administration of China (OSCCA) 538 as an authorized cryptographic algorithms for the use within China. 539 540 SMS4 was originally created for use in protecting wireless 541 networks, and is mandated in the Chinese National Standard for 542 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 543 (GB.15629.11-2003). 544 545 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 546 standardized through TC 260 of the Standardization Administration 547 of the People's Republic of China (SAC). 548 549 The input, output, and key of SMS4 are each 128 bits. 550 551 See https://eprint.iacr.org/2008/329.pdf for further information. 552 553 If unsure, say N. 554 555config CRYPTO_TEA 556 tristate "TEA, XTEA and XETA" 557 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 558 select CRYPTO_ALGAPI 559 help 560 TEA (Tiny Encryption Algorithm) cipher algorithms 561 562 Tiny Encryption Algorithm is a simple cipher that uses 563 many rounds for security. It is very fast and uses 564 little memory. 565 566 Xtendend Tiny Encryption Algorithm is a modification to 567 the TEA algorithm to address a potential key weakness 568 in the TEA algorithm. 569 570 Xtendend Encryption Tiny Algorithm is a mis-implementation 571 of the XTEA algorithm for compatibility purposes. 572 573config CRYPTO_TWOFISH 574 tristate "Twofish" 575 select CRYPTO_ALGAPI 576 select CRYPTO_TWOFISH_COMMON 577 help 578 Twofish cipher algorithm 579 580 Twofish was submitted as an AES (Advanced Encryption Standard) 581 candidate cipher by researchers at CounterPane Systems. It is a 582 16 round block cipher supporting key sizes of 128, 192, and 256 583 bits. 584 585 See https://www.schneier.com/twofish.html for further information. 586 587config CRYPTO_TWOFISH_COMMON 588 tristate 589 help 590 Common parts of the Twofish cipher algorithm shared by the 591 generic c and the assembler implementations. 592 593endmenu 594 595menu "Length-preserving ciphers and modes" 596 597config CRYPTO_ADIANTUM 598 tristate "Adiantum" 599 select CRYPTO_CHACHA20 600 select CRYPTO_LIB_POLY1305_GENERIC 601 select CRYPTO_NHPOLY1305 602 select CRYPTO_MANAGER 603 help 604 Adiantum tweakable, length-preserving encryption mode 605 606 Designed for fast and secure disk encryption, especially on 607 CPUs without dedicated crypto instructions. It encrypts 608 each sector using the XChaCha12 stream cipher, two passes of 609 an ε-almost-∆-universal hash function, and an invocation of 610 the AES-256 block cipher on a single 16-byte block. On CPUs 611 without AES instructions, Adiantum is much faster than 612 AES-XTS. 613 614 Adiantum's security is provably reducible to that of its 615 underlying stream and block ciphers, subject to a security 616 bound. Unlike XTS, Adiantum is a true wide-block encryption 617 mode, so it actually provides an even stronger notion of 618 security than XTS, subject to the security bound. 619 620 If unsure, say N. 621 622config CRYPTO_ARC4 623 tristate "ARC4 (Alleged Rivest Cipher 4)" 624 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 625 select CRYPTO_SKCIPHER 626 select CRYPTO_LIB_ARC4 627 help 628 ARC4 cipher algorithm 629 630 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 631 bits in length. This algorithm is required for driver-based 632 WEP, but it should not be for other purposes because of the 633 weakness of the algorithm. 634 635config CRYPTO_CHACHA20 636 tristate "ChaCha" 637 select CRYPTO_LIB_CHACHA 638 select CRYPTO_LIB_CHACHA_GENERIC 639 select CRYPTO_SKCIPHER 640 help 641 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms 642 643 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 644 Bernstein and further specified in RFC7539 for use in IETF protocols. 645 This is the portable C implementation of ChaCha20. See 646 https://cr.yp.to/chacha/chacha-20080128.pdf for further information. 