1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 select LIB_MEMNEQ 19 help 20 This option provides the core Cryptographic API. 21 22if CRYPTO 23 24comment "Crypto core or helper" 25 26config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 30 help 31 This option enables the fips boot option which is 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no unless you know what 34 this is. 35 36config CRYPTO_ALGAPI 37 tristate 38 select CRYPTO_ALGAPI2 39 help 40 This option provides the API for cryptographic algorithms. 41 42config CRYPTO_ALGAPI2 43 tristate 44 45config CRYPTO_AEAD 46 tristate 47 select CRYPTO_AEAD2 48 select CRYPTO_ALGAPI 49 50config CRYPTO_AEAD2 51 tristate 52 select CRYPTO_ALGAPI2 53 select CRYPTO_NULL2 54 select CRYPTO_RNG2 55 56config CRYPTO_SKCIPHER 57 tristate 58 select CRYPTO_SKCIPHER2 59 select CRYPTO_ALGAPI 60 61config CRYPTO_SKCIPHER2 62 tristate 63 select CRYPTO_ALGAPI2 64 select CRYPTO_RNG2 65 66config CRYPTO_HASH 67 tristate 68 select CRYPTO_HASH2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_HASH2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_RNG 76 tristate 77 select CRYPTO_RNG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_RNG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_RNG_DEFAULT 85 tristate 86 select CRYPTO_DRBG_MENU 87 88config CRYPTO_AKCIPHER2 89 tristate 90 select CRYPTO_ALGAPI2 91 92config CRYPTO_AKCIPHER 93 tristate 94 select CRYPTO_AKCIPHER2 95 select CRYPTO_ALGAPI 96 97config CRYPTO_KPP2 98 tristate 99 select CRYPTO_ALGAPI2 100 101config CRYPTO_KPP 102 tristate 103 select CRYPTO_ALGAPI 104 select CRYPTO_KPP2 105 106config CRYPTO_ACOMP2 107 tristate 108 select CRYPTO_ALGAPI2 109 select SGL_ALLOC 110 111config CRYPTO_ACOMP 112 tristate 113 select CRYPTO_ALGAPI 114 select CRYPTO_ACOMP2 115 116config CRYPTO_MANAGER 117 tristate "Cryptographic algorithm manager" 118 select CRYPTO_MANAGER2 119 help 120 Create default cryptographic template instantiations such as 121 cbc(aes). 122 123config CRYPTO_MANAGER2 124 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 125 select CRYPTO_AEAD2 126 select CRYPTO_HASH2 127 select CRYPTO_SKCIPHER2 128 select CRYPTO_AKCIPHER2 129 select CRYPTO_KPP2 130 select CRYPTO_ACOMP2 131 132config CRYPTO_USER 133 tristate "Userspace cryptographic algorithm configuration" 134 depends on NET 135 select CRYPTO_MANAGER 136 help 137 Userspace configuration for cryptographic instantiations such as 138 cbc(aes). 139 140config CRYPTO_MANAGER_DISABLE_TESTS 141 bool "Disable run-time self tests" 142 default y 143 help 144 Disable run-time self tests that normally take place at 145 algorithm registration. 146 147config CRYPTO_MANAGER_EXTRA_TESTS 148 bool "Enable extra run-time crypto self tests" 149 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 150 help 151 Enable extra run-time self tests of registered crypto algorithms, 152 including randomized fuzz tests. 153 154 This is intended for developer use only, as these tests take much 155 longer to run than the normal self tests. 156 157config CRYPTO_GF128MUL 158 tristate 159 160config CRYPTO_NULL 161 tristate "Null algorithms" 162 select CRYPTO_NULL2 163 help 164 These are 'Null' algorithms, used by IPsec, which do nothing. 165 166config CRYPTO_NULL2 167 tristate 168 select CRYPTO_ALGAPI2 169 select CRYPTO_SKCIPHER2 170 select CRYPTO_HASH2 171 172config CRYPTO_PCRYPT 173 tristate "Parallel crypto engine" 174 depends on SMP 175 select PADATA 176 select CRYPTO_MANAGER 177 select CRYPTO_AEAD 178 help 179 This converts an arbitrary crypto algorithm into a parallel 180 algorithm that executes in kernel threads. 181 182config CRYPTO_CRYPTD 183 tristate "Software async crypto daemon" 184 select CRYPTO_SKCIPHER 185 select CRYPTO_HASH 186 select CRYPTO_MANAGER 187 help 188 This is a generic software asynchronous crypto daemon that 189 converts an arbitrary synchronous software crypto algorithm 190 into an asynchronous algorithm that executes in a kernel thread. 191 192config CRYPTO_AUTHENC 193 tristate "Authenc support" 194 select CRYPTO_AEAD 195 select CRYPTO_SKCIPHER 196 select CRYPTO_MANAGER 197 select CRYPTO_HASH 198 select CRYPTO_NULL 199 help 200 Authenc: Combined mode wrapper for IPsec. 201 This is required for IPSec. 202 203config CRYPTO_TEST 204 tristate "Testing module" 205 depends on m || EXPERT 206 select CRYPTO_MANAGER 207 help 208 Quick & dirty crypto test module. 209 210config CRYPTO_SIMD 211 tristate 212 select CRYPTO_CRYPTD 213 214config CRYPTO_ENGINE 215 tristate 216 217comment "Public-key cryptography" 218 219config CRYPTO_RSA 220 tristate "RSA algorithm" 221 select CRYPTO_AKCIPHER 222 select CRYPTO_MANAGER 223 select MPILIB 224 select ASN1 225 help 226 Generic implementation of the RSA public key algorithm. 227 228config CRYPTO_DH 229 tristate "Diffie-Hellman algorithm" 230 select CRYPTO_KPP 231 select MPILIB 232 help 233 Generic implementation of the Diffie-Hellman algorithm. 234 235config CRYPTO_DH_RFC7919_GROUPS 236 bool "Support for RFC 7919 FFDHE group parameters" 237 depends on CRYPTO_DH 238 select CRYPTO_RNG_DEFAULT 239 help 240 Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 241 242config CRYPTO_ECC 243 tristate 244 select CRYPTO_RNG_DEFAULT 245 246config CRYPTO_ECDH 247 tristate "ECDH algorithm" 248 select CRYPTO_ECC 249 select CRYPTO_KPP 250 help 251 Generic implementation of the ECDH algorithm 252 253config CRYPTO_ECDSA 254 tristate "ECDSA (NIST P192, P256 etc.) algorithm" 255 select CRYPTO_ECC 256 select CRYPTO_AKCIPHER 257 select ASN1 258 help 259 Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 260 is A NIST cryptographic standard algorithm. Only signature verification 261 is implemented. 262 263config CRYPTO_ECRDSA 264 tristate "EC-RDSA (GOST 34.10) algorithm" 265 select CRYPTO_ECC 266 select CRYPTO_AKCIPHER 267 select CRYPTO_STREEBOG 268 select OID_REGISTRY 269 select ASN1 270 help 271 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 272 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 273 standard algorithms (called GOST algorithms). Only signature verification 274 is implemented. 275 276config CRYPTO_SM2 277 tristate "SM2 algorithm" 278 select CRYPTO_SM3 279 select CRYPTO_AKCIPHER 280 select CRYPTO_MANAGER 281 select MPILIB 282 select ASN1 283 help 284 Generic implementation of the SM2 public key algorithm. It was 285 published by State Encryption Management Bureau, China. 286 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 287 288 References: 289 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 290 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 291 http://www.gmbz.org.cn/main/bzlb.html 292 293config CRYPTO_CURVE25519 294 tristate "Curve25519 algorithm" 295 select CRYPTO_KPP 296 select CRYPTO_LIB_CURVE25519_GENERIC 297 298config CRYPTO_CURVE25519_X86 299 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 300 depends on X86 && 64BIT 301 select CRYPTO_LIB_CURVE25519_GENERIC 302 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 303 304comment "Authenticated Encryption with Associated Data" 305 306config CRYPTO_CCM 307 tristate "CCM support" 308 select CRYPTO_CTR 309 select CRYPTO_HASH 310 select CRYPTO_AEAD 311 select CRYPTO_MANAGER 312 help 313 Support for Counter with CBC MAC. Required for IPsec. 314 315config CRYPTO_GCM 316 tristate "GCM/GMAC support" 317 select CRYPTO_CTR 318 select CRYPTO_AEAD 319 select CRYPTO_GHASH 320 select CRYPTO_NULL 321 select CRYPTO_MANAGER 322 help 323 Support for Galois/Counter Mode (GCM) and Galois Message 324 Authentication Code (GMAC). Required for IPSec. 325 326config CRYPTO_CHACHA20POLY1305 327 tristate "ChaCha20-Poly1305 AEAD support" 328 select CRYPTO_CHACHA20 329 select CRYPTO_POLY1305 330 select CRYPTO_AEAD 331 select CRYPTO_MANAGER 332 help 333 ChaCha20-Poly1305 AEAD support, RFC7539. 334 335 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 336 with the Poly1305 authenticator. It is defined in RFC7539 for use in 337 IETF protocols. 