1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 help 19 This option provides the core Cryptographic API. 20 21if CRYPTO 22 23comment "Crypto core or helper" 24 25config CRYPTO_FIPS 26 bool "FIPS 200 compliance" 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 28 depends on (MODULE_SIG || !MODULES) 29 help 30 This option enables the fips boot option which is 31 required if you want the system to operate in a FIPS 200 32 certification. You should say no unless you know what 33 this is. 34 35config CRYPTO_ALGAPI 36 tristate 37 select CRYPTO_ALGAPI2 38 help 39 This option provides the API for cryptographic algorithms. 40 41config CRYPTO_ALGAPI2 42 tristate 43 44config CRYPTO_AEAD 45 tristate 46 select CRYPTO_AEAD2 47 select CRYPTO_ALGAPI 48 49config CRYPTO_AEAD2 50 tristate 51 select CRYPTO_ALGAPI2 52 select CRYPTO_NULL2 53 select CRYPTO_RNG2 54 55config CRYPTO_BLKCIPHER 56 tristate 57 select CRYPTO_BLKCIPHER2 58 select CRYPTO_ALGAPI 59 60config CRYPTO_BLKCIPHER2 61 tristate 62 select CRYPTO_ALGAPI2 63 select CRYPTO_RNG2 64 65config CRYPTO_HASH 66 tristate 67 select CRYPTO_HASH2 68 select CRYPTO_ALGAPI 69 70config CRYPTO_HASH2 71 tristate 72 select CRYPTO_ALGAPI2 73 74config CRYPTO_RNG 75 tristate 76 select CRYPTO_RNG2 77 select CRYPTO_ALGAPI 78 79config CRYPTO_RNG2 80 tristate 81 select CRYPTO_ALGAPI2 82 83config CRYPTO_RNG_DEFAULT 84 tristate 85 select CRYPTO_DRBG_MENU 86 87config CRYPTO_AKCIPHER2 88 tristate 89 select CRYPTO_ALGAPI2 90 91config CRYPTO_AKCIPHER 92 tristate 93 select CRYPTO_AKCIPHER2 94 select CRYPTO_ALGAPI 95 96config CRYPTO_KPP2 97 tristate 98 select CRYPTO_ALGAPI2 99 100config CRYPTO_KPP 101 tristate 102 select CRYPTO_ALGAPI 103 select CRYPTO_KPP2 104 105config CRYPTO_ACOMP2 106 tristate 107 select CRYPTO_ALGAPI2 108 select SGL_ALLOC 109 110config CRYPTO_ACOMP 111 tristate 112 select CRYPTO_ALGAPI 113 select CRYPTO_ACOMP2 114 115config CRYPTO_MANAGER 116 tristate "Cryptographic algorithm manager" 117 select CRYPTO_MANAGER2 118 help 119 Create default cryptographic template instantiations such as 120 cbc(aes). 121 122config CRYPTO_MANAGER2 123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 124 select CRYPTO_AEAD2 125 select CRYPTO_HASH2 126 select CRYPTO_BLKCIPHER2 127 select CRYPTO_AKCIPHER2 128 select CRYPTO_KPP2 129 select CRYPTO_ACOMP2 130 131config CRYPTO_USER 132 tristate "Userspace cryptographic algorithm configuration" 133 depends on NET 134 select CRYPTO_MANAGER 135 help 136 Userspace configuration for cryptographic instantiations such as 137 cbc(aes). 138 139if CRYPTO_MANAGER2 140 141config CRYPTO_MANAGER_DISABLE_TESTS 142 bool "Disable run-time self tests" 143 default y 144 help 145 Disable run-time self tests that normally take place at 146 algorithm registration. 147 148config CRYPTO_MANAGER_EXTRA_TESTS 149 bool "Enable extra run-time crypto self tests" 150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 151 help 152 Enable extra run-time self tests of registered crypto algorithms, 153 including randomized fuzz tests. 154 155 This is intended for developer use only, as these tests take much 156 longer to run than the normal self tests. 