xref: /linux/crypto/Kconfig (revision 78beef629fd95be4ed853b2d37b832f766bd96ca)
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6	tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17	tristate "Cryptographic API"
18	help
19	  This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26	bool "FIPS 200 compliance"
27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28	depends on (MODULE_SIG || !MODULES)
29	help
30	  This option enables the fips boot option which is
31	  required if you want the system to operate in a FIPS 200
32	  certification.  You should say no unless you know what
33	  this is.
34
35config CRYPTO_ALGAPI
36	tristate
37	select CRYPTO_ALGAPI2
38	help
39	  This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42	tristate
43
44config CRYPTO_AEAD
45	tristate
46	select CRYPTO_AEAD2
47	select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50	tristate
51	select CRYPTO_ALGAPI2
52	select CRYPTO_NULL2
53	select CRYPTO_RNG2
54
55config CRYPTO_BLKCIPHER
56	tristate
57	select CRYPTO_BLKCIPHER2
58	select CRYPTO_ALGAPI
59
60config CRYPTO_BLKCIPHER2
61	tristate
62	select CRYPTO_ALGAPI2
63	select CRYPTO_RNG2
64
65config CRYPTO_HASH
66	tristate
67	select CRYPTO_HASH2
68	select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71	tristate
72	select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75	tristate
76	select CRYPTO_RNG2
77	select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80	tristate
81	select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84	tristate
85	select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88	tristate
89	select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92	tristate
93	select CRYPTO_AKCIPHER2
94	select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97	tristate
98	select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101	tristate
102	select CRYPTO_ALGAPI
103	select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106	tristate
107	select CRYPTO_ALGAPI2
108	select SGL_ALLOC
109
110config CRYPTO_ACOMP
111	tristate
112	select CRYPTO_ALGAPI
113	select CRYPTO_ACOMP2
114
115config CRYPTO_MANAGER
116	tristate "Cryptographic algorithm manager"
117	select CRYPTO_MANAGER2
118	help
119	  Create default cryptographic template instantiations such as
120	  cbc(aes).
121
122config CRYPTO_MANAGER2
123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124	select CRYPTO_AEAD2
125	select CRYPTO_HASH2
126	select CRYPTO_BLKCIPHER2
127	select CRYPTO_AKCIPHER2
128	select CRYPTO_KPP2
129	select CRYPTO_ACOMP2
130
131config CRYPTO_USER
132	tristate "Userspace cryptographic algorithm configuration"
133	depends on NET
134	select CRYPTO_MANAGER
135	help
136	  Userspace configuration for cryptographic instantiations such as
137	  cbc(aes).
138
139if CRYPTO_MANAGER2
140
141config CRYPTO_MANAGER_DISABLE_TESTS
142	bool "Disable run-time self tests"
143	default y
144	help
145	  Disable run-time self tests that normally take place at
146	  algorithm registration.
147
148config CRYPTO_MANAGER_EXTRA_TESTS
149	bool "Enable extra run-time crypto self tests"
150	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
151	help
152	  Enable extra run-time self tests of registered crypto algorithms,
153	  including randomized fuzz tests.
154
155	  This is intended for developer use only, as these tests take much
156	  longer to run than the normal self tests.
157
158endif	# if CRYPTO_MANAGER2
159
160config CRYPTO_GF128MUL
161	tristate
162
163config CRYPTO_NULL
164	tristate "Null algorithms"
165	select CRYPTO_NULL2
166	help
167	  These are 'Null' algorithms, used by IPsec, which do nothing.
168
169config CRYPTO_NULL2
170	tristate
171	select CRYPTO_ALGAPI2
172	select CRYPTO_BLKCIPHER2
173	select CRYPTO_HASH2
174
175config CRYPTO_PCRYPT
176	tristate "Parallel crypto engine"
177	depends on SMP
178	select PADATA
179	select CRYPTO_MANAGER
180	select CRYPTO_AEAD
181	help
182	  This converts an arbitrary crypto algorithm into a parallel
183	  algorithm that executes in kernel threads.
184
185config CRYPTO_CRYPTD
186	tristate "Software async crypto daemon"
187	select CRYPTO_BLKCIPHER
188	select CRYPTO_HASH
189	select CRYPTO_MANAGER
190	help
191	  This is a generic software asynchronous crypto daemon that
192	  converts an arbitrary synchronous software crypto algorithm
193	  into an asynchronous algorithm that executes in a kernel thread.
194
195config CRYPTO_AUTHENC
196	tristate "Authenc support"
197	select CRYPTO_AEAD
198	select CRYPTO_BLKCIPHER
199	select CRYPTO_MANAGER
200	select CRYPTO_HASH
201	select CRYPTO_NULL
202	help
203	  Authenc: Combined mode wrapper for IPsec.
204	  This is required for IPSec.
205
206config CRYPTO_TEST
207	tristate "Testing module"
208	depends on m
209	select CRYPTO_MANAGER
210	help
211	  Quick & dirty crypto test module.
212
213config CRYPTO_SIMD
214	tristate
215	select CRYPTO_CRYPTD
216
217config CRYPTO_GLUE_HELPER_X86
218	tristate
219	depends on X86
220	select CRYPTO_BLKCIPHER
221
222config CRYPTO_ENGINE
223	tristate
224
225comment "Public-key cryptography"
226
227config CRYPTO_RSA
228	tristate "RSA algorithm"
229	select CRYPTO_AKCIPHER
230	select CRYPTO_MANAGER
231	select MPILIB
232	select ASN1
233	help
234	  Generic implementation of the RSA public key algorithm.
235
236config CRYPTO_DH
237	tristate "Diffie-Hellman algorithm"
238	select CRYPTO_KPP
239	select MPILIB
240	help
241	  Generic implementation of the Diffie-Hellman algorithm.
242
243config CRYPTO_ECC
244	tristate
245
246config CRYPTO_ECDH
247	tristate "ECDH algorithm"
248	select CRYPTO_ECC
249	select CRYPTO_KPP
250	select CRYPTO_RNG_DEFAULT
251	help
252	  Generic implementation of the ECDH algorithm
253
254config CRYPTO_ECRDSA
255	tristate "EC-RDSA (GOST 34.10) algorithm"
256	select CRYPTO_ECC
257	select CRYPTO_AKCIPHER
258	select CRYPTO_STREEBOG
259	select OID_REGISTRY
260	select ASN1
261	help
262	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
263	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
264	  standard algorithms (called GOST algorithms). Only signature verification
265	  is implemented.