338 339config CRYPTO_AEGIS128 340 tristate "AEGIS-128 AEAD algorithm" 341 select CRYPTO_AEAD 342 select CRYPTO_AES # for AES S-box tables 343 help 344 Support for the AEGIS-128 dedicated AEAD algorithm. 345 346config CRYPTO_AEGIS128_SIMD 347 bool "Support SIMD acceleration for AEGIS-128" 348 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 349 default y 350 351config CRYPTO_AEGIS128_AESNI_SSE2 352 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 353 depends on X86 && 64BIT 354 select CRYPTO_AEAD 355 select CRYPTO_SIMD 356 help 357 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 358 359config CRYPTO_SEQIV 360 tristate "Sequence Number IV Generator" 361 select CRYPTO_AEAD 362 select CRYPTO_SKCIPHER 363 select CRYPTO_NULL 364 select CRYPTO_RNG_DEFAULT 365 select CRYPTO_MANAGER 366 help 367 This IV generator generates an IV based on a sequence number by 368 xoring it with a salt. This algorithm is mainly useful for CTR 369 370config CRYPTO_ECHAINIV 371 tristate "Encrypted Chain IV Generator" 372 select CRYPTO_AEAD 373 select CRYPTO_NULL 374 select CRYPTO_RNG_DEFAULT 375 select CRYPTO_MANAGER 376 help 377 This IV generator generates an IV based on the encryption of 378 a sequence number xored with a salt. This is the default 379 algorithm for CBC. 380 381comment "Block modes" 382 383config CRYPTO_CBC 384 tristate "CBC support" 385 select CRYPTO_SKCIPHER 386 select CRYPTO_MANAGER 387 help 388 CBC: Cipher Block Chaining mode 389 This block cipher algorithm is required for IPSec. 390 391config CRYPTO_CFB 392 tristate "CFB support" 393 select CRYPTO_SKCIPHER 394 select CRYPTO_MANAGER 395 help 396 CFB: Cipher FeedBack mode 397 This block cipher algorithm is required for TPM2 Cryptography. 398 399config CRYPTO_CTR 400 tristate "CTR support" 401 select CRYPTO_SKCIPHER 402 select CRYPTO_MANAGER 403 help 404 CTR: Counter mode 405 This block cipher algorithm is required for IPSec. 406 407config CRYPTO_CTS 408 tristate "CTS support" 409 select CRYPTO_SKCIPHER 410 select CRYPTO_MANAGER 411 help 412 CTS: Cipher Text Stealing 413 This is the Cipher Text Stealing mode as described by 414 Section 8 of rfc2040 and referenced by rfc3962 415 (rfc3962 includes errata information in its Appendix A) or 416 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 417 This mode is required for Kerberos gss mechanism support 418 for AES encryption. 419 420 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 421 422config CRYPTO_ECB 423 tristate "ECB support" 424 select CRYPTO_SKCIPHER 425 select CRYPTO_MANAGER 426 help 427 ECB: Electronic CodeBook mode 428 This is the simplest block cipher algorithm. It simply encrypts 429 the input block by block. 430 431config CRYPTO_LRW 432 tristate "LRW support" 433 select CRYPTO_SKCIPHER 434 select CRYPTO_MANAGER 435 select CRYPTO_GF128MUL 436 select CRYPTO_ECB 437 help 438 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 439 narrow block cipher mode for dm-crypt. Use it with cipher 440 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 441 The first 128, 192 or 256 bits in the key are used for AES and the 442 rest is used to tie each cipher block to its logical position. 443 444config CRYPTO_OFB 445 tristate "OFB support" 446 select CRYPTO_SKCIPHER 447 select CRYPTO_MANAGER 448 help 449 OFB: the Output Feedback mode makes a block cipher into a synchronous 450 stream cipher. It generates keystream blocks, which are then XORed 451 with the plaintext blocks to get the ciphertext. Flipping a bit in the 452 ciphertext produces a flipped bit in the plaintext at the same 453 location. This property allows many error correcting codes to function 454 normally even when applied before encryption. 455 456config CRYPTO_PCBC 457 tristate "PCBC support" 458 select CRYPTO_SKCIPHER 459 select CRYPTO_MANAGER 460 help 461 PCBC: Propagating Cipher Block Chaining mode 462 This block cipher algorithm is required for RxRPC. 463 464config CRYPTO_XCTR 465 tristate 466 select CRYPTO_SKCIPHER 467 select CRYPTO_MANAGER 468 help 469 XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode 470 using XORs and little-endian addition rather than big-endian arithmetic. 471 XCTR mode is used to implement HCTR2. 472 473config CRYPTO_XTS 474 tristate "XTS support" 475 select CRYPTO_SKCIPHER 476 select CRYPTO_MANAGER 477 select CRYPTO_ECB 478 help 479 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 480 key size 256, 384 or 512 bits. This implementation currently 481 can't handle a sectorsize which is not a multiple of 16 bytes. 482 483config CRYPTO_KEYWRAP 484 tristate "Key wrapping support" 485 select CRYPTO_SKCIPHER 486 select CRYPTO_MANAGER 487 help 488 Support for key wrapping (NIST SP800-38F / RFC3394) without 489 padding. 490 491config CRYPTO_NHPOLY1305 492 tristate 493 select CRYPTO_HASH 494 select CRYPTO_LIB_POLY1305_GENERIC 495 496config CRYPTO_NHPOLY1305_SSE2 497 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 498 depends on X86 && 64BIT 499 select CRYPTO_NHPOLY1305 500 help 501 SSE2 optimized implementation of the hash function used by the 502 Adiantum encryption mode. 503 504config CRYPTO_NHPOLY1305_AVX2 505 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 506 depends on X86 && 64BIT 507 select CRYPTO_NHPOLY1305 508 help 509 AVX2 optimized implementation of the hash function used by the 510 Adiantum encryption mode. 511 512config CRYPTO_ADIANTUM 513 tristate "Adiantum support" 514 select CRYPTO_CHACHA20 515 select CRYPTO_LIB_POLY1305_GENERIC 516 select CRYPTO_NHPOLY1305 517 select CRYPTO_MANAGER 518 help 519 Adiantum is a tweakable, length-preserving encryption mode 520 designed for fast and secure disk encryption, especially on 521 CPUs without dedicated crypto instructions. It encrypts 522 each sector using the XChaCha12 stream cipher, two passes of 523 an ε-almost-∆-universal hash function, and an invocation of 524 the AES-256 block cipher on a single 16-byte block. On CPUs 525 without AES instructions, Adiantum is much faster than 526 AES-XTS. 527 528 Adiantum's security is provably reducible to that of its 529 underlying stream and block ciphers, subject to a security 530 bound. Unlike XTS, Adiantum is a true wide-block encryption 531 mode, so it actually provides an even stronger notion of 532 security than XTS, subject to the security bound. 533 534 If unsure, say N. 535 536config CRYPTO_HCTR2 537 tristate "HCTR2 support" 538 select CRYPTO_XCTR 539 select CRYPTO_POLYVAL 540 select CRYPTO_MANAGER 541 help 542 HCTR2 is a length-preserving encryption mode for storage encryption that 543 is efficient on processors with instructions to accelerate AES and 544 carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and 545 ARM processors with the ARMv8 crypto extensions. 546 547config CRYPTO_ESSIV 548 tristate "ESSIV support for block encryption" 549 select CRYPTO_AUTHENC 550 help 551 Encrypted salt-sector initialization vector (ESSIV) is an IV 552 generation method that is used in some cases by fscrypt and/or 553 dm-crypt. It uses the hash of the block encryption key as the 554 symmetric key for a block encryption pass applied to the input 555 IV, making low entropy IV sources more suitable for block 556 encryption. 557 558 This driver implements a crypto API template that can be 559 instantiated either as an skcipher or as an AEAD (depending on the 560 type of the first template argument), and which defers encryption 561 and decryption requests to the encapsulated cipher after applying 562 ESSIV to the input IV. Note that in the AEAD case, it is assumed 563 that the keys are presented in the same format used by the authenc 564 template, and that the IV appears at the end of the authenticated 565 associated data (AAD) region (which is how dm-crypt uses it.) 566 567 Note that the use of ESSIV is not recommended for new deployments, 568 and so this only needs to be enabled when interoperability with 569 existing encrypted volumes of filesystems is required, or when 570 building for a particular system that requires it (e.g., when 571 the SoC in question has accelerated CBC but not XTS, making CBC 572 combined with ESSIV the only feasible mode for h/w accelerated 573 block encryption) 574 575comment "Hash modes" 576 577config CRYPTO_CMAC 578 tristate "CMAC support" 579 select CRYPTO_HASH 580 select CRYPTO_MANAGER 581 help 582 Cipher-based Message Authentication Code (CMAC) specified by 583 The National Institute of Standards and Technology (NIST). 