647 648 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 649 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 650 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 651 while provably retaining ChaCha20's security. See 652 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information. 653 654 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 655 reduced security margin but increased performance. It can be needed 656 in some performance-sensitive scenarios. 657 658config CRYPTO_CBC 659 tristate "CBC (Cipher Block Chaining)" 660 select CRYPTO_SKCIPHER 661 select CRYPTO_MANAGER 662 help 663 CBC (Cipher Block Chaining) mode (NIST SP800-38A) 664 665 This block cipher mode is required for IPSec ESP (XFRM_ESP). 666 667config CRYPTO_CTR 668 tristate "CTR (Counter)" 669 select CRYPTO_SKCIPHER 670 select CRYPTO_MANAGER 671 help 672 CTR (Counter) mode (NIST SP800-38A) 673 674config CRYPTO_CTS 675 tristate "CTS (Cipher Text Stealing)" 676 select CRYPTO_SKCIPHER 677 select CRYPTO_MANAGER 678 help 679 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST 680 Addendum to SP800-38A (October 2010)) 681 682 This mode is required for Kerberos gss mechanism support 683 for AES encryption. 684 685config CRYPTO_ECB 686 tristate "ECB (Electronic Codebook)" 687 select CRYPTO_SKCIPHER2 688 select CRYPTO_MANAGER 689 help 690 ECB (Electronic Codebook) mode (NIST SP800-38A) 691 692config CRYPTO_HCTR2 693 tristate "HCTR2" 694 select CRYPTO_XCTR 695 select CRYPTO_POLYVAL 696 select CRYPTO_MANAGER 697 help 698 HCTR2 length-preserving encryption mode 699 700 A mode for storage encryption that is efficient on processors with 701 instructions to accelerate AES and carryless multiplication, e.g. 702 x86 processors with AES-NI and CLMUL, and ARM processors with the 703 ARMv8 crypto extensions. 704 705 See https://eprint.iacr.org/2021/1441 706 707config CRYPTO_LRW 708 tristate "LRW (Liskov Rivest Wagner)" 709 select CRYPTO_LIB_GF128MUL 710 select CRYPTO_SKCIPHER 711 select CRYPTO_MANAGER 712 select CRYPTO_ECB 713 help 714 LRW (Liskov Rivest Wagner) mode 715 716 A tweakable, non malleable, non movable 717 narrow block cipher mode for dm-crypt. Use it with cipher 718 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 719 The first 128, 192 or 256 bits in the key are used for AES and the 720 rest is used to tie each cipher block to its logical position. 721 722 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf 723 724config CRYPTO_PCBC 725 tristate "PCBC (Propagating Cipher Block Chaining)" 726 select CRYPTO_SKCIPHER 727 select CRYPTO_MANAGER 728 help 729 PCBC (Propagating Cipher Block Chaining) mode 730 731 This block cipher mode is required for RxRPC. 732 733config CRYPTO_XCTR 734 tristate 735 select CRYPTO_SKCIPHER 736 select CRYPTO_MANAGER 737 help 738 XCTR (XOR Counter) mode for HCTR2 739 740 This blockcipher mode is a variant of CTR mode using XORs and little-endian 741 addition rather than big-endian arithmetic. 742 743 XCTR mode is used to implement HCTR2. 744 745config CRYPTO_XTS 746 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)" 747 select CRYPTO_SKCIPHER 748 select CRYPTO_MANAGER 749 select CRYPTO_ECB 750 help 751 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E 752 and IEEE 1619) 753 754 Use with aes-xts-plain, key size 256, 384 or 512 bits. This 755 implementation currently can't handle a sectorsize which is not a 756 multiple of 16 bytes. 757 758config CRYPTO_NHPOLY1305 759 tristate 760 select CRYPTO_HASH 761 select CRYPTO_LIB_POLY1305_GENERIC 762 763endmenu 764 765menu "AEAD (authenticated encryption with associated data) ciphers" 766 767config CRYPTO_AEGIS128 768 tristate "AEGIS-128" 769 select CRYPTO_AEAD 770 select CRYPTO_AES # for AES S-box tables 771 help 772 AEGIS-128 AEAD algorithm 773 774config CRYPTO_AEGIS128_SIMD 775 bool "AEGIS-128 (arm NEON, arm64 NEON)" 776 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 777 default y 778 help 779 AEGIS-128 AEAD algorithm 780 781 Architecture: arm or arm64 using: 782 - NEON (Advanced SIMD) extension 783 784config CRYPTO_CHACHA20POLY1305 785 tristate "ChaCha20-Poly1305" 786 select CRYPTO_CHACHA20 787 select CRYPTO_AEAD 788 select CRYPTO_LIB_POLY1305 789 select CRYPTO_MANAGER 790 help 791 ChaCha20 stream cipher and Poly1305 authenticator combined 792 mode (RFC8439) 793 794config CRYPTO_CCM 795 tristate "CCM (Counter with Cipher Block Chaining-MAC)" 796 select CRYPTO_CTR 797 select CRYPTO_HASH 798 select CRYPTO_AEAD 799 select CRYPTO_MANAGER 800 help 801 CCM (Counter with Cipher Block Chaining-Message Authentication Code) 802 authenticated encryption mode (NIST SP800-38C) 803 804config CRYPTO_GCM 805 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)" 806 select CRYPTO_CTR 807 select CRYPTO_AEAD 808 select CRYPTO_GHASH 809 select CRYPTO_NULL 810 select CRYPTO_MANAGER 811 help 812 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC 813 (GCM Message Authentication Code) (NIST SP800-38D) 814 815 This is required for IPSec ESP (XFRM_ESP). 816 817config CRYPTO_GENIV 818 tristate 819 select CRYPTO_AEAD 820 select CRYPTO_NULL 821 select CRYPTO_MANAGER 822 select CRYPTO_RNG_DEFAULT 823 824config CRYPTO_SEQIV 825 tristate "Sequence Number IV Generator" 826 select CRYPTO_GENIV 827 help 828 Sequence Number IV generator 829 830 This IV generator generates an IV based on a sequence number by 831 xoring it with a salt. This algorithm is mainly useful for CTR. 832 833 This is required for IPsec ESP (XFRM_ESP). 834 835config CRYPTO_ECHAINIV 836 tristate "Encrypted Chain IV Generator" 837 select CRYPTO_GENIV 838 help 839 Encrypted Chain IV generator 840 841 This IV generator generates an IV based on the encryption of 842 a sequence number xored with a salt. This is the default 843 algorithm for CBC. 844 845config CRYPTO_ESSIV 846 tristate "Encrypted Salt-Sector IV Generator" 847 select CRYPTO_AUTHENC 848 help 849 Encrypted Salt-Sector IV generator 850 851 This IV generator is used in some cases by fscrypt and/or 852 dm-crypt. It uses the hash of the block encryption key as the 853 symmetric key for a block encryption pass applied to the input 854 IV, making low entropy IV sources more suitable for block 855 encryption. 856 857 This driver implements a crypto API template that can be 858 instantiated either as an skcipher or as an AEAD (depending on the 859 type of the first template argument), and which defers encryption 860 and decryption requests to the encapsulated cipher after applying 861 ESSIV to the input IV. Note that in the AEAD case, it is assumed 862 that the keys are presented in the same format used by the authenc 863 template, and that the IV appears at the end of the authenticated 864 associated data (AAD) region (which is how dm-crypt uses it.) 865 866 Note that the use of ESSIV is not recommended for new deployments, 867 and so this only needs to be enabled when interoperability with 868 existing encrypted volumes of filesystems is required, or when 869 building for a particular system that requires it (e.g., when 870 the SoC in question has accelerated CBC but not XTS, making CBC 871 combined with ESSIV the only feasible mode for h/w accelerated 872 block encryption) 873 874endmenu 875 876menu "Hashes, digests, and MACs" 877 878config CRYPTO_BLAKE2B 879 tristate "BLAKE2b" 880 select CRYPTO_HASH 881 help 882 BLAKE2b cryptographic hash function (RFC 7693) 883 884 BLAKE2b is optimized for 64-bit platforms and can produce digests 885 of any size between 1 and 64 bytes. The keyed hash is also implemented. 886 887 This module provides the following algorithms: 888 - blake2b-160 889 - blake2b-256 890 - blake2b-384 891 - blake2b-512 892 893 Used by the btrfs filesystem. 894 895 See https://blake2.net for further information. 896 897config CRYPTO_CMAC 898 tristate "CMAC (Cipher-based MAC)" 899 select CRYPTO_HASH 900 select CRYPTO_MANAGER 901 help 902 CMAC (Cipher-based Message Authentication Code) authentication 903 mode (NIST SP800-38B and IETF RFC4493) 904 905config CRYPTO_GHASH 906 tristate "GHASH" 907 select CRYPTO_HASH 908 select CRYPTO_LIB_GF128MUL 909 help 910 GCM GHASH function (NIST SP800-38D) 911 912config CRYPTO_HMAC 913 tristate "HMAC (Keyed-Hash MAC)" 914 select CRYPTO_HASH 915 select CRYPTO_MANAGER 916 help 917 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and 918 RFC2104) 919 920 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). 