266
267comment "Authenticated Encryption with Associated Data"
268
269config CRYPTO_CCM
270	tristate "CCM support"
271	select CRYPTO_CTR
272	select CRYPTO_HASH
273	select CRYPTO_AEAD
274	select CRYPTO_MANAGER
275	help
276	  Support for Counter with CBC MAC. Required for IPsec.
277
278config CRYPTO_GCM
279	tristate "GCM/GMAC support"
280	select CRYPTO_CTR
281	select CRYPTO_AEAD
282	select CRYPTO_GHASH
283	select CRYPTO_NULL
284	select CRYPTO_MANAGER
285	help
286	  Support for Galois/Counter Mode (GCM) and Galois Message
287	  Authentication Code (GMAC). Required for IPSec.
288
289config CRYPTO_CHACHA20POLY1305
290	tristate "ChaCha20-Poly1305 AEAD support"
291	select CRYPTO_CHACHA20
292	select CRYPTO_POLY1305
293	select CRYPTO_AEAD
294	select CRYPTO_MANAGER
295	help
296	  ChaCha20-Poly1305 AEAD support, RFC7539.
297
298	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
299	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
300	  IETF protocols.
301
302config CRYPTO_AEGIS128
303	tristate "AEGIS-128 AEAD algorithm"
304	select CRYPTO_AEAD
305	select CRYPTO_AES  # for AES S-box tables
306	help
307	 Support for the AEGIS-128 dedicated AEAD algorithm.
308
309config CRYPTO_AEGIS128_SIMD
310	bool "Support SIMD acceleration for AEGIS-128"
311	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
312	default y
313
314config CRYPTO_AEGIS128_AESNI_SSE2
315	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
316	depends on X86 && 64BIT
317	select CRYPTO_AEAD
318	select CRYPTO_SIMD
319	help
320	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
321
322config CRYPTO_SEQIV
323	tristate "Sequence Number IV Generator"
324	select CRYPTO_AEAD
325	select CRYPTO_BLKCIPHER
326	select CRYPTO_NULL
327	select CRYPTO_RNG_DEFAULT
328	select CRYPTO_MANAGER
329	help
330	  This IV generator generates an IV based on a sequence number by
331	  xoring it with a salt.  This algorithm is mainly useful for CTR
332
333config CRYPTO_ECHAINIV
334	tristate "Encrypted Chain IV Generator"
335	select CRYPTO_AEAD
336	select CRYPTO_NULL
337	select CRYPTO_RNG_DEFAULT
338	select CRYPTO_MANAGER
339	help
340	  This IV generator generates an IV based on the encryption of
341	  a sequence number xored with a salt.  This is the default
342	  algorithm for CBC.
343
344comment "Block modes"
345
346config CRYPTO_CBC
347	tristate "CBC support"
348	select CRYPTO_BLKCIPHER
349	select CRYPTO_MANAGER
350	help
351	  CBC: Cipher Block Chaining mode
352	  This block cipher algorithm is required for IPSec.
353
354config CRYPTO_CFB
355	tristate "CFB support"
356	select CRYPTO_BLKCIPHER
357	select CRYPTO_MANAGER
358	help
359	  CFB: Cipher FeedBack mode
360	  This block cipher algorithm is required for TPM2 Cryptography.
361
362config CRYPTO_CTR
363	tristate "CTR support"
364	select CRYPTO_BLKCIPHER
365	select CRYPTO_SEQIV
366	select CRYPTO_MANAGER
367	help
368	  CTR: Counter mode
369	  This block cipher algorithm is required for IPSec.
370
371config CRYPTO_CTS
372	tristate "CTS support"
373	select CRYPTO_BLKCIPHER
374	select CRYPTO_MANAGER
375	help
376	  CTS: Cipher Text Stealing
377	  This is the Cipher Text Stealing mode as described by
378	  Section 8 of rfc2040 and referenced by rfc3962
379	  (rfc3962 includes errata information in its Appendix A) or
380	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
381	  This mode is required for Kerberos gss mechanism support
382	  for AES encryption.
383
384	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
385
386config CRYPTO_ECB
387	tristate "ECB support"
388	select CRYPTO_BLKCIPHER
389	select CRYPTO_MANAGER
390	help
391	  ECB: Electronic CodeBook mode
392	  This is the simplest block cipher algorithm.  It simply encrypts
393	  the input block by block.
394
395config CRYPTO_LRW
396	tristate "LRW support"
397	select CRYPTO_BLKCIPHER
398	select CRYPTO_MANAGER
399	select CRYPTO_GF128MUL
400	help
401	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
402	  narrow block cipher mode for dm-crypt.  Use it with cipher
403	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
404	  The first 128, 192 or 256 bits in the key are used for AES and the
405	  rest is used to tie each cipher block to its logical position.
406
407config CRYPTO_OFB
408	tristate "OFB support"
409	select CRYPTO_BLKCIPHER
410	select CRYPTO_MANAGER
411	help
412	  OFB: the Output Feedback mode makes a block cipher into a synchronous
413	  stream cipher. It generates keystream blocks, which are then XORed
414	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
415	  ciphertext produces a flipped bit in the plaintext at the same
416	  location. This property allows many error correcting codes to function
417	  normally even when applied before encryption.
418
419config CRYPTO_PCBC
420	tristate "PCBC support"
421	select CRYPTO_BLKCIPHER
422	select CRYPTO_MANAGER
423	help
424	  PCBC: Propagating Cipher Block Chaining mode
425	  This block cipher algorithm is required for RxRPC.
426
427config CRYPTO_XTS
428	tristate "XTS support"
429	select CRYPTO_BLKCIPHER
430	select CRYPTO_MANAGER
431	select CRYPTO_ECB
432	help
433	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
434	  key size 256, 384 or 512 bits. This implementation currently
435	  can't handle a sectorsize which is not a multiple of 16 bytes.
436
437config CRYPTO_KEYWRAP
438	tristate "Key wrapping support"
439	select CRYPTO_BLKCIPHER
440	select CRYPTO_MANAGER
441	help
442	  Support for key wrapping (NIST SP800-38F / RFC3394) without
443	  padding.
444
445config CRYPTO_NHPOLY1305
446	tristate
447	select CRYPTO_HASH
448	select CRYPTO_POLY1305
449
450config CRYPTO_NHPOLY1305_SSE2
451	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
452	depends on X86 && 64BIT
453	select CRYPTO_NHPOLY1305
454	help
455	  SSE2 optimized implementation of the hash function used by the
456	  Adiantum encryption mode.
457
458config CRYPTO_NHPOLY1305_AVX2
459	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
460	depends on X86 && 64BIT
461	select CRYPTO_NHPOLY1305
462	help
463	  AVX2 optimized implementation of the hash function used by the
464	  Adiantum encryption mode.
465
466config CRYPTO_ADIANTUM
467	tristate "Adiantum support"
468	select CRYPTO_CHACHA20
469	select CRYPTO_POLY1305
470	select CRYPTO_NHPOLY1305
471	select CRYPTO_MANAGER
472	help
473	  Adiantum is a tweakable, length-preserving encryption mode
474	  designed for fast and secure disk encryption, especially on
475	  CPUs without dedicated crypto instructions.  It encrypts
476	  each sector using the XChaCha12 stream cipher, two passes of
477	  an ε-almost-∆-universal hash function, and an invocation of
478	  the AES-256 block cipher on a single 16-byte block.  On CPUs
479	  without AES instructions, Adiantum is much faster than
480	  AES-XTS.
481
482	  Adiantum's security is provably reducible to that of its
483	  underlying stream and block ciphers, subject to a security
484	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
485	  mode, so it actually provides an even stronger notion of
486	  security than XTS, subject to the security bound.