584 585 https://tools.ietf.org/html/rfc4493 586 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 587 588config CRYPTO_HMAC 589 tristate "HMAC support" 590 select CRYPTO_HASH 591 select CRYPTO_MANAGER 592 help 593 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 594 This is required for IPSec. 595 596config CRYPTO_XCBC 597 tristate "XCBC support" 598 select CRYPTO_HASH 599 select CRYPTO_MANAGER 600 help 601 XCBC: Keyed-Hashing with encryption algorithm 602 https://www.ietf.org/rfc/rfc3566.txt 603 http://csrc.nist.gov/encryption/modes/proposedmodes/ 604 xcbc-mac/xcbc-mac-spec.pdf 605 606config CRYPTO_VMAC 607 tristate "VMAC support" 608 select CRYPTO_HASH 609 select CRYPTO_MANAGER 610 help 611 VMAC is a message authentication algorithm designed for 612 very high speed on 64-bit architectures. 613 614 See also: 615 <https://fastcrypto.org/vmac> 616 617comment "Digest" 618 619config CRYPTO_CRC32C 620 tristate "CRC32c CRC algorithm" 621 select CRYPTO_HASH 622 select CRC32 623 help 624 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 625 by iSCSI for header and data digests and by others. 626 See Castagnoli93. Module will be crc32c. 627 628config CRYPTO_CRC32C_INTEL 629 tristate "CRC32c INTEL hardware acceleration" 630 depends on X86 631 select CRYPTO_HASH 632 help 633 In Intel processor with SSE4.2 supported, the processor will 634 support CRC32C implementation using hardware accelerated CRC32 635 instruction. This option will create 'crc32c-intel' module, 636 which will enable any routine to use the CRC32 instruction to 637 gain performance compared with software implementation. 638 Module will be crc32c-intel. 639 640config CRYPTO_CRC32C_VPMSUM 641 tristate "CRC32c CRC algorithm (powerpc64)" 642 depends on PPC64 && ALTIVEC 643 select CRYPTO_HASH 644 select CRC32 645 help 646 CRC32c algorithm implemented using vector polynomial multiply-sum 647 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 648 and newer processors for improved performance. 649 650 651config CRYPTO_CRC32C_SPARC64 652 tristate "CRC32c CRC algorithm (SPARC64)" 653 depends on SPARC64 654 select CRYPTO_HASH 655 select CRC32 656 help 657 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 658 when available. 659 660config CRYPTO_CRC32 661 tristate "CRC32 CRC algorithm" 662 select CRYPTO_HASH 663 select CRC32 664 help 665 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 666 Shash crypto api wrappers to crc32_le function. 667 668config CRYPTO_CRC32_PCLMUL 669 tristate "CRC32 PCLMULQDQ hardware acceleration" 670 depends on X86 671 select CRYPTO_HASH 672 select CRC32 673 help 674 From Intel Westmere and AMD Bulldozer processor with SSE4.2 675 and PCLMULQDQ supported, the processor will support 676 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 677 instruction. This option will create 'crc32-pclmul' module, 678 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 679 and gain better performance as compared with the table implementation. 680 681config CRYPTO_CRC32_MIPS 682 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 683 depends on MIPS_CRC_SUPPORT 684 select CRYPTO_HASH 685 help 686 CRC32c and CRC32 CRC algorithms implemented using mips crypto 687 instructions, when available. 688 689 690config CRYPTO_XXHASH 691 tristate "xxHash hash algorithm" 692 select CRYPTO_HASH 693 select XXHASH 694 help 695 xxHash non-cryptographic hash algorithm. Extremely fast, working at 696 speeds close to RAM limits. 697 698config CRYPTO_BLAKE2B 699 tristate "BLAKE2b digest algorithm" 700 select CRYPTO_HASH 701 help 702 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 703 optimized for 64bit platforms and can produce digests of any size 704 between 1 to 64. The keyed hash is also implemented. 705 706 This module provides the following algorithms: 707 708 - blake2b-160 709 - blake2b-256 710 - blake2b-384 711 - blake2b-512 712 713 See https://blake2.net for further information. 714 715config CRYPTO_BLAKE2S 716 tristate "BLAKE2s digest algorithm" 717 select CRYPTO_LIB_BLAKE2S_GENERIC 718 select CRYPTO_HASH 719 help 720 Implementation of cryptographic hash function BLAKE2s 721 optimized for 8-32bit platforms and can produce digests of any size 722 between 1 to 32. The keyed hash is also implemented. 723 724 This module provides the following algorithms: 725 726 - blake2s-128 727 - blake2s-160 728 - blake2s-224 729 - blake2s-256 730 731 See https://blake2.net for further information. 732 733config CRYPTO_BLAKE2S_X86 734 tristate "BLAKE2s digest algorithm (x86 accelerated version)" 735 depends on X86 && 64BIT 736 select CRYPTO_LIB_BLAKE2S_GENERIC 737 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 738 739config CRYPTO_CRCT10DIF 740 tristate "CRCT10DIF algorithm" 741 select CRYPTO_HASH 742 help 743 CRC T10 Data Integrity Field computation is being cast as 744 a crypto transform. This allows for faster crc t10 diff 745 transforms to be used if they are available. 746 747config CRYPTO_CRCT10DIF_PCLMUL 748 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 749 depends on X86 && 64BIT && CRC_T10DIF 750 select CRYPTO_HASH 751 help 752 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 753 CRC T10 DIF PCLMULQDQ computation can be hardware 754 accelerated PCLMULQDQ instruction. This option will create 755 'crct10dif-pclmul' module, which is faster when computing the 756 crct10dif checksum as compared with the generic table implementation. 757 758config CRYPTO_CRCT10DIF_VPMSUM 759 tristate "CRC32T10DIF powerpc64 hardware acceleration" 760 depends on PPC64 && ALTIVEC && CRC_T10DIF 761 select CRYPTO_HASH 762 help 763 CRC10T10DIF algorithm implemented using vector polynomial 764 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 765 POWER8 and newer processors for improved performance. 766 767config CRYPTO_CRC64_ROCKSOFT 768 tristate "Rocksoft Model CRC64 algorithm" 769 depends on CRC64 770 select CRYPTO_HASH 771 772config CRYPTO_VPMSUM_TESTER 773 tristate "Powerpc64 vpmsum hardware acceleration tester" 774 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 775 help 776 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 777 POWER8 vpmsum instructions. 778 Unless you are testing these algorithms, you don't need this. 779 780config CRYPTO_GHASH 781 tristate "GHASH hash function" 782 select CRYPTO_GF128MUL 783 select CRYPTO_HASH 784 help 785 GHASH is the hash function used in GCM (Galois/Counter Mode). 786 It is not a general-purpose cryptographic hash function. 787 788config CRYPTO_POLYVAL 789 tristate 790 select CRYPTO_GF128MUL 791 select CRYPTO_HASH 792 help 793 POLYVAL is the hash function used in HCTR2. It is not a general-purpose 794 cryptographic hash function. 795 796config CRYPTO_POLYVAL_CLMUL_NI 797 tristate "POLYVAL hash function (CLMUL-NI accelerated)" 798 depends on X86 && 64BIT 799 select CRYPTO_POLYVAL 800 help 801 This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is 802 used to efficiently implement HCTR2 on x86-64 processors that support 803 carry-less multiplication instructions. 804 805config CRYPTO_POLY1305 806 tristate "Poly1305 authenticator algorithm" 807 select CRYPTO_HASH 808 select CRYPTO_LIB_POLY1305_GENERIC 809 help 810 Poly1305 authenticator algorithm, RFC7539. 811 812 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 813 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 814 in IETF protocols. This is the portable C implementation of Poly1305. 