921 922config CRYPTO_MD4 923 tristate "MD4" 924 select CRYPTO_HASH 925 help 926 MD4 message digest algorithm (RFC1320) 927 928config CRYPTO_MD5 929 tristate "MD5" 930 select CRYPTO_HASH 931 help 932 MD5 message digest algorithm (RFC1321) 933 934config CRYPTO_MICHAEL_MIC 935 tristate "Michael MIC" 936 select CRYPTO_HASH 937 help 938 Michael MIC (Message Integrity Code) (IEEE 802.11i) 939 940 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol), 941 known as WPA (Wif-Fi Protected Access). 942 943 This algorithm is required for TKIP, but it should not be used for 944 other purposes because of the weakness of the algorithm. 945 946config CRYPTO_POLYVAL 947 tristate 948 select CRYPTO_HASH 949 select CRYPTO_LIB_GF128MUL 950 help 951 POLYVAL hash function for HCTR2 952 953 This is used in HCTR2. It is not a general-purpose 954 cryptographic hash function. 955 956config CRYPTO_RMD160 957 tristate "RIPEMD-160" 958 select CRYPTO_HASH 959 help 960 RIPEMD-160 hash function (ISO/IEC 10118-3) 961 962 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 963 to be used as a secure replacement for the 128-bit hash functions 964 MD4, MD5 and its predecessor RIPEMD 965 (not to be confused with RIPEMD-128). 966 967 Its speed is comparable to SHA-1 and there are no known attacks 968 against RIPEMD-160. 969 970 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 971 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html 972 for further information. 973 974config CRYPTO_SHA1 975 tristate "SHA-1" 976 select CRYPTO_HASH 977 select CRYPTO_LIB_SHA1 978 help 979 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3) 980 981config CRYPTO_SHA256 982 tristate "SHA-224 and SHA-256" 983 select CRYPTO_HASH 984 select CRYPTO_LIB_SHA256 985 select CRYPTO_LIB_SHA256_GENERIC 986 help 987 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3) 988 989 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). 990 Used by the btrfs filesystem, Ceph, NFS, and SMB. 991 992config CRYPTO_SHA512 993 tristate "SHA-384 and SHA-512" 994 select CRYPTO_HASH 995 help 996 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3) 997 998config CRYPTO_SHA3 999 tristate "SHA-3" 1000 select CRYPTO_HASH 1001 help 1002 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3) 1003 1004config CRYPTO_SM3_GENERIC 1005 tristate "SM3 (ShangMi 3)" 1006 select CRYPTO_HASH 1007 select CRYPTO_LIB_SM3 1008 help 1009 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3) 1010 1011 This is part of the Chinese Commercial Cryptography suite. 1012 1013 References: 1014 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1015 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1016 1017config CRYPTO_STREEBOG 1018 tristate "Streebog" 1019 select CRYPTO_HASH 1020 help 1021 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3) 1022 1023 This is one of the Russian cryptographic standard algorithms (called 1024 GOST algorithms). This setting enables two hash algorithms with 1025 256 and 512 bits output. 1026 1027 References: 1028 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1029 https://tools.ietf.org/html/rfc6986 1030 1031config CRYPTO_WP512 1032 tristate "Whirlpool" 1033 select CRYPTO_HASH 1034 help 1035 Whirlpool hash function (ISO/IEC 10118-3) 1036 1037 512, 384 and 256-bit hashes. 1038 1039 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1040 1041 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html 1042 for further information. 