487
488	  If unsure, say N.
489
490comment "Hash modes"
491
492config CRYPTO_CMAC
493	tristate "CMAC support"
494	select CRYPTO_HASH
495	select CRYPTO_MANAGER
496	help
497	  Cipher-based Message Authentication Code (CMAC) specified by
498	  The National Institute of Standards and Technology (NIST).
499
500	  https://tools.ietf.org/html/rfc4493
501	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
502
503config CRYPTO_HMAC
504	tristate "HMAC support"
505	select CRYPTO_HASH
506	select CRYPTO_MANAGER
507	help
508	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
509	  This is required for IPSec.
510
511config CRYPTO_XCBC
512	tristate "XCBC support"
513	select CRYPTO_HASH
514	select CRYPTO_MANAGER
515	help
516	  XCBC: Keyed-Hashing with encryption algorithm
517		http://www.ietf.org/rfc/rfc3566.txt
518		http://csrc.nist.gov/encryption/modes/proposedmodes/
519		 xcbc-mac/xcbc-mac-spec.pdf
520
521config CRYPTO_VMAC
522	tristate "VMAC support"
523	select CRYPTO_HASH
524	select CRYPTO_MANAGER
525	help
526	  VMAC is a message authentication algorithm designed for
527	  very high speed on 64-bit architectures.
528
529	  See also:
530	  <http://fastcrypto.org/vmac>
531
532comment "Digest"
533
534config CRYPTO_CRC32C
535	tristate "CRC32c CRC algorithm"
536	select CRYPTO_HASH
537	select CRC32
538	help
539	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
540	  by iSCSI for header and data digests and by others.
541	  See Castagnoli93.  Module will be crc32c.
542
543config CRYPTO_CRC32C_INTEL
544	tristate "CRC32c INTEL hardware acceleration"
545	depends on X86
546	select CRYPTO_HASH
547	help
548	  In Intel processor with SSE4.2 supported, the processor will
549	  support CRC32C implementation using hardware accelerated CRC32
550	  instruction. This option will create 'crc32c-intel' module,
551	  which will enable any routine to use the CRC32 instruction to
552	  gain performance compared with software implementation.
553	  Module will be crc32c-intel.
554
555config CRYPTO_CRC32C_VPMSUM
556	tristate "CRC32c CRC algorithm (powerpc64)"
557	depends on PPC64 && ALTIVEC
558	select CRYPTO_HASH
559	select CRC32
560	help
561	  CRC32c algorithm implemented using vector polynomial multiply-sum
562	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
563	  and newer processors for improved performance.
564
565
566config CRYPTO_CRC32C_SPARC64
567	tristate "CRC32c CRC algorithm (SPARC64)"
568	depends on SPARC64
569	select CRYPTO_HASH
570	select CRC32
571	help
572	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
573	  when available.
574
575config CRYPTO_CRC32
576	tristate "CRC32 CRC algorithm"
577	select CRYPTO_HASH
578	select CRC32
579	help
580	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
581	  Shash crypto api wrappers to crc32_le function.
582
583config CRYPTO_CRC32_PCLMUL
584	tristate "CRC32 PCLMULQDQ hardware acceleration"
585	depends on X86
586	select CRYPTO_HASH
587	select CRC32
588	help
589	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
590	  and PCLMULQDQ supported, the processor will support
591	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
592	  instruction. This option will create 'crc32-pclmul' module,
593	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
594	  and gain better performance as compared with the table implementation.
595
596config CRYPTO_CRC32_MIPS
597	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
598	depends on MIPS_CRC_SUPPORT
599	select CRYPTO_HASH
600	help
601	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
602	  instructions, when available.
603
604
605config CRYPTO_XXHASH
606	tristate "xxHash hash algorithm"
607	select CRYPTO_HASH
608	select XXHASH
609	help
610	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
611	  speeds close to RAM limits.
612
613config CRYPTO_CRCT10DIF
614	tristate "CRCT10DIF algorithm"
615	select CRYPTO_HASH
616	help
617	  CRC T10 Data Integrity Field computation is being cast as
618	  a crypto transform.  This allows for faster crc t10 diff
619	  transforms to be used if they are available.
620
621config CRYPTO_CRCT10DIF_PCLMUL
622	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
623	depends on X86 && 64BIT && CRC_T10DIF
624	select CRYPTO_HASH
625	help
626	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
627	  CRC T10 DIF PCLMULQDQ computation can be hardware
628	  accelerated PCLMULQDQ instruction. This option will create
629	  'crct10dif-pclmul' module, which is faster when computing the
630	  crct10dif checksum as compared with the generic table implementation.
631
632config CRYPTO_CRCT10DIF_VPMSUM
633	tristate "CRC32T10DIF powerpc64 hardware acceleration"
634	depends on PPC64 && ALTIVEC && CRC_T10DIF
635	select CRYPTO_HASH
636	help
637	  CRC10T10DIF algorithm implemented using vector polynomial
638	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
639	  POWER8 and newer processors for improved performance.
640
641config CRYPTO_VPMSUM_TESTER
642	tristate "Powerpc64 vpmsum hardware acceleration tester"
643	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
644	help
645	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
646	  POWER8 vpmsum instructions.
647	  Unless you are testing these algorithms, you don't need this.
648
649config CRYPTO_GHASH
650	tristate "GHASH hash function"
651	select CRYPTO_GF128MUL
652	select CRYPTO_HASH
653	help
654	  GHASH is the hash function used in GCM (Galois/Counter Mode).
655	  It is not a general-purpose cryptographic hash function.
656
657config CRYPTO_POLY1305
658	tristate "Poly1305 authenticator algorithm"
659	select CRYPTO_HASH
660	help
661	  Poly1305 authenticator algorithm, RFC7539.
662
663	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
664	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
665	  in IETF protocols. This is the portable C implementation of Poly1305.
666
667config CRYPTO_POLY1305_X86_64
668	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
669	depends on X86 && 64BIT
670	select CRYPTO_POLY1305
671	help
672	  Poly1305 authenticator algorithm, RFC7539.
673
674	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
675	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
676	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
677	  instructions.
678
679config CRYPTO_MD4
680	tristate "MD4 digest algorithm"
681	select CRYPTO_HASH
682	help
683	  MD4 message digest algorithm (RFC1320).
684
685config CRYPTO_MD5
686	tristate "MD5 digest algorithm"
687	select CRYPTO_HASH
688	help
689	  MD5 message digest algorithm (RFC1321).
690
691config CRYPTO_MD5_OCTEON
692	tristate "MD5 digest algorithm (OCTEON)"
693	depends on CPU_CAVIUM_OCTEON
694	select CRYPTO_MD5
695	select CRYPTO_HASH
696	help
697	  MD5 message digest algorithm (RFC1321) implemented
698	  using OCTEON crypto instructions, when available.
699
700config CRYPTO_MD5_PPC
701	tristate "MD5 digest algorithm (PPC)"
702	depends on PPC
703	select CRYPTO_HASH
704	help
705	  MD5 message digest algorithm (RFC1321) implemented
706	  in PPC assembler.
707
708config CRYPTO_MD5_SPARC64
709	tristate "MD5 digest algorithm (SPARC64)"
710	depends on SPARC64
711	select CRYPTO_MD5
712	select CRYPTO_HASH
713	help
714	  MD5 message digest algorithm (RFC1321) implemented
715	  using sparc64 crypto instructions, when available.
716
717config CRYPTO_MICHAEL_MIC
718	tristate "Michael MIC keyed digest algorithm"
719	select CRYPTO_HASH
720	help
721	  Michael MIC is used for message integrity protection in TKIP
722	  (IEEE 802.11i). This algorithm is required for TKIP, but it
723	  should not be used for other purposes because of the weakness
724	  of the algorithm.