815 816config CRYPTO_POLY1305_X86_64 817 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 818 depends on X86 && 64BIT 819 select CRYPTO_LIB_POLY1305_GENERIC 820 select CRYPTO_ARCH_HAVE_LIB_POLY1305 821 help 822 Poly1305 authenticator algorithm, RFC7539. 823 824 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 825 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 826 in IETF protocols. This is the x86_64 assembler implementation using SIMD 827 instructions. 828 829config CRYPTO_POLY1305_MIPS 830 tristate "Poly1305 authenticator algorithm (MIPS optimized)" 831 depends on MIPS 832 select CRYPTO_ARCH_HAVE_LIB_POLY1305 833 834config CRYPTO_MD4 835 tristate "MD4 digest algorithm" 836 select CRYPTO_HASH 837 help 838 MD4 message digest algorithm (RFC1320). 839 840config CRYPTO_MD5 841 tristate "MD5 digest algorithm" 842 select CRYPTO_HASH 843 help 844 MD5 message digest algorithm (RFC1321). 845 846config CRYPTO_MD5_OCTEON 847 tristate "MD5 digest algorithm (OCTEON)" 848 depends on CPU_CAVIUM_OCTEON 849 select CRYPTO_MD5 850 select CRYPTO_HASH 851 help 852 MD5 message digest algorithm (RFC1321) implemented 853 using OCTEON crypto instructions, when available. 854 855config CRYPTO_MD5_PPC 856 tristate "MD5 digest algorithm (PPC)" 857 depends on PPC 858 select CRYPTO_HASH 859 help 860 MD5 message digest algorithm (RFC1321) implemented 861 in PPC assembler. 862 863config CRYPTO_MD5_SPARC64 864 tristate "MD5 digest algorithm (SPARC64)" 865 depends on SPARC64 866 select CRYPTO_MD5 867 select CRYPTO_HASH 868 help 869 MD5 message digest algorithm (RFC1321) implemented 870 using sparc64 crypto instructions, when available. 871 872config CRYPTO_MICHAEL_MIC 873 tristate "Michael MIC keyed digest algorithm" 874 select CRYPTO_HASH 875 help 876 Michael MIC is used for message integrity protection in TKIP 877 (IEEE 802.11i). This algorithm is required for TKIP, but it 878 should not be used for other purposes because of the weakness 879 of the algorithm. 880 881config CRYPTO_RMD160 882 tristate "RIPEMD-160 digest algorithm" 883 select CRYPTO_HASH 884 help 885 RIPEMD-160 (ISO/IEC 10118-3:2004). 886 887 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 888 to be used as a secure replacement for the 128-bit hash functions 889 MD4, MD5 and it's predecessor RIPEMD 890 (not to be confused with RIPEMD-128). 891 892 It's speed is comparable to SHA1 and there are no known attacks 893 against RIPEMD-160. 894 895 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 896 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 897 898config CRYPTO_SHA1 899 tristate "SHA1 digest algorithm" 900 select CRYPTO_HASH 901 help 902 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 903 904config CRYPTO_SHA1_SSSE3 905 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 906 depends on X86 && 64BIT 907 select CRYPTO_SHA1 908 select CRYPTO_HASH 909 help 910 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 911 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 912 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 913 when available. 914 915config CRYPTO_SHA256_SSSE3 916 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 917 depends on X86 && 64BIT 918 select CRYPTO_SHA256 919 select CRYPTO_HASH 920 help 921 SHA-256 secure hash standard (DFIPS 180-2) implemented 922 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 923 Extensions version 1 (AVX1), or Advanced Vector Extensions 924 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 925 Instructions) when available. 926 927config CRYPTO_SHA512_SSSE3 928 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 929 depends on X86 && 64BIT 930 select CRYPTO_SHA512 931 select CRYPTO_HASH 932 help 933 SHA-512 secure hash standard (DFIPS 180-2) implemented 934 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 935 Extensions version 1 (AVX1), or Advanced Vector Extensions 936 version 2 (AVX2) instructions, when available. 937 938config CRYPTO_SHA1_OCTEON 939 tristate "SHA1 digest algorithm (OCTEON)" 940 depends on CPU_CAVIUM_OCTEON 941 select CRYPTO_SHA1 942 select CRYPTO_HASH 943 help 944 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 945 using OCTEON crypto instructions, when available. 946 947config CRYPTO_SHA1_SPARC64 948 tristate "SHA1 digest algorithm (SPARC64)" 949 depends on SPARC64 950 select CRYPTO_SHA1 951 select CRYPTO_HASH 952 help 953 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 954 using sparc64 crypto instructions, when available. 955 956config CRYPTO_SHA1_PPC 957 tristate "SHA1 digest algorithm (powerpc)" 958 depends on PPC 959 help 960 This is the powerpc hardware accelerated implementation of the 961 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 962 963config CRYPTO_SHA1_PPC_SPE 964 tristate "SHA1 digest algorithm (PPC SPE)" 965 depends on PPC && SPE 966 help 967 SHA-1 secure hash standard (DFIPS 180-4) implemented 968 using powerpc SPE SIMD instruction set. 969 970config CRYPTO_SHA256 971 tristate "SHA224 and SHA256 digest algorithm" 972 select CRYPTO_HASH 973 select CRYPTO_LIB_SHA256 974 help 975 SHA256 secure hash standard (DFIPS 180-2). 976 977 This version of SHA implements a 256 bit hash with 128 bits of 978 security against collision attacks. 979 980 This code also includes SHA-224, a 224 bit hash with 112 bits 981 of security against collision attacks. 982 983config CRYPTO_SHA256_PPC_SPE 984 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 985 depends on PPC && SPE 986 select CRYPTO_SHA256 987 select CRYPTO_HASH 988 help 989 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 990 implemented using powerpc SPE SIMD instruction set. 991 992config CRYPTO_SHA256_OCTEON 993 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 994 depends on CPU_CAVIUM_OCTEON 995 select CRYPTO_SHA256 996 select CRYPTO_HASH 997 help 998 SHA-256 secure hash standard (DFIPS 180-2) implemented 999 using OCTEON crypto instructions, when available. 1000 1001config CRYPTO_SHA256_SPARC64 1002 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 1003 depends on SPARC64 1004 select CRYPTO_SHA256 1005 select CRYPTO_HASH 1006 help 1007 SHA-256 secure hash standard (DFIPS 180-2) implemented 1008 using sparc64 crypto instructions, when available. 1009 1010config CRYPTO_SHA512 1011 tristate "SHA384 and SHA512 digest algorithms" 1012 select CRYPTO_HASH 1013 help 1014 SHA512 secure hash standard (DFIPS 180-2). 1015 1016 This version of SHA implements a 512 bit hash with 256 bits of 1017 security against collision attacks. 1018 1019 This code also includes SHA-384, a 384 bit hash with 192 bits 1020 of security against collision attacks. 1021 1022config CRYPTO_SHA512_OCTEON 1023 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 1024 depends on CPU_CAVIUM_OCTEON 1025 select CRYPTO_SHA512 1026 select CRYPTO_HASH 1027 help 1028 SHA-512 secure hash standard (DFIPS 180-2) implemented 1029 using OCTEON crypto instructions, when available. 1030 1031config CRYPTO_SHA512_SPARC64 1032 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1033 depends on SPARC64 1034 select CRYPTO_SHA512 1035 select CRYPTO_HASH 1036 help 1037 SHA-512 secure hash standard (DFIPS 180-2) implemented 1038 using sparc64 crypto instructions, when available. 1039 1040config CRYPTO_SHA3 1041 tristate "SHA3 digest algorithm" 1042 select CRYPTO_HASH 1043 help 1044 SHA-3 secure hash standard (DFIPS 202). It's based on 1045 cryptographic sponge function family called Keccak. 1046 1047 References: 1048 http://keccak.noekeon.org/ 1049 1050config CRYPTO_SM3 1051 tristate 1052 1053config CRYPTO_SM3_GENERIC 1054 tristate "SM3 digest algorithm" 1055 select CRYPTO_HASH 1056 select CRYPTO_SM3 1057 help 1058 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1059 It is part of the Chinese Commercial Cryptography suite. 