1043 1044config CRYPTO_XCBC 1045 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)" 1046 select CRYPTO_HASH 1047 select CRYPTO_MANAGER 1048 help 1049 XCBC-MAC (Extended Cipher Block Chaining Message Authentication 1050 Code) (RFC3566) 1051 1052config CRYPTO_XXHASH 1053 tristate "xxHash" 1054 select CRYPTO_HASH 1055 select XXHASH 1056 help 1057 xxHash non-cryptographic hash algorithm 1058 1059 Extremely fast, working at speeds close to RAM limits. 1060 1061 Used by the btrfs filesystem. 1062 1063endmenu 1064 1065menu "CRCs (cyclic redundancy checks)" 1066 1067config CRYPTO_CRC32C 1068 tristate "CRC32c" 1069 select CRYPTO_HASH 1070 select CRC32 1071 help 1072 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720) 1073 1074 A 32-bit CRC (cyclic redundancy check) with a polynomial defined 1075 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic 1076 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions 1077 on Communications, Vol. 41, No. 6, June 1993, selected for use with 1078 iSCSI. 1079 1080 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI. 1081 1082config CRYPTO_CRC32 1083 tristate "CRC32" 1084 select CRYPTO_HASH 1085 select CRC32 1086 help 1087 CRC32 CRC algorithm (IEEE 802.3) 1088 1089 Used by RoCEv2 and f2fs. 1090 1091endmenu 1092 1093menu "Compression" 1094 1095config CRYPTO_DEFLATE 1096 tristate "Deflate" 1097 select CRYPTO_ALGAPI 1098 select CRYPTO_ACOMP2 1099 select ZLIB_INFLATE 1100 select ZLIB_DEFLATE 1101 help 1102 Deflate compression algorithm (RFC1951) 1103 1104 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394) 1105 1106config CRYPTO_LZO 1107 tristate "LZO" 1108 select CRYPTO_ALGAPI 1109 select CRYPTO_ACOMP2 1110 select LZO_COMPRESS 1111 select LZO_DECOMPRESS 1112 help 1113 LZO compression algorithm 1114 1115 See https://www.oberhumer.com/opensource/lzo/ for further information. 1116 1117config CRYPTO_842 1118 tristate "842" 1119 select CRYPTO_ALGAPI 1120 select CRYPTO_ACOMP2 1121 select 842_COMPRESS 1122 select 842_DECOMPRESS 1123 help 1124 842 compression algorithm by IBM 1125 1126 See https://github.com/plauth/lib842 for further information. 1127 1128config CRYPTO_LZ4 1129 tristate "LZ4" 1130 select CRYPTO_ALGAPI 1131 select CRYPTO_ACOMP2 1132 select LZ4_COMPRESS 1133 select LZ4_DECOMPRESS 1134 help 1135 LZ4 compression algorithm 1136 1137 See https://github.com/lz4/lz4 for further information. 1138 1139config CRYPTO_LZ4HC 1140 tristate "LZ4HC" 1141 select CRYPTO_ALGAPI 1142 select CRYPTO_ACOMP2 1143 select LZ4HC_COMPRESS 1144 select LZ4_DECOMPRESS 1145 help 1146 LZ4 high compression mode algorithm 1147 1148 See https://github.com/lz4/lz4 for further information. 1149 1150config CRYPTO_ZSTD 1151 tristate "Zstd" 1152 select CRYPTO_ALGAPI 1153 select CRYPTO_ACOMP2 1154 select ZSTD_COMPRESS 1155 select ZSTD_DECOMPRESS 1156 help 1157 zstd compression algorithm 1158 1159 See https://github.com/facebook/zstd for further information. 1160 1161endmenu 1162 1163menu "Random number generation" 1164 1165config CRYPTO_ANSI_CPRNG 1166 tristate "ANSI PRNG (Pseudo Random Number Generator)" 1167 select CRYPTO_AES 1168 select CRYPTO_RNG 1169 help 1170 Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4) 1171 1172 This uses the AES cipher algorithm. 1173 1174 Note that this option must be enabled if CRYPTO_FIPS is selected 1175 1176menuconfig CRYPTO_DRBG_MENU 1177 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)" 1178 help 1179 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A) 1180 1181 In the following submenu, one or more of the DRBG types must be selected. 1182 1183if CRYPTO_DRBG_MENU 1184 1185config CRYPTO_DRBG_HMAC 1186 bool 1187 default y 1188 select CRYPTO_HMAC 1189 select CRYPTO_SHA512 1190 1191config CRYPTO_DRBG_HASH 1192 bool "Hash_DRBG" 1193 select CRYPTO_SHA256 1194 help 1195 Hash_DRBG variant as defined in NIST SP800-90A. 1196 1197 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms. 1198 1199config CRYPTO_DRBG_CTR 1200 bool "CTR_DRBG" 1201 select CRYPTO_AES 1202 select CRYPTO_CTR 1203 help 1204 CTR_DRBG variant as defined in NIST SP800-90A. 1205 1206 This uses the AES cipher algorithm with the counter block mode. 1207 1208config CRYPTO_DRBG 1209 tristate 1210 default CRYPTO_DRBG_MENU 1211 select CRYPTO_RNG 1212 select CRYPTO_JITTERENTROPY 1213 1214endif # if CRYPTO_DRBG_MENU 1215 1216config CRYPTO_JITTERENTROPY 1217 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)" 1218 select CRYPTO_RNG 1219 select CRYPTO_SHA3 1220 help 1221 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library 1222 1223 A non-physical non-deterministic ("true") RNG (e.g., an entropy source 1224 compliant with NIST SP800-90B) intended to provide a seed to a 1225 deterministic RNG (e.g., per NIST SP800-90C). 