725
726config CRYPTO_RMD128
727	tristate "RIPEMD-128 digest algorithm"
728	select CRYPTO_HASH
729	help
730	  RIPEMD-128 (ISO/IEC 10118-3:2004).
731
732	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
733	  be used as a secure replacement for RIPEMD. For other use cases,
734	  RIPEMD-160 should be used.
735
736	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
737	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
738
739config CRYPTO_RMD160
740	tristate "RIPEMD-160 digest algorithm"
741	select CRYPTO_HASH
742	help
743	  RIPEMD-160 (ISO/IEC 10118-3:2004).
744
745	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
746	  to be used as a secure replacement for the 128-bit hash functions
747	  MD4, MD5 and it's predecessor RIPEMD
748	  (not to be confused with RIPEMD-128).
749
750	  It's speed is comparable to SHA1 and there are no known attacks
751	  against RIPEMD-160.
752
753	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
754	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
755
756config CRYPTO_RMD256
757	tristate "RIPEMD-256 digest algorithm"
758	select CRYPTO_HASH
759	help
760	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
761	  256 bit hash. It is intended for applications that require
762	  longer hash-results, without needing a larger security level
763	  (than RIPEMD-128).
764
765	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
766	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
767
768config CRYPTO_RMD320
769	tristate "RIPEMD-320 digest algorithm"
770	select CRYPTO_HASH
771	help
772	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
773	  320 bit hash. It is intended for applications that require
774	  longer hash-results, without needing a larger security level
775	  (than RIPEMD-160).
776
777	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
778	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
779
780config CRYPTO_SHA1
781	tristate "SHA1 digest algorithm"
782	select CRYPTO_HASH
783	help
784	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
785
786config CRYPTO_SHA1_SSSE3
787	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
788	depends on X86 && 64BIT
789	select CRYPTO_SHA1
790	select CRYPTO_HASH
791	help
792	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
793	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
794	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
795	  when available.
796
797config CRYPTO_SHA256_SSSE3
798	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
799	depends on X86 && 64BIT
800	select CRYPTO_SHA256
801	select CRYPTO_HASH
802	help
803	  SHA-256 secure hash standard (DFIPS 180-2) implemented
804	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
805	  Extensions version 1 (AVX1), or Advanced Vector Extensions
806	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
807	  Instructions) when available.
808
809config CRYPTO_SHA512_SSSE3
810	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
811	depends on X86 && 64BIT
812	select CRYPTO_SHA512
813	select CRYPTO_HASH
814	help
815	  SHA-512 secure hash standard (DFIPS 180-2) implemented
816	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
817	  Extensions version 1 (AVX1), or Advanced Vector Extensions
818	  version 2 (AVX2) instructions, when available.
819
820config CRYPTO_SHA1_OCTEON
821	tristate "SHA1 digest algorithm (OCTEON)"
822	depends on CPU_CAVIUM_OCTEON
823	select CRYPTO_SHA1
824	select CRYPTO_HASH
825	help
826	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
827	  using OCTEON crypto instructions, when available.
828
829config CRYPTO_SHA1_SPARC64
830	tristate "SHA1 digest algorithm (SPARC64)"
831	depends on SPARC64
832	select CRYPTO_SHA1
833	select CRYPTO_HASH
834	help
835	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
836	  using sparc64 crypto instructions, when available.
837
838config CRYPTO_SHA1_PPC
839	tristate "SHA1 digest algorithm (powerpc)"
840	depends on PPC
841	help
842	  This is the powerpc hardware accelerated implementation of the
843	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
844
845config CRYPTO_SHA1_PPC_SPE
846	tristate "SHA1 digest algorithm (PPC SPE)"
847	depends on PPC && SPE
848	help
849	  SHA-1 secure hash standard (DFIPS 180-4) implemented
850	  using powerpc SPE SIMD instruction set.
851
852config CRYPTO_LIB_SHA256
853	tristate
854
855config CRYPTO_SHA256
856	tristate "SHA224 and SHA256 digest algorithm"
857	select CRYPTO_HASH
858	select CRYPTO_LIB_SHA256
859	help
860	  SHA256 secure hash standard (DFIPS 180-2).
861
862	  This version of SHA implements a 256 bit hash with 128 bits of
863	  security against collision attacks.
864
865	  This code also includes SHA-224, a 224 bit hash with 112 bits
866	  of security against collision attacks.
867
868config CRYPTO_SHA256_PPC_SPE
869	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
870	depends on PPC && SPE
871	select CRYPTO_SHA256
872	select CRYPTO_HASH
873	help
874	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
875	  implemented using powerpc SPE SIMD instruction set.
876
877config CRYPTO_SHA256_OCTEON
878	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
879	depends on CPU_CAVIUM_OCTEON
880	select CRYPTO_SHA256
881	select CRYPTO_HASH
882	help
883	  SHA-256 secure hash standard (DFIPS 180-2) implemented
884	  using OCTEON crypto instructions, when available.
885
886config CRYPTO_SHA256_SPARC64
887	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
888	depends on SPARC64
889	select CRYPTO_SHA256
890	select CRYPTO_HASH
891	help
892	  SHA-256 secure hash standard (DFIPS 180-2) implemented
893	  using sparc64 crypto instructions, when available.
894
895config CRYPTO_SHA512
896	tristate "SHA384 and SHA512 digest algorithms"
897	select CRYPTO_HASH
898	help
899	  SHA512 secure hash standard (DFIPS 180-2).
900
901	  This version of SHA implements a 512 bit hash with 256 bits of
902	  security against collision attacks.
903
904	  This code also includes SHA-384, a 384 bit hash with 192 bits
905	  of security against collision attacks.
906
907config CRYPTO_SHA512_OCTEON
908	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
909	depends on CPU_CAVIUM_OCTEON
910	select CRYPTO_SHA512
911	select CRYPTO_HASH
912	help
913	  SHA-512 secure hash standard (DFIPS 180-2) implemented
914	  using OCTEON crypto instructions, when available.
915
916config CRYPTO_SHA512_SPARC64
917	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
918	depends on SPARC64
919	select CRYPTO_SHA512
920	select CRYPTO_HASH
921	help
922	  SHA-512 secure hash standard (DFIPS 180-2) implemented
923	  using sparc64 crypto instructions, when available.
924
925config CRYPTO_SHA3
926	tristate "SHA3 digest algorithm"
927	select CRYPTO_HASH
928	help
929	  SHA-3 secure hash standard (DFIPS 202). It's based on
930	  cryptographic sponge function family called Keccak.
931
932	  References:
933	  http://keccak.noekeon.org/
934
935config CRYPTO_SM3
936	tristate "SM3 digest algorithm"
937	select CRYPTO_HASH
938	help
939	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
940	  It is part of the Chinese Commercial Cryptography suite.
941
942	  References:
943	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
944	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
945
946config CRYPTO_STREEBOG
947	tristate "Streebog Hash Function"
948	select CRYPTO_HASH
949	help
950	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
951	  cryptographic standard algorithms (called GOST algorithms).
952	  This setting enables two hash algorithms with 256 and 512 bits output.
953
954	  References:
955	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
956	  https://tools.ietf.org/html/rfc6986
957
958config CRYPTO_TGR192
959	tristate "Tiger digest algorithms"
960	select CRYPTO_HASH
961	help
962	  Tiger hash algorithm 192, 160 and 128-bit hashes
963
964	  Tiger is a hash function optimized for 64-bit processors while
965	  still having decent performance on 32-bit processors.