1060 1061 References: 1062 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1063 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1064 1065config CRYPTO_SM3_AVX_X86_64 1066 tristate "SM3 digest algorithm (x86_64/AVX)" 1067 depends on X86 && 64BIT 1068 select CRYPTO_HASH 1069 select CRYPTO_SM3 1070 help 1071 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1072 It is part of the Chinese Commercial Cryptography suite. This is 1073 SM3 optimized implementation using Advanced Vector Extensions (AVX) 1074 when available. 1075 1076 If unsure, say N. 1077 1078config CRYPTO_STREEBOG 1079 tristate "Streebog Hash Function" 1080 select CRYPTO_HASH 1081 help 1082 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1083 cryptographic standard algorithms (called GOST algorithms). 1084 This setting enables two hash algorithms with 256 and 512 bits output. 1085 1086 References: 1087 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1088 https://tools.ietf.org/html/rfc6986 1089 1090config CRYPTO_WP512 1091 tristate "Whirlpool digest algorithms" 1092 select CRYPTO_HASH 1093 help 1094 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1095 1096 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1097 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1098 1099 See also: 1100 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1101 1102config CRYPTO_GHASH_CLMUL_NI_INTEL 1103 tristate "GHASH hash function (CLMUL-NI accelerated)" 1104 depends on X86 && 64BIT 1105 select CRYPTO_CRYPTD 1106 help 1107 This is the x86_64 CLMUL-NI accelerated implementation of 1108 GHASH, the hash function used in GCM (Galois/Counter mode). 1109 1110comment "Ciphers" 1111 1112config CRYPTO_AES 1113 tristate "AES cipher algorithms" 1114 select CRYPTO_ALGAPI 1115 select CRYPTO_LIB_AES 1116 help 1117 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1118 algorithm. 1119 1120 Rijndael appears to be consistently a very good performer in 1121 both hardware and software across a wide range of computing 1122 environments regardless of its use in feedback or non-feedback 1123 modes. Its key setup time is excellent, and its key agility is 1124 good. Rijndael's very low memory requirements make it very well 1125 suited for restricted-space environments, in which it also 1126 demonstrates excellent performance. Rijndael's operations are 1127 among the easiest to defend against power and timing attacks. 1128 1129 The AES specifies three key sizes: 128, 192 and 256 bits 1130 1131 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1132 1133config CRYPTO_AES_TI 1134 tristate "Fixed time AES cipher" 1135 select CRYPTO_ALGAPI 1136 select CRYPTO_LIB_AES 1137 help 1138 This is a generic implementation of AES that attempts to eliminate 1139 data dependent latencies as much as possible without affecting 1140 performance too much. It is intended for use by the generic CCM 1141 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1142 solely on encryption (although decryption is supported as well, but 1143 with a more dramatic performance hit) 1144 1145 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1146 8 for decryption), this implementation only uses just two S-boxes of 1147 256 bytes each, and attempts to eliminate data dependent latencies by 1148 prefetching the entire table into the cache at the start of each 1149 block. Interrupts are also disabled to avoid races where cachelines 1150 are evicted when the CPU is interrupted to do something else. 1151 1152config CRYPTO_AES_NI_INTEL 1153 tristate "AES cipher algorithms (AES-NI)" 1154 depends on X86 1155 select CRYPTO_AEAD 1156 select CRYPTO_LIB_AES 1157 select CRYPTO_ALGAPI 1158 select CRYPTO_SKCIPHER 1159 select CRYPTO_SIMD 1160 help 1161 Use Intel AES-NI instructions for AES algorithm. 1162 1163 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1164 algorithm. 1165 1166 Rijndael appears to be consistently a very good performer in 1167 both hardware and software across a wide range of computing 1168 environments regardless of its use in feedback or non-feedback 1169 modes. Its key setup time is excellent, and its key agility is 1170 good. Rijndael's very low memory requirements make it very well 1171 suited for restricted-space environments, in which it also 1172 demonstrates excellent performance. Rijndael's operations are 1173 among the easiest to defend against power and timing attacks. 1174 1175 The AES specifies three key sizes: 128, 192 and 256 bits 1176 1177 See <http://csrc.nist.gov/encryption/aes/> for more information. 1178 1179 In addition to AES cipher algorithm support, the acceleration 1180 for some popular block cipher mode is supported too, including 1181 ECB, CBC, LRW, XTS. The 64 bit version has additional 1182 acceleration for CTR and XCTR. 1183 1184config CRYPTO_AES_SPARC64 1185 tristate "AES cipher algorithms (SPARC64)" 1186 depends on SPARC64 1187 select CRYPTO_SKCIPHER 1188 help 1189 Use SPARC64 crypto opcodes for AES algorithm. 1190 1191 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1192 algorithm. 1193 1194 Rijndael appears to be consistently a very good performer in 1195 both hardware and software across a wide range of computing 1196 environments regardless of its use in feedback or non-feedback 1197 modes. Its key setup time is excellent, and its key agility is 1198 good. Rijndael's very low memory requirements make it very well 1199 suited for restricted-space environments, in which it also 1200 demonstrates excellent performance. Rijndael's operations are 1201 among the easiest to defend against power and timing attacks. 1202 1203 The AES specifies three key sizes: 128, 192 and 256 bits 1204 1205 See <http://csrc.nist.gov/encryption/aes/> for more information. 1206 1207 In addition to AES cipher algorithm support, the acceleration 1208 for some popular block cipher mode is supported too, including 1209 ECB and CBC. 1210 1211config CRYPTO_AES_PPC_SPE 1212 tristate "AES cipher algorithms (PPC SPE)" 1213 depends on PPC && SPE 1214 select CRYPTO_SKCIPHER 1215 help 1216 AES cipher algorithms (FIPS-197). Additionally the acceleration 1217 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1218 This module should only be used for low power (router) devices 1219 without hardware AES acceleration (e.g. caam crypto). It reduces the 1220 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1221 timining attacks. Nevertheless it might be not as secure as other 1222 architecture specific assembler implementations that work on 1KB 1223 tables or 256 bytes S-boxes. 1224 1225config CRYPTO_ANUBIS 1226 tristate "Anubis cipher algorithm" 1227 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1228 select CRYPTO_ALGAPI 1229 help 1230 Anubis cipher algorithm. 1231 1232 Anubis is a variable key length cipher which can use keys from 1233 128 bits to 320 bits in length. It was evaluated as a entrant 1234 in the NESSIE competition. 1235 1236 See also: 1237 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1238 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1239 1240config CRYPTO_ARC4 1241 tristate "ARC4 cipher algorithm" 1242 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1243 select CRYPTO_SKCIPHER 1244 select CRYPTO_LIB_ARC4 1245 help 1246 ARC4 cipher algorithm. 1247 1248 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1249 bits in length. This algorithm is required for driver-based 1250 WEP, but it should not be for other purposes because of the 1251 weakness of the algorithm. 1252 1253config CRYPTO_BLOWFISH 1254 tristate "Blowfish cipher algorithm" 1255 select CRYPTO_ALGAPI 1256 select CRYPTO_BLOWFISH_COMMON 1257 help 1258 Blowfish cipher algorithm, by Bruce Schneier. 1259 1260 This is a variable key length cipher which can use keys from 32 1261 bits to 448 bits in length. It's fast, simple and specifically 1262 designed for use on "large microprocessors". 