1226 This RNG does not perform any cryptographic whitening of the generated 1227 random numbers. 1228 1229 See https://www.chronox.de/jent/ 1230 1231if CRYPTO_JITTERENTROPY 1232if CRYPTO_FIPS && EXPERT 1233 1234choice 1235 prompt "CPU Jitter RNG Memory Size" 1236 default CRYPTO_JITTERENTROPY_MEMSIZE_2 1237 help 1238 The Jitter RNG measures the execution time of memory accesses. 1239 Multiple consecutive memory accesses are performed. If the memory 1240 size fits into a cache (e.g. L1), only the memory access timing 1241 to that cache is measured. The closer the cache is to the CPU 1242 the less variations are measured and thus the less entropy is 1243 obtained. Thus, if the memory size fits into the L1 cache, the 1244 obtained entropy is less than if the memory size fits within 1245 L1 + L2, which in turn is less if the memory fits into 1246 L1 + L2 + L3. Thus, by selecting a different memory size, 1247 the entropy rate produced by the Jitter RNG can be modified. 1248 1249 config CRYPTO_JITTERENTROPY_MEMSIZE_2 1250 bool "2048 Bytes (default)" 1251 1252 config CRYPTO_JITTERENTROPY_MEMSIZE_128 1253 bool "128 kBytes" 1254 1255 config CRYPTO_JITTERENTROPY_MEMSIZE_1024 1256 bool "1024 kBytes" 1257 1258 config CRYPTO_JITTERENTROPY_MEMSIZE_8192 1259 bool "8192 kBytes" 1260endchoice 1261 1262config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS 1263 int 1264 default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2 1265 default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128 1266 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024 1267 default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192 1268 1269config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE 1270 int 1271 default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2 1272 default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128 1273 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024 1274 default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192 1275 1276config CRYPTO_JITTERENTROPY_OSR 1277 int "CPU Jitter RNG Oversampling Rate" 1278 range 1 15 1279 default 3 1280 help 1281 The Jitter RNG allows the specification of an oversampling rate (OSR). 1282 The Jitter RNG operation requires a fixed amount of timing 1283 measurements to produce one output block of random numbers. The 1284 OSR value is multiplied with the amount of timing measurements to 1285 generate one output block. Thus, the timing measurement is oversampled 1286 by the OSR factor. The oversampling allows the Jitter RNG to operate 1287 on hardware whose timers deliver limited amount of entropy (e.g. 1288 the timer is coarse) by setting the OSR to a higher value. The 1289 trade-off, however, is that the Jitter RNG now requires more time 1290 to generate random numbers. 1291 1292config CRYPTO_JITTERENTROPY_TESTINTERFACE 1293 bool "CPU Jitter RNG Test Interface" 1294 help 1295 The test interface allows a privileged process to capture 1296 the raw unconditioned high resolution time stamp noise that 1297 is collected by the Jitter RNG for statistical analysis. As 1298 this data is used at the same time to generate random bits, 1299 the Jitter RNG operates in an insecure mode as long as the 1300 recording is enabled. This interface therefore is only 1301 intended for testing purposes and is not suitable for 1302 production systems. 