966	  Tiger was developed by Ross Anderson and Eli Biham.
967
968	  See also:
969	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
970
971config CRYPTO_WP512
972	tristate "Whirlpool digest algorithms"
973	select CRYPTO_HASH
974	help
975	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
976
977	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
978	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
979
980	  See also:
981	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
982
983config CRYPTO_GHASH_CLMUL_NI_INTEL
984	tristate "GHASH hash function (CLMUL-NI accelerated)"
985	depends on X86 && 64BIT
986	select CRYPTO_CRYPTD
987	help
988	  This is the x86_64 CLMUL-NI accelerated implementation of
989	  GHASH, the hash function used in GCM (Galois/Counter mode).
990
991comment "Ciphers"
992
993config CRYPTO_LIB_AES
994	tristate
995
996config CRYPTO_AES
997	tristate "AES cipher algorithms"
998	select CRYPTO_ALGAPI
999	select CRYPTO_LIB_AES
1000	help
1001	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1002	  algorithm.
1003
1004	  Rijndael appears to be consistently a very good performer in
1005	  both hardware and software across a wide range of computing
1006	  environments regardless of its use in feedback or non-feedback
1007	  modes. Its key setup time is excellent, and its key agility is
1008	  good. Rijndael's very low memory requirements make it very well
1009	  suited for restricted-space environments, in which it also
1010	  demonstrates excellent performance. Rijndael's operations are
1011	  among the easiest to defend against power and timing attacks.
1012
1013	  The AES specifies three key sizes: 128, 192 and 256 bits
1014
1015	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1016
1017config CRYPTO_AES_TI
1018	tristate "Fixed time AES cipher"
1019	select CRYPTO_ALGAPI
1020	select CRYPTO_LIB_AES
1021	help
1022	  This is a generic implementation of AES that attempts to eliminate
1023	  data dependent latencies as much as possible without affecting
1024	  performance too much. It is intended for use by the generic CCM
1025	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1026	  solely on encryption (although decryption is supported as well, but
1027	  with a more dramatic performance hit)
1028
1029	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1030	  8 for decryption), this implementation only uses just two S-boxes of
1031	  256 bytes each, and attempts to eliminate data dependent latencies by
1032	  prefetching the entire table into the cache at the start of each
1033	  block. Interrupts are also disabled to avoid races where cachelines
1034	  are evicted when the CPU is interrupted to do something else.
1035
1036config CRYPTO_AES_NI_INTEL
1037	tristate "AES cipher algorithms (AES-NI)"
1038	depends on X86
1039	select CRYPTO_AEAD
1040	select CRYPTO_LIB_AES
1041	select CRYPTO_ALGAPI
1042	select CRYPTO_BLKCIPHER
1043	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1044	select CRYPTO_SIMD
1045	help
1046	  Use Intel AES-NI instructions for AES algorithm.
1047
1048	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1049	  algorithm.
1050
1051	  Rijndael appears to be consistently a very good performer in
1052	  both hardware and software across a wide range of computing
1053	  environments regardless of its use in feedback or non-feedback
1054	  modes. Its key setup time is excellent, and its key agility is
1055	  good. Rijndael's very low memory requirements make it very well
1056	  suited for restricted-space environments, in which it also
1057	  demonstrates excellent performance. Rijndael's operations are
1058	  among the easiest to defend against power and timing attacks.
1059
1060	  The AES specifies three key sizes: 128, 192 and 256 bits
1061
1062	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1063
1064	  In addition to AES cipher algorithm support, the acceleration
1065	  for some popular block cipher mode is supported too, including
1066	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1067	  acceleration for CTR.
1068
1069config CRYPTO_AES_SPARC64
1070	tristate "AES cipher algorithms (SPARC64)"
1071	depends on SPARC64
1072	select CRYPTO_CRYPTD
1073	select CRYPTO_ALGAPI
1074	help
1075	  Use SPARC64 crypto opcodes for AES algorithm.
1076
1077	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1078	  algorithm.
1079
1080	  Rijndael appears to be consistently a very good performer in
1081	  both hardware and software across a wide range of computing
1082	  environments regardless of its use in feedback or non-feedback
1083	  modes. Its key setup time is excellent, and its key agility is
1084	  good. Rijndael's very low memory requirements make it very well
1085	  suited for restricted-space environments, in which it also
1086	  demonstrates excellent performance. Rijndael's operations are
1087	  among the easiest to defend against power and timing attacks.
1088
1089	  The AES specifies three key sizes: 128, 192 and 256 bits
1090
1091	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1092
1093	  In addition to AES cipher algorithm support, the acceleration
1094	  for some popular block cipher mode is supported too, including
1095	  ECB and CBC.
1096
1097config CRYPTO_AES_PPC_SPE
1098	tristate "AES cipher algorithms (PPC SPE)"
1099	depends on PPC && SPE
1100	help
1101	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1102	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1103	  This module should only be used for low power (router) devices
1104	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1105	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1106	  timining attacks. Nevertheless it might be not as secure as other
1107	  architecture specific assembler implementations that work on 1KB
1108	  tables or 256 bytes S-boxes.
1109
1110config CRYPTO_ANUBIS
1111	tristate "Anubis cipher algorithm"
1112	select CRYPTO_ALGAPI
1113	help
1114	  Anubis cipher algorithm.
1115
1116	  Anubis is a variable key length cipher which can use keys from
1117	  128 bits to 320 bits in length.  It was evaluated as a entrant
1118	  in the NESSIE competition.
1119
1120	  See also:
1121	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1122	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1123
1124config CRYPTO_LIB_ARC4
1125	tristate
1126
1127config CRYPTO_ARC4
1128	tristate "ARC4 cipher algorithm"
1129	select CRYPTO_BLKCIPHER
1130	select CRYPTO_LIB_ARC4
1131	help
1132	  ARC4 cipher algorithm.
1133
1134	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1135	  bits in length.  This algorithm is required for driver-based
1136	  WEP, but it should not be for other purposes because of the
1137	  weakness of the algorithm.
1138
1139config CRYPTO_BLOWFISH
1140	tristate "Blowfish cipher algorithm"
1141	select CRYPTO_ALGAPI
1142	select CRYPTO_BLOWFISH_COMMON
1143	help
1144	  Blowfish cipher algorithm, by Bruce Schneier.
1145
1146	  This is a variable key length cipher which can use keys from 32
1147	  bits to 448 bits in length.  It's fast, simple and specifically
1148	  designed for use on "large microprocessors".
1149
1150	  See also:
1151	  <http://www.schneier.com/blowfish.html>
1152
1153config CRYPTO_BLOWFISH_COMMON
1154	tristate
1155	help
1156	  Common parts of the Blowfish cipher algorithm shared by the
1157	  generic c and the assembler implementations.
1158
1159	  See also:
1160	  <http://www.schneier.com/blowfish.html>
1161
1162config CRYPTO_BLOWFISH_X86_64
1163	tristate "Blowfish cipher algorithm (x86_64)"
1164	depends on X86 && 64BIT
1165	select CRYPTO_BLKCIPHER
1166	select CRYPTO_BLOWFISH_COMMON
1167	help
1168	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1169
1170	  This is a variable key length cipher which can use keys from 32
1171	  bits to 448 bits in length.  It's fast, simple and specifically
1172	  designed for use on "large microprocessors".