1263 1264 See also: 1265 <https://www.schneier.com/blowfish.html> 1266 1267config CRYPTO_BLOWFISH_COMMON 1268 tristate 1269 help 1270 Common parts of the Blowfish cipher algorithm shared by the 1271 generic c and the assembler implementations. 1272 1273 See also: 1274 <https://www.schneier.com/blowfish.html> 1275 1276config CRYPTO_BLOWFISH_X86_64 1277 tristate "Blowfish cipher algorithm (x86_64)" 1278 depends on X86 && 64BIT 1279 select CRYPTO_SKCIPHER 1280 select CRYPTO_BLOWFISH_COMMON 1281 imply CRYPTO_CTR 1282 help 1283 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1284 1285 This is a variable key length cipher which can use keys from 32 1286 bits to 448 bits in length. It's fast, simple and specifically 1287 designed for use on "large microprocessors". 1288 1289 See also: 1290 <https://www.schneier.com/blowfish.html> 1291 1292config CRYPTO_CAMELLIA 1293 tristate "Camellia cipher algorithms" 1294 select CRYPTO_ALGAPI 1295 help 1296 Camellia cipher algorithms module. 1297 1298 Camellia is a symmetric key block cipher developed jointly 1299 at NTT and Mitsubishi Electric Corporation. 1300 1301 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1302 1303 See also: 1304 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1305 1306config CRYPTO_CAMELLIA_X86_64 1307 tristate "Camellia cipher algorithm (x86_64)" 1308 depends on X86 && 64BIT 1309 select CRYPTO_SKCIPHER 1310 imply CRYPTO_CTR 1311 help 1312 Camellia cipher algorithm module (x86_64). 1313 1314 Camellia is a symmetric key block cipher developed jointly 1315 at NTT and Mitsubishi Electric Corporation. 1316 1317 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1318 1319 See also: 1320 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1321 1322config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1323 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1324 depends on X86 && 64BIT 1325 select CRYPTO_SKCIPHER 1326 select CRYPTO_CAMELLIA_X86_64 1327 select CRYPTO_SIMD 1328 imply CRYPTO_XTS 1329 help 1330 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1331 1332 Camellia is a symmetric key block cipher developed jointly 1333 at NTT and Mitsubishi Electric Corporation. 1334 1335 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1336 1337 See also: 1338 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1339 1340config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1341 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1342 depends on X86 && 64BIT 1343 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1344 help 1345 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1346 1347 Camellia is a symmetric key block cipher developed jointly 1348 at NTT and Mitsubishi Electric Corporation. 1349 1350 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1351 1352 See also: 1353 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1354 1355config CRYPTO_CAMELLIA_SPARC64 1356 tristate "Camellia cipher algorithm (SPARC64)" 1357 depends on SPARC64 1358 select CRYPTO_ALGAPI 1359 select CRYPTO_SKCIPHER 1360 help 1361 Camellia cipher algorithm module (SPARC64). 1362 1363 Camellia is a symmetric key block cipher developed jointly 1364 at NTT and Mitsubishi Electric Corporation. 1365 1366 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1367 1368 See also: 1369 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1370 1371config CRYPTO_CAST_COMMON 1372 tristate 1373 help 1374 Common parts of the CAST cipher algorithms shared by the 1375 generic c and the assembler implementations. 1376 1377config CRYPTO_CAST5 1378 tristate "CAST5 (CAST-128) cipher algorithm" 1379 select CRYPTO_ALGAPI 1380 select CRYPTO_CAST_COMMON 1381 help 1382 The CAST5 encryption algorithm (synonymous with CAST-128) is 1383 described in RFC2144. 1384 1385config CRYPTO_CAST5_AVX_X86_64 1386 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1387 depends on X86 && 64BIT 1388 select CRYPTO_SKCIPHER 1389 select CRYPTO_CAST5 1390 select CRYPTO_CAST_COMMON 1391 select CRYPTO_SIMD 1392 imply CRYPTO_CTR 1393 help 1394 The CAST5 encryption algorithm (synonymous with CAST-128) is 1395 described in RFC2144. 1396 1397 This module provides the Cast5 cipher algorithm that processes 1398 sixteen blocks parallel using the AVX instruction set. 1399 1400config CRYPTO_CAST6 1401 tristate "CAST6 (CAST-256) cipher algorithm" 1402 select CRYPTO_ALGAPI 1403 select CRYPTO_CAST_COMMON 1404 help 1405 The CAST6 encryption algorithm (synonymous with CAST-256) is 1406 described in RFC2612. 1407 1408config CRYPTO_CAST6_AVX_X86_64 1409 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1410 depends on X86 && 64BIT 1411 select CRYPTO_SKCIPHER 1412 select CRYPTO_CAST6 1413 select CRYPTO_CAST_COMMON 1414 select CRYPTO_SIMD 1415 imply CRYPTO_XTS 1416 imply CRYPTO_CTR 1417 help 1418 The CAST6 encryption algorithm (synonymous with CAST-256) is 1419 described in RFC2612. 1420 1421 This module provides the Cast6 cipher algorithm that processes 1422 eight blocks parallel using the AVX instruction set. 1423 1424config CRYPTO_DES 1425 tristate "DES and Triple DES EDE cipher algorithms" 1426 select CRYPTO_ALGAPI 1427 select CRYPTO_LIB_DES 1428 help 1429 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1430 1431config CRYPTO_DES_SPARC64 1432 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1433 depends on SPARC64 1434 select CRYPTO_ALGAPI 1435 select CRYPTO_LIB_DES 1436 select CRYPTO_SKCIPHER 1437 help 1438 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1439 optimized using SPARC64 crypto opcodes. 1440 1441config CRYPTO_DES3_EDE_X86_64 1442 tristate "Triple DES EDE cipher algorithm (x86-64)" 1443 depends on X86 && 64BIT 1444 select CRYPTO_SKCIPHER 1445 select CRYPTO_LIB_DES 1446 imply CRYPTO_CTR 1447 help 1448 Triple DES EDE (FIPS 46-3) algorithm. 1449 1450 This module provides implementation of the Triple DES EDE cipher 1451 algorithm that is optimized for x86-64 processors. Two versions of 1452 algorithm are provided; regular processing one input block and 1453 one that processes three blocks parallel. 1454 1455config CRYPTO_FCRYPT 1456 tristate "FCrypt cipher algorithm" 1457 select CRYPTO_ALGAPI 1458 select CRYPTO_SKCIPHER 1459 help 1460 FCrypt algorithm used by RxRPC. 1461 1462config CRYPTO_KHAZAD 1463 tristate "Khazad cipher algorithm" 1464 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1465 select CRYPTO_ALGAPI 1466 help 1467 Khazad cipher algorithm. 1468 1469 Khazad was a finalist in the initial NESSIE competition. It is 1470 an algorithm optimized for 64-bit processors with good performance 1471 on 32-bit processors. Khazad uses an 128 bit key size. 1472 1473 See also: 1474 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1475 1476config CRYPTO_CHACHA20 1477 tristate "ChaCha stream cipher algorithms" 1478 select CRYPTO_LIB_CHACHA_GENERIC 1479 select CRYPTO_SKCIPHER 1480 help 1481 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1482 1483 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1484 Bernstein and further specified in RFC7539 for use in IETF protocols. 1485 This is the portable C implementation of ChaCha20. See also: 1486 <https://cr.yp.to/chacha/chacha-20080128.pdf> 1487 1488 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1489 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1490 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1491 while provably retaining ChaCha20's security. See also: 1492 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1493 1494 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1495 reduced security margin but increased performance. It can be needed 1496 in some performance-sensitive scenarios. 1497 1498config CRYPTO_CHACHA20_X86_64 1499 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1500 depends on X86 && 64BIT 1501 select CRYPTO_SKCIPHER 1502 select CRYPTO_LIB_CHACHA_GENERIC 1503 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1504 help 1505 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1506 XChaCha20, and XChaCha12 stream ciphers. 