1303 1304 The raw noise data can be obtained using the jent_raw_hires 1305 debugfs file. Using the option 1306 jitterentropy_testing.boot_raw_hires_test=1 the raw noise of 1307 the first 1000 entropy events since boot can be sampled. 1308 1309 If unsure, select N. 1310 1311endif # if CRYPTO_FIPS && EXPERT 1312 1313if !(CRYPTO_FIPS && EXPERT) 1314 1315config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS 1316 int 1317 default 64 1318 1319config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE 1320 int 1321 default 32 1322 1323config CRYPTO_JITTERENTROPY_OSR 1324 int 1325 default 1 1326 1327config CRYPTO_JITTERENTROPY_TESTINTERFACE 1328 bool 1329 1330endif # if !(CRYPTO_FIPS && EXPERT) 1331endif # if CRYPTO_JITTERENTROPY 1332 1333config CRYPTO_KDF800108_CTR 1334 tristate 1335 select CRYPTO_HMAC 1336 select CRYPTO_SHA256 1337 1338endmenu 1339menu "Userspace interface" 1340 1341config CRYPTO_USER_API 1342 tristate 1343 1344config CRYPTO_USER_API_HASH 1345 tristate "Hash algorithms" 1346 depends on NET 1347 select CRYPTO_HASH 1348 select CRYPTO_USER_API 1349 help 1350 Enable the userspace interface for hash algorithms. 1351 1352 See Documentation/crypto/userspace-if.rst and 1353 https://www.chronox.de/libkcapi/html/index.html 1354 1355config CRYPTO_USER_API_SKCIPHER 1356 tristate "Symmetric key cipher algorithms" 1357 depends on NET 1358 select CRYPTO_SKCIPHER 1359 select CRYPTO_USER_API 1360 help 1361 Enable the userspace interface for symmetric key cipher algorithms. 1362 1363 See Documentation/crypto/userspace-if.rst and 1364 https://www.chronox.de/libkcapi/html/index.html 1365 1366config CRYPTO_USER_API_RNG 1367 tristate "RNG (random number generator) algorithms" 1368 depends on NET 1369 select CRYPTO_RNG 1370 select CRYPTO_USER_API 1371 help 1372 Enable the userspace interface for RNG (random number generator) 1373 algorithms. 1374 1375 See Documentation/crypto/userspace-if.rst and 1376 https://www.chronox.de/libkcapi/html/index.html 1377 1378config CRYPTO_USER_API_RNG_CAVP 1379 bool "Enable CAVP testing of DRBG" 1380 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1381 help 1382 Enable extra APIs in the userspace interface for NIST CAVP 1383 (Cryptographic Algorithm Validation Program) testing: 1384 - resetting DRBG entropy 1385 - providing Additional Data 1386 1387 This should only be enabled for CAVP testing. You should say 1388 no unless you know what this is. 1389 1390config CRYPTO_USER_API_AEAD 1391 tristate "AEAD cipher algorithms" 1392 depends on NET 1393 select CRYPTO_AEAD 1394 select CRYPTO_SKCIPHER 1395 select CRYPTO_NULL 1396 select CRYPTO_USER_API 1397 help 1398 Enable the userspace interface for AEAD cipher algorithms. 1399 1400 See Documentation/crypto/userspace-if.rst and 1401 https://www.chronox.de/libkcapi/html/index.html 1402 1403config CRYPTO_USER_API_ENABLE_OBSOLETE 1404 bool "Obsolete cryptographic algorithms" 1405 depends on CRYPTO_USER_API 1406 default y 1407 help 1408 Allow obsolete cryptographic algorithms to be selected that have 1409 already been phased out from internal use by the kernel, and are 1410 only useful for userspace clients that still rely on them. 1411 1412endmenu 1413 1414config CRYPTO_HASH_INFO 1415 bool 1416 1417if !KMSAN # avoid false positives from assembly 1418if ARM 1419source "arch/arm/crypto/Kconfig" 1420endif 1421if ARM64 1422source "arch/arm64/crypto/Kconfig" 1423endif 1424if LOONGARCH 1425source "arch/loongarch/crypto/Kconfig" 1426endif 1427if MIPS 1428source "arch/mips/crypto/Kconfig" 1429endif 1430if PPC 1431source "arch/powerpc/crypto/Kconfig" 1432endif 1433if RISCV 1434source "arch/riscv/crypto/Kconfig" 1435endif 1436if S390 1437source "arch/s390/crypto/Kconfig" 1438endif 1439if SPARC 1440source "arch/sparc/crypto/Kconfig" 1441endif 1442if X86 1443source "arch/x86/crypto/Kconfig" 1444endif 1445endif 1446 1447source "drivers/crypto/Kconfig" 1448source "crypto/asymmetric_keys/Kconfig" 1449source "certs/Kconfig" 1450source "crypto/krb5/Kconfig" 1451 1452endif # if CRYPTO 1453