1173
1174	  See also:
1175	  <http://www.schneier.com/blowfish.html>
1176
1177config CRYPTO_CAMELLIA
1178	tristate "Camellia cipher algorithms"
1179	depends on CRYPTO
1180	select CRYPTO_ALGAPI
1181	help
1182	  Camellia cipher algorithms module.
1183
1184	  Camellia is a symmetric key block cipher developed jointly
1185	  at NTT and Mitsubishi Electric Corporation.
1186
1187	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1188
1189	  See also:
1190	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1191
1192config CRYPTO_CAMELLIA_X86_64
1193	tristate "Camellia cipher algorithm (x86_64)"
1194	depends on X86 && 64BIT
1195	depends on CRYPTO
1196	select CRYPTO_BLKCIPHER
1197	select CRYPTO_GLUE_HELPER_X86
1198	help
1199	  Camellia cipher algorithm module (x86_64).
1200
1201	  Camellia is a symmetric key block cipher developed jointly
1202	  at NTT and Mitsubishi Electric Corporation.
1203
1204	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1205
1206	  See also:
1207	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1208
1209config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1210	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1211	depends on X86 && 64BIT
1212	depends on CRYPTO
1213	select CRYPTO_BLKCIPHER
1214	select CRYPTO_CAMELLIA_X86_64
1215	select CRYPTO_GLUE_HELPER_X86
1216	select CRYPTO_SIMD
1217	select CRYPTO_XTS
1218	help
1219	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1220
1221	  Camellia is a symmetric key block cipher developed jointly
1222	  at NTT and Mitsubishi Electric Corporation.
1223
1224	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1225
1226	  See also:
1227	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1228
1229config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1230	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1231	depends on X86 && 64BIT
1232	depends on CRYPTO
1233	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1234	help
1235	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1236
1237	  Camellia is a symmetric key block cipher developed jointly
1238	  at NTT and Mitsubishi Electric Corporation.
1239
1240	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1241
1242	  See also:
1243	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1244
1245config CRYPTO_CAMELLIA_SPARC64
1246	tristate "Camellia cipher algorithm (SPARC64)"
1247	depends on SPARC64
1248	depends on CRYPTO
1249	select CRYPTO_ALGAPI
1250	help
1251	  Camellia cipher algorithm module (SPARC64).
1252
1253	  Camellia is a symmetric key block cipher developed jointly
1254	  at NTT and Mitsubishi Electric Corporation.
1255
1256	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1257
1258	  See also:
1259	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1260
1261config CRYPTO_CAST_COMMON
1262	tristate
1263	help
1264	  Common parts of the CAST cipher algorithms shared by the
1265	  generic c and the assembler implementations.
1266
1267config CRYPTO_CAST5
1268	tristate "CAST5 (CAST-128) cipher algorithm"
1269	select CRYPTO_ALGAPI
1270	select CRYPTO_CAST_COMMON
1271	help
1272	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1273	  described in RFC2144.
1274
1275config CRYPTO_CAST5_AVX_X86_64
1276	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1277	depends on X86 && 64BIT
1278	select CRYPTO_BLKCIPHER
1279	select CRYPTO_CAST5
1280	select CRYPTO_CAST_COMMON
1281	select CRYPTO_SIMD
1282	help
1283	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1284	  described in RFC2144.
1285
1286	  This module provides the Cast5 cipher algorithm that processes
1287	  sixteen blocks parallel using the AVX instruction set.
1288
1289config CRYPTO_CAST6
1290	tristate "CAST6 (CAST-256) cipher algorithm"
1291	select CRYPTO_ALGAPI
1292	select CRYPTO_CAST_COMMON
1293	help
1294	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1295	  described in RFC2612.
1296
1297config CRYPTO_CAST6_AVX_X86_64
1298	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1299	depends on X86 && 64BIT
1300	select CRYPTO_BLKCIPHER
1301	select CRYPTO_CAST6
1302	select CRYPTO_CAST_COMMON
1303	select CRYPTO_GLUE_HELPER_X86
1304	select CRYPTO_SIMD
1305	select CRYPTO_XTS
1306	help
1307	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1308	  described in RFC2612.
1309
1310	  This module provides the Cast6 cipher algorithm that processes
1311	  eight blocks parallel using the AVX instruction set.
1312
1313config CRYPTO_LIB_DES
1314	tristate
1315
1316config CRYPTO_DES
1317	tristate "DES and Triple DES EDE cipher algorithms"
1318	select CRYPTO_ALGAPI
1319	select CRYPTO_LIB_DES
1320	help
1321	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1322
1323config CRYPTO_DES_SPARC64
1324	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1325	depends on SPARC64
1326	select CRYPTO_ALGAPI
1327	select CRYPTO_LIB_DES
1328	help
1329	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1330	  optimized using SPARC64 crypto opcodes.
1331
1332config CRYPTO_DES3_EDE_X86_64
1333	tristate "Triple DES EDE cipher algorithm (x86-64)"
1334	depends on X86 && 64BIT
1335	select CRYPTO_BLKCIPHER
1336	select CRYPTO_LIB_DES
1337	help
1338	  Triple DES EDE (FIPS 46-3) algorithm.
1339
1340	  This module provides implementation of the Triple DES EDE cipher
1341	  algorithm that is optimized for x86-64 processors. Two versions of
1342	  algorithm are provided; regular processing one input block and
1343	  one that processes three blocks parallel.
1344
1345config CRYPTO_FCRYPT
1346	tristate "FCrypt cipher algorithm"
1347	select CRYPTO_ALGAPI
1348	select CRYPTO_BLKCIPHER
1349	help
1350	  FCrypt algorithm used by RxRPC.
1351
1352config CRYPTO_KHAZAD
1353	tristate "Khazad cipher algorithm"
1354	select CRYPTO_ALGAPI
1355	help
1356	  Khazad cipher algorithm.
1357
1358	  Khazad was a finalist in the initial NESSIE competition.  It is
1359	  an algorithm optimized for 64-bit processors with good performance
1360	  on 32-bit processors.  Khazad uses an 128 bit key size.
1361
1362	  See also:
1363	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1364
1365config CRYPTO_SALSA20
1366	tristate "Salsa20 stream cipher algorithm"
1367	select CRYPTO_BLKCIPHER
1368	help
1369	  Salsa20 stream cipher algorithm.
1370
1371	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1372	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1373
1374	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1375	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1376
1377config CRYPTO_CHACHA20
1378	tristate "ChaCha stream cipher algorithms"
1379	select CRYPTO_BLKCIPHER
1380	help
1381	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1382
1383	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1384	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1385	  This is the portable C implementation of ChaCha20.  See also:
1386	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1387
1388	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1389	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1390	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1391	  while provably retaining ChaCha20's security.  See also:
1392	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1393
1394	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1395	  reduced security margin but increased performance.  It can be needed
1396	  in some performance-sensitive scenarios.
1397
1398config CRYPTO_CHACHA20_X86_64
1399	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1400	depends on X86 && 64BIT
1401	select CRYPTO_BLKCIPHER
1402	select CRYPTO_CHACHA20
1403	help
1404	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1405	  XChaCha20, and XChaCha12 stream ciphers.