1507 1508config CRYPTO_CHACHA_MIPS 1509 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 1510 depends on CPU_MIPS32_R2 1511 select CRYPTO_SKCIPHER 1512 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1513 1514config CRYPTO_SEED 1515 tristate "SEED cipher algorithm" 1516 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1517 select CRYPTO_ALGAPI 1518 help 1519 SEED cipher algorithm (RFC4269). 1520 1521 SEED is a 128-bit symmetric key block cipher that has been 1522 developed by KISA (Korea Information Security Agency) as a 1523 national standard encryption algorithm of the Republic of Korea. 1524 It is a 16 round block cipher with the key size of 128 bit. 1525 1526 See also: 1527 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1528 1529config CRYPTO_SERPENT 1530 tristate "Serpent cipher algorithm" 1531 select CRYPTO_ALGAPI 1532 help 1533 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1534 1535 Keys are allowed to be from 0 to 256 bits in length, in steps 1536 of 8 bits. 1537 1538 See also: 1539 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1540 1541config CRYPTO_SERPENT_SSE2_X86_64 1542 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1543 depends on X86 && 64BIT 1544 select CRYPTO_SKCIPHER 1545 select CRYPTO_SERPENT 1546 select CRYPTO_SIMD 1547 imply CRYPTO_CTR 1548 help 1549 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1550 1551 Keys are allowed to be from 0 to 256 bits in length, in steps 1552 of 8 bits. 1553 1554 This module provides Serpent cipher algorithm that processes eight 1555 blocks parallel using SSE2 instruction set. 1556 1557 See also: 1558 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1559 1560config CRYPTO_SERPENT_SSE2_586 1561 tristate "Serpent cipher algorithm (i586/SSE2)" 1562 depends on X86 && !64BIT 1563 select CRYPTO_SKCIPHER 1564 select CRYPTO_SERPENT 1565 select CRYPTO_SIMD 1566 imply CRYPTO_CTR 1567 help 1568 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1569 1570 Keys are allowed to be from 0 to 256 bits in length, in steps 1571 of 8 bits. 1572 1573 This module provides Serpent cipher algorithm that processes four 1574 blocks parallel using SSE2 instruction set. 1575 1576 See also: 1577 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1578 1579config CRYPTO_SERPENT_AVX_X86_64 1580 tristate "Serpent cipher algorithm (x86_64/AVX)" 1581 depends on X86 && 64BIT 1582 select CRYPTO_SKCIPHER 1583 select CRYPTO_SERPENT 1584 select CRYPTO_SIMD 1585 imply CRYPTO_XTS 1586 imply CRYPTO_CTR 1587 help 1588 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1589 1590 Keys are allowed to be from 0 to 256 bits in length, in steps 1591 of 8 bits. 1592 1593 This module provides the Serpent cipher algorithm that processes 1594 eight blocks parallel using the AVX instruction set. 1595 1596 See also: 1597 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1598 1599config CRYPTO_SERPENT_AVX2_X86_64 1600 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1601 depends on X86 && 64BIT 1602 select CRYPTO_SERPENT_AVX_X86_64 1603 help 1604 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1605 1606 Keys are allowed to be from 0 to 256 bits in length, in steps 1607 of 8 bits. 1608 1609 This module provides Serpent cipher algorithm that processes 16 1610 blocks parallel using AVX2 instruction set. 1611 1612 See also: 1613 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1614 1615config CRYPTO_SM4 1616 tristate 1617 1618config CRYPTO_SM4_GENERIC 1619 tristate "SM4 cipher algorithm" 1620 select CRYPTO_ALGAPI 1621 select CRYPTO_SM4 1622 help 1623 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1624 1625 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1626 Organization of State Commercial Administration of China (OSCCA) 1627 as an authorized cryptographic algorithms for the use within China. 1628 1629 SMS4 was originally created for use in protecting wireless 1630 networks, and is mandated in the Chinese National Standard for 1631 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1632 (GB.15629.11-2003). 1633 1634 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1635 standardized through TC 260 of the Standardization Administration 1636 of the People's Republic of China (SAC). 1637 1638 The input, output, and key of SMS4 are each 128 bits. 1639 1640 See also: <https://eprint.iacr.org/2008/329.pdf> 1641 1642 If unsure, say N. 1643 1644config CRYPTO_SM4_AESNI_AVX_X86_64 1645 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1646 depends on X86 && 64BIT 1647 select CRYPTO_SKCIPHER 1648 select CRYPTO_SIMD 1649 select CRYPTO_ALGAPI 1650 select CRYPTO_SM4 1651 help 1652 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1653 1654 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1655 Organization of State Commercial Administration of China (OSCCA) 1656 as an authorized cryptographic algorithms for the use within China. 1657 1658 This is SM4 optimized implementation using AES-NI/AVX/x86_64 1659 instruction set for block cipher. Through two affine transforms, 1660 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1661 effect of instruction acceleration. 1662 1663 If unsure, say N. 1664 1665config CRYPTO_SM4_AESNI_AVX2_X86_64 1666 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 1667 depends on X86 && 64BIT 1668 select CRYPTO_SKCIPHER 1669 select CRYPTO_SIMD 1670 select CRYPTO_ALGAPI 1671 select CRYPTO_SM4 1672 select CRYPTO_SM4_AESNI_AVX_X86_64 1673 help 1674 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 1675 1676 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1677 Organization of State Commercial Administration of China (OSCCA) 1678 as an authorized cryptographic algorithms for the use within China. 1679 1680 This is SM4 optimized implementation using AES-NI/AVX2/x86_64 1681 instruction set for block cipher. Through two affine transforms, 1682 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1683 effect of instruction acceleration. 1684 1685 If unsure, say N. 1686 1687config CRYPTO_TEA 1688 tristate "TEA, XTEA and XETA cipher algorithms" 1689 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1690 select CRYPTO_ALGAPI 1691 help 1692 TEA cipher algorithm. 1693 1694 Tiny Encryption Algorithm is a simple cipher that uses 1695 many rounds for security. It is very fast and uses 1696 little memory. 1697 1698 Xtendend Tiny Encryption Algorithm is a modification to 1699 the TEA algorithm to address a potential key weakness 1700 in the TEA algorithm. 1701 1702 Xtendend Encryption Tiny Algorithm is a mis-implementation 1703 of the XTEA algorithm for compatibility purposes. 1704 1705config CRYPTO_TWOFISH 1706 tristate "Twofish cipher algorithm" 1707 select CRYPTO_ALGAPI 1708 select CRYPTO_TWOFISH_COMMON 1709 help 1710 Twofish cipher algorithm. 1711 1712 Twofish was submitted as an AES (Advanced Encryption Standard) 1713 candidate cipher by researchers at CounterPane Systems. It is a 1714 16 round block cipher supporting key sizes of 128, 192, and 256 1715 bits. 1716 1717 See also: 1718 <https://www.schneier.com/twofish.html> 1719 1720config CRYPTO_TWOFISH_COMMON 1721 tristate 1722 help 1723 Common parts of the Twofish cipher algorithm shared by the 1724 generic c and the assembler implementations. 1725 1726config CRYPTO_TWOFISH_586 1727 tristate "Twofish cipher algorithms (i586)" 1728 depends on (X86 || UML_X86) && !64BIT 1729 select CRYPTO_ALGAPI 1730 select CRYPTO_TWOFISH_COMMON 1731 imply CRYPTO_CTR 1732 help 1733 Twofish cipher algorithm. 1734 1735 Twofish was submitted as an AES (Advanced Encryption Standard) 1736 candidate cipher by researchers at CounterPane Systems. It is a 1737 16 round block cipher supporting key sizes of 128, 192, and 256 1738 bits. 1739 1740 See also: 1741 <https://www.schneier.com/twofish.html> 1742 1743config CRYPTO_TWOFISH_X86_64 1744 tristate "Twofish cipher algorithm (x86_64)" 1745 depends on (X86 || UML_X86) && 64BIT 1746 select CRYPTO_ALGAPI 1747 select CRYPTO_TWOFISH_COMMON 1748 imply CRYPTO_CTR 1749 help 1750 Twofish cipher algorithm (x86_64). 