1406
1407config CRYPTO_SEED
1408	tristate "SEED cipher algorithm"
1409	select CRYPTO_ALGAPI
1410	help
1411	  SEED cipher algorithm (RFC4269).
1412
1413	  SEED is a 128-bit symmetric key block cipher that has been
1414	  developed by KISA (Korea Information Security Agency) as a
1415	  national standard encryption algorithm of the Republic of Korea.
1416	  It is a 16 round block cipher with the key size of 128 bit.
1417
1418	  See also:
1419	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1420
1421config CRYPTO_SERPENT
1422	tristate "Serpent cipher algorithm"
1423	select CRYPTO_ALGAPI
1424	help
1425	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1426
1427	  Keys are allowed to be from 0 to 256 bits in length, in steps
1428	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1429	  variant of Serpent for compatibility with old kerneli.org code.
1430
1431	  See also:
1432	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1433
1434config CRYPTO_SERPENT_SSE2_X86_64
1435	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1436	depends on X86 && 64BIT
1437	select CRYPTO_BLKCIPHER
1438	select CRYPTO_GLUE_HELPER_X86
1439	select CRYPTO_SERPENT
1440	select CRYPTO_SIMD
1441	help
1442	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1443
1444	  Keys are allowed to be from 0 to 256 bits in length, in steps
1445	  of 8 bits.
1446
1447	  This module provides Serpent cipher algorithm that processes eight
1448	  blocks parallel using SSE2 instruction set.
1449
1450	  See also:
1451	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1452
1453config CRYPTO_SERPENT_SSE2_586
1454	tristate "Serpent cipher algorithm (i586/SSE2)"
1455	depends on X86 && !64BIT
1456	select CRYPTO_BLKCIPHER
1457	select CRYPTO_GLUE_HELPER_X86
1458	select CRYPTO_SERPENT
1459	select CRYPTO_SIMD
1460	help
1461	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1462
1463	  Keys are allowed to be from 0 to 256 bits in length, in steps
1464	  of 8 bits.
1465
1466	  This module provides Serpent cipher algorithm that processes four
1467	  blocks parallel using SSE2 instruction set.
1468
1469	  See also:
1470	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1471
1472config CRYPTO_SERPENT_AVX_X86_64
1473	tristate "Serpent cipher algorithm (x86_64/AVX)"
1474	depends on X86 && 64BIT
1475	select CRYPTO_BLKCIPHER
1476	select CRYPTO_GLUE_HELPER_X86
1477	select CRYPTO_SERPENT
1478	select CRYPTO_SIMD
1479	select CRYPTO_XTS
1480	help
1481	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1482
1483	  Keys are allowed to be from 0 to 256 bits in length, in steps
1484	  of 8 bits.
1485
1486	  This module provides the Serpent cipher algorithm that processes
1487	  eight blocks parallel using the AVX instruction set.
1488
1489	  See also:
1490	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1491
1492config CRYPTO_SERPENT_AVX2_X86_64
1493	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1494	depends on X86 && 64BIT
1495	select CRYPTO_SERPENT_AVX_X86_64
1496	help
1497	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1498
1499	  Keys are allowed to be from 0 to 256 bits in length, in steps
1500	  of 8 bits.
1501
1502	  This module provides Serpent cipher algorithm that processes 16
1503	  blocks parallel using AVX2 instruction set.
1504
1505	  See also:
1506	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1507
1508config CRYPTO_SM4
1509	tristate "SM4 cipher algorithm"
1510	select CRYPTO_ALGAPI
1511	help
1512	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1513
1514	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1515	  Organization of State Commercial Administration of China (OSCCA)
1516	  as an authorized cryptographic algorithms for the use within China.
1517
1518	  SMS4 was originally created for use in protecting wireless
1519	  networks, and is mandated in the Chinese National Standard for
1520	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1521	  (GB.15629.11-2003).
1522
1523	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1524	  standardized through TC 260 of the Standardization Administration
1525	  of the People's Republic of China (SAC).
1526
1527	  The input, output, and key of SMS4 are each 128 bits.
1528
1529	  See also: <https://eprint.iacr.org/2008/329.pdf>
1530
1531	  If unsure, say N.
1532
1533config CRYPTO_TEA
1534	tristate "TEA, XTEA and XETA cipher algorithms"
1535	select CRYPTO_ALGAPI
1536	help
1537	  TEA cipher algorithm.
1538
1539	  Tiny Encryption Algorithm is a simple cipher that uses
1540	  many rounds for security.  It is very fast and uses
1541	  little memory.
1542
1543	  Xtendend Tiny Encryption Algorithm is a modification to
1544	  the TEA algorithm to address a potential key weakness
1545	  in the TEA algorithm.
1546
1547	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1548	  of the XTEA algorithm for compatibility purposes.
1549
1550config CRYPTO_TWOFISH
1551	tristate "Twofish cipher algorithm"
1552	select CRYPTO_ALGAPI
1553	select CRYPTO_TWOFISH_COMMON
1554	help
1555	  Twofish cipher algorithm.
1556
1557	  Twofish was submitted as an AES (Advanced Encryption Standard)
1558	  candidate cipher by researchers at CounterPane Systems.  It is a
1559	  16 round block cipher supporting key sizes of 128, 192, and 256
1560	  bits.
1561
1562	  See also:
1563	  <http://www.schneier.com/twofish.html>
1564
1565config CRYPTO_TWOFISH_COMMON
1566	tristate
1567	help
1568	  Common parts of the Twofish cipher algorithm shared by the
1569	  generic c and the assembler implementations.
1570
1571config CRYPTO_TWOFISH_586
1572	tristate "Twofish cipher algorithms (i586)"
1573	depends on (X86 || UML_X86) && !64BIT
1574	select CRYPTO_ALGAPI
1575	select CRYPTO_TWOFISH_COMMON
1576	help
1577	  Twofish cipher algorithm.
1578
1579	  Twofish was submitted as an AES (Advanced Encryption Standard)
1580	  candidate cipher by researchers at CounterPane Systems.  It is a
1581	  16 round block cipher supporting key sizes of 128, 192, and 256
1582	  bits.
1583
1584	  See also:
1585	  <http://www.schneier.com/twofish.html>
1586
1587config CRYPTO_TWOFISH_X86_64
1588	tristate "Twofish cipher algorithm (x86_64)"
1589	depends on (X86 || UML_X86) && 64BIT
1590	select CRYPTO_ALGAPI
1591	select CRYPTO_TWOFISH_COMMON
1592	help
1593	  Twofish cipher algorithm (x86_64).
1594
1595	  Twofish was submitted as an AES (Advanced Encryption Standard)
1596	  candidate cipher by researchers at CounterPane Systems.  It is a
1597	  16 round block cipher supporting key sizes of 128, 192, and 256
1598	  bits.
1599
1600	  See also:
1601	  <http://www.schneier.com/twofish.html>
1602
1603config CRYPTO_TWOFISH_X86_64_3WAY
1604	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1605	depends on X86 && 64BIT
1606	select CRYPTO_BLKCIPHER
1607	select CRYPTO_TWOFISH_COMMON
1608	select CRYPTO_TWOFISH_X86_64
1609	select CRYPTO_GLUE_HELPER_X86
1610	help
1611	  Twofish cipher algorithm (x86_64, 3-way parallel).
1612
1613	  Twofish was submitted as an AES (Advanced Encryption Standard)
1614	  candidate cipher by researchers at CounterPane Systems.  It is a
1615	  16 round block cipher supporting key sizes of 128, 192, and 256
1616	  bits.