1751 1752 Twofish was submitted as an AES (Advanced Encryption Standard) 1753 candidate cipher by researchers at CounterPane Systems. It is a 1754 16 round block cipher supporting key sizes of 128, 192, and 256 1755 bits. 1756 1757 See also: 1758 <https://www.schneier.com/twofish.html> 1759 1760config CRYPTO_TWOFISH_X86_64_3WAY 1761 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1762 depends on X86 && 64BIT 1763 select CRYPTO_SKCIPHER 1764 select CRYPTO_TWOFISH_COMMON 1765 select CRYPTO_TWOFISH_X86_64 1766 help 1767 Twofish cipher algorithm (x86_64, 3-way parallel). 1768 1769 Twofish was submitted as an AES (Advanced Encryption Standard) 1770 candidate cipher by researchers at CounterPane Systems. It is a 1771 16 round block cipher supporting key sizes of 128, 192, and 256 1772 bits. 1773 1774 This module provides Twofish cipher algorithm that processes three 1775 blocks parallel, utilizing resources of out-of-order CPUs better. 1776 1777 See also: 1778 <https://www.schneier.com/twofish.html> 1779 1780config CRYPTO_TWOFISH_AVX_X86_64 1781 tristate "Twofish cipher algorithm (x86_64/AVX)" 1782 depends on X86 && 64BIT 1783 select CRYPTO_SKCIPHER 1784 select CRYPTO_SIMD 1785 select CRYPTO_TWOFISH_COMMON 1786 select CRYPTO_TWOFISH_X86_64 1787 select CRYPTO_TWOFISH_X86_64_3WAY 1788 imply CRYPTO_XTS 1789 help 1790 Twofish cipher algorithm (x86_64/AVX). 1791 1792 Twofish was submitted as an AES (Advanced Encryption Standard) 1793 candidate cipher by researchers at CounterPane Systems. It is a 1794 16 round block cipher supporting key sizes of 128, 192, and 256 1795 bits. 1796 1797 This module provides the Twofish cipher algorithm that processes 1798 eight blocks parallel using the AVX Instruction Set. 1799 1800 See also: 1801 <https://www.schneier.com/twofish.html> 1802 1803comment "Compression" 1804 1805config CRYPTO_DEFLATE 1806 tristate "Deflate compression algorithm" 1807 select CRYPTO_ALGAPI 1808 select CRYPTO_ACOMP2 1809 select ZLIB_INFLATE 1810 select ZLIB_DEFLATE 1811 help 1812 This is the Deflate algorithm (RFC1951), specified for use in 1813 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1814 1815 You will most probably want this if using IPSec. 1816 1817config CRYPTO_LZO 1818 tristate "LZO compression algorithm" 1819 select CRYPTO_ALGAPI 1820 select CRYPTO_ACOMP2 1821 select LZO_COMPRESS 1822 select LZO_DECOMPRESS 1823 help 1824 This is the LZO algorithm. 1825 1826config CRYPTO_842 1827 tristate "842 compression algorithm" 1828 select CRYPTO_ALGAPI 1829 select CRYPTO_ACOMP2 1830 select 842_COMPRESS 1831 select 842_DECOMPRESS 1832 help 1833 This is the 842 algorithm. 1834 1835config CRYPTO_LZ4 1836 tristate "LZ4 compression algorithm" 1837 select CRYPTO_ALGAPI 1838 select CRYPTO_ACOMP2 1839 select LZ4_COMPRESS 1840 select LZ4_DECOMPRESS 1841 help 1842 This is the LZ4 algorithm. 1843 1844config CRYPTO_LZ4HC 1845 tristate "LZ4HC compression algorithm" 1846 select CRYPTO_ALGAPI 1847 select CRYPTO_ACOMP2 1848 select LZ4HC_COMPRESS 1849 select LZ4_DECOMPRESS 1850 help 1851 This is the LZ4 high compression mode algorithm. 1852 1853config CRYPTO_ZSTD 1854 tristate "Zstd compression algorithm" 1855 select CRYPTO_ALGAPI 1856 select CRYPTO_ACOMP2 1857 select ZSTD_COMPRESS 1858 select ZSTD_DECOMPRESS 1859 help 1860 This is the zstd algorithm. 1861 1862comment "Random Number Generation" 1863 1864config CRYPTO_ANSI_CPRNG 1865 tristate "Pseudo Random Number Generation for Cryptographic modules" 1866 select CRYPTO_AES 1867 select CRYPTO_RNG 1868 help 1869 This option enables the generic pseudo random number generator 1870 for cryptographic modules. Uses the Algorithm specified in 1871 ANSI X9.31 A.2.4. Note that this option must be enabled if 1872 CRYPTO_FIPS is selected 1873 1874menuconfig CRYPTO_DRBG_MENU 1875 tristate "NIST SP800-90A DRBG" 1876 help 1877 NIST SP800-90A compliant DRBG. In the following submenu, one or 1878 more of the DRBG types must be selected. 1879 1880if CRYPTO_DRBG_MENU 1881 1882config CRYPTO_DRBG_HMAC 1883 bool 1884 default y 1885 select CRYPTO_HMAC 1886 select CRYPTO_SHA512 1887 1888config CRYPTO_DRBG_HASH 1889 bool "Enable Hash DRBG" 1890 select CRYPTO_SHA256 1891 help 1892 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1893 1894config CRYPTO_DRBG_CTR 1895 bool "Enable CTR DRBG" 1896 select CRYPTO_AES 1897 select CRYPTO_CTR 1898 help 1899 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1900 1901config CRYPTO_DRBG 1902 tristate 1903 default CRYPTO_DRBG_MENU 1904 select CRYPTO_RNG 1905 select CRYPTO_JITTERENTROPY 1906 1907endif # if CRYPTO_DRBG_MENU 1908 1909config CRYPTO_JITTERENTROPY 1910 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1911 select CRYPTO_RNG 1912 help 1913 The Jitterentropy RNG is a noise that is intended 1914 to provide seed to another RNG. The RNG does not 1915 perform any cryptographic whitening of the generated 1916 random numbers. This Jitterentropy RNG registers with 1917 the kernel crypto API and can be used by any caller. 1918 1919config CRYPTO_KDF800108_CTR 1920 tristate 1921 select CRYPTO_HMAC 1922 select CRYPTO_SHA256 1923 1924config CRYPTO_USER_API 1925 tristate 1926 1927config CRYPTO_USER_API_HASH 1928 tristate "User-space interface for hash algorithms" 1929 depends on NET 1930 select CRYPTO_HASH 1931 select CRYPTO_USER_API 1932 help 1933 This option enables the user-spaces interface for hash 1934 algorithms. 1935 1936config CRYPTO_USER_API_SKCIPHER 1937 tristate "User-space interface for symmetric key cipher algorithms" 1938 depends on NET 1939 select CRYPTO_SKCIPHER 1940 select CRYPTO_USER_API 1941 help 1942 This option enables the user-spaces interface for symmetric 1943 key cipher algorithms. 1944 1945config CRYPTO_USER_API_RNG 1946 tristate "User-space interface for random number generator algorithms" 1947 depends on NET 1948 select CRYPTO_RNG 1949 select CRYPTO_USER_API 1950 help 1951 This option enables the user-spaces interface for random 1952 number generator algorithms. 1953 1954config CRYPTO_USER_API_RNG_CAVP 1955 bool "Enable CAVP testing of DRBG" 1956 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1957 help 1958 This option enables extra API for CAVP testing via the user-space 1959 interface: resetting of DRBG entropy, and providing Additional Data. 1960 This should only be enabled for CAVP testing. You should say 1961 no unless you know what this is. 1962 1963config CRYPTO_USER_API_AEAD 1964 tristate "User-space interface for AEAD cipher algorithms" 1965 depends on NET 1966 select CRYPTO_AEAD 1967 select CRYPTO_SKCIPHER 1968 select CRYPTO_NULL 1969 select CRYPTO_USER_API 1970 help 1971 This option enables the user-spaces interface for AEAD 1972 cipher algorithms. 1973 1974config CRYPTO_USER_API_ENABLE_OBSOLETE 1975 bool "Enable obsolete cryptographic algorithms for userspace" 1976 depends on CRYPTO_USER_API 1977 default y 1978 help 1979 Allow obsolete cryptographic algorithms to be selected that have 1980 already been phased out from internal use by the kernel, and are 1981 only useful for userspace clients that still rely on them. 1982 1983config CRYPTO_STATS 1984 bool "Crypto usage statistics for User-space" 1985 depends on CRYPTO_USER 1986 help 1987 This option enables the gathering of crypto stats. 1988 This will collect: 1989 - encrypt/decrypt size and numbers of symmeric operations 1990 - compress/decompress size and numbers of compress operations 1991 - size and numbers of hash operations 1992 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1993 - generate/seed numbers for rng operations 1994 1995config CRYPTO_HASH_INFO 1996 bool 1997 1998source "drivers/crypto/Kconfig" 1999source "crypto/asymmetric_keys/Kconfig" 2000source "certs/Kconfig" 2001 2002endif # if CRYPTO 2003