1617
1618	  This module provides Twofish cipher algorithm that processes three
1619	  blocks parallel, utilizing resources of out-of-order CPUs better.
1620
1621	  See also:
1622	  <http://www.schneier.com/twofish.html>
1623
1624config CRYPTO_TWOFISH_AVX_X86_64
1625	tristate "Twofish cipher algorithm (x86_64/AVX)"
1626	depends on X86 && 64BIT
1627	select CRYPTO_BLKCIPHER
1628	select CRYPTO_GLUE_HELPER_X86
1629	select CRYPTO_SIMD
1630	select CRYPTO_TWOFISH_COMMON
1631	select CRYPTO_TWOFISH_X86_64
1632	select CRYPTO_TWOFISH_X86_64_3WAY
1633	help
1634	  Twofish cipher algorithm (x86_64/AVX).
1635
1636	  Twofish was submitted as an AES (Advanced Encryption Standard)
1637	  candidate cipher by researchers at CounterPane Systems.  It is a
1638	  16 round block cipher supporting key sizes of 128, 192, and 256
1639	  bits.
1640
1641	  This module provides the Twofish cipher algorithm that processes
1642	  eight blocks parallel using the AVX Instruction Set.
1643
1644	  See also:
1645	  <http://www.schneier.com/twofish.html>
1646
1647comment "Compression"
1648
1649config CRYPTO_DEFLATE
1650	tristate "Deflate compression algorithm"
1651	select CRYPTO_ALGAPI
1652	select CRYPTO_ACOMP2
1653	select ZLIB_INFLATE
1654	select ZLIB_DEFLATE
1655	help
1656	  This is the Deflate algorithm (RFC1951), specified for use in
1657	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1658
1659	  You will most probably want this if using IPSec.
1660
1661config CRYPTO_LZO
1662	tristate "LZO compression algorithm"
1663	select CRYPTO_ALGAPI
1664	select CRYPTO_ACOMP2
1665	select LZO_COMPRESS
1666	select LZO_DECOMPRESS
1667	help
1668	  This is the LZO algorithm.
1669
1670config CRYPTO_842
1671	tristate "842 compression algorithm"
1672	select CRYPTO_ALGAPI
1673	select CRYPTO_ACOMP2
1674	select 842_COMPRESS
1675	select 842_DECOMPRESS
1676	help
1677	  This is the 842 algorithm.
1678
1679config CRYPTO_LZ4
1680	tristate "LZ4 compression algorithm"
1681	select CRYPTO_ALGAPI
1682	select CRYPTO_ACOMP2
1683	select LZ4_COMPRESS
1684	select LZ4_DECOMPRESS
1685	help
1686	  This is the LZ4 algorithm.
1687
1688config CRYPTO_LZ4HC
1689	tristate "LZ4HC compression algorithm"
1690	select CRYPTO_ALGAPI
1691	select CRYPTO_ACOMP2
1692	select LZ4HC_COMPRESS
1693	select LZ4_DECOMPRESS
1694	help
1695	  This is the LZ4 high compression mode algorithm.
1696
1697config CRYPTO_ZSTD
1698	tristate "Zstd compression algorithm"
1699	select CRYPTO_ALGAPI
1700	select CRYPTO_ACOMP2
1701	select ZSTD_COMPRESS
1702	select ZSTD_DECOMPRESS
1703	help
1704	  This is the zstd algorithm.
1705
1706comment "Random Number Generation"
1707
1708config CRYPTO_ANSI_CPRNG
1709	tristate "Pseudo Random Number Generation for Cryptographic modules"
1710	select CRYPTO_AES
1711	select CRYPTO_RNG
1712	help
1713	  This option enables the generic pseudo random number generator
1714	  for cryptographic modules.  Uses the Algorithm specified in
1715	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1716	  CRYPTO_FIPS is selected
1717
1718menuconfig CRYPTO_DRBG_MENU
1719	tristate "NIST SP800-90A DRBG"
1720	help
1721	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1722	  more of the DRBG types must be selected.
1723
1724if CRYPTO_DRBG_MENU
1725
1726config CRYPTO_DRBG_HMAC
1727	bool
1728	default y
1729	select CRYPTO_HMAC
1730	select CRYPTO_SHA256
1731
1732config CRYPTO_DRBG_HASH
1733	bool "Enable Hash DRBG"
1734	select CRYPTO_SHA256
1735	help
1736	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1737
1738config CRYPTO_DRBG_CTR
1739	bool "Enable CTR DRBG"
1740	select CRYPTO_AES
1741	depends on CRYPTO_CTR
1742	help
1743	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1744
1745config CRYPTO_DRBG
1746	tristate
1747	default CRYPTO_DRBG_MENU
1748	select CRYPTO_RNG
1749	select CRYPTO_JITTERENTROPY
1750
1751endif	# if CRYPTO_DRBG_MENU
1752
1753config CRYPTO_JITTERENTROPY
1754	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1755	select CRYPTO_RNG
1756	help
1757	  The Jitterentropy RNG is a noise that is intended
1758	  to provide seed to another RNG. The RNG does not
1759	  perform any cryptographic whitening of the generated
1760	  random numbers. This Jitterentropy RNG registers with
1761	  the kernel crypto API and can be used by any caller.
1762
1763config CRYPTO_USER_API
1764	tristate
1765
1766config CRYPTO_USER_API_HASH
1767	tristate "User-space interface for hash algorithms"
1768	depends on NET
1769	select CRYPTO_HASH
1770	select CRYPTO_USER_API
1771	help
1772	  This option enables the user-spaces interface for hash
1773	  algorithms.
1774
1775config CRYPTO_USER_API_SKCIPHER
1776	tristate "User-space interface for symmetric key cipher algorithms"
1777	depends on NET
1778	select CRYPTO_BLKCIPHER
1779	select CRYPTO_USER_API
1780	help
1781	  This option enables the user-spaces interface for symmetric
1782	  key cipher algorithms.
1783
1784config CRYPTO_USER_API_RNG
1785	tristate "User-space interface for random number generator algorithms"
1786	depends on NET
1787	select CRYPTO_RNG
1788	select CRYPTO_USER_API
1789	help
1790	  This option enables the user-spaces interface for random
1791	  number generator algorithms.
1792
1793config CRYPTO_USER_API_AEAD
1794	tristate "User-space interface for AEAD cipher algorithms"
1795	depends on NET
1796	select CRYPTO_AEAD
1797	select CRYPTO_BLKCIPHER
1798	select CRYPTO_NULL
1799	select CRYPTO_USER_API
1800	help
1801	  This option enables the user-spaces interface for AEAD
1802	  cipher algorithms.
1803
1804config CRYPTO_STATS
1805	bool "Crypto usage statistics for User-space"
1806	depends on CRYPTO_USER
1807	help
1808	  This option enables the gathering of crypto stats.
1809	  This will collect:
1810	  - encrypt/decrypt size and numbers of symmeric operations
1811	  - compress/decompress size and numbers of compress operations
1812	  - size and numbers of hash operations
1813	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1814	  - generate/seed numbers for rng operations
1815
1816config CRYPTO_HASH_INFO
1817	bool
1818
1819source "drivers/crypto/Kconfig"
1820source "crypto/asymmetric_keys/Kconfig"
1821source "certs/Kconfig"
1822
1823endif	# if CRYPTO
1824