157 158endif # if CRYPTO_MANAGER2 159 160config CRYPTO_GF128MUL 161 tristate 162 163config CRYPTO_NULL 164 tristate "Null algorithms" 165 select CRYPTO_NULL2 166 help 167 These are 'Null' algorithms, used by IPsec, which do nothing. 168 169config CRYPTO_NULL2 170 tristate 171 select CRYPTO_ALGAPI2 172 select CRYPTO_BLKCIPHER2 173 select CRYPTO_HASH2 174 175config CRYPTO_PCRYPT 176 tristate "Parallel crypto engine" 177 depends on SMP 178 select PADATA 179 select CRYPTO_MANAGER 180 select CRYPTO_AEAD 181 help 182 This converts an arbitrary crypto algorithm into a parallel 183 algorithm that executes in kernel threads. 184 185config CRYPTO_CRYPTD 186 tristate "Software async crypto daemon" 187 select CRYPTO_BLKCIPHER 188 select CRYPTO_HASH 189 select CRYPTO_MANAGER 190 help 191 This is a generic software asynchronous crypto daemon that 192 converts an arbitrary synchronous software crypto algorithm 193 into an asynchronous algorithm that executes in a kernel thread. 194 195config CRYPTO_AUTHENC 196 tristate "Authenc support" 197 select CRYPTO_AEAD 198 select CRYPTO_BLKCIPHER 199 select CRYPTO_MANAGER 200 select CRYPTO_HASH 201 select CRYPTO_NULL 202 help 203 Authenc: Combined mode wrapper for IPsec. 204 This is required for IPSec. 205 206config CRYPTO_TEST 207 tristate "Testing module" 208 depends on m 209 select CRYPTO_MANAGER 210 help 211 Quick & dirty crypto test module. 212 213config CRYPTO_SIMD 214 tristate 215 select CRYPTO_CRYPTD 216 217config CRYPTO_GLUE_HELPER_X86 218 tristate 219 depends on X86 220 select CRYPTO_BLKCIPHER 221 222config CRYPTO_ENGINE 223 tristate 224 225comment "Public-key cryptography" 226 227config CRYPTO_RSA 228 tristate "RSA algorithm" 229 select CRYPTO_AKCIPHER 230 select CRYPTO_MANAGER 231 select MPILIB 232 select ASN1 233 help 234 Generic implementation of the RSA public key algorithm. 235 236config CRYPTO_DH 237 tristate "Diffie-Hellman algorithm" 238 select CRYPTO_KPP 239 select MPILIB 240 help 241 Generic implementation of the Diffie-Hellman algorithm. 242 243config CRYPTO_ECC 244 tristate 245 246config CRYPTO_ECDH 247 tristate "ECDH algorithm" 248 select CRYPTO_ECC 249 select CRYPTO_KPP 250 select CRYPTO_RNG_DEFAULT 251 help 252 Generic implementation of the ECDH algorithm 253 254config CRYPTO_ECRDSA 255 tristate "EC-RDSA (GOST 34.10) algorithm" 256 select CRYPTO_ECC 257 select CRYPTO_AKCIPHER 258 select CRYPTO_STREEBOG 259 select OID_REGISTRY 260 select ASN1 261 help 262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 264 standard algorithms (called GOST algorithms). Only signature verification 265 is implemented. 266 267comment "Authenticated Encryption with Associated Data" 268 269config CRYPTO_CCM 270 tristate "CCM support" 271 select CRYPTO_CTR 272 select CRYPTO_HASH 273 select CRYPTO_AEAD 274 select CRYPTO_MANAGER 275 help 276 Support for Counter with CBC MAC. Required for IPsec. 277 278config CRYPTO_GCM 279 tristate "GCM/GMAC support" 280 select CRYPTO_CTR 281 select CRYPTO_AEAD 282 select CRYPTO_GHASH 283 select CRYPTO_NULL 284 select CRYPTO_MANAGER 285 help 286 Support for Galois/Counter Mode (GCM) and Galois Message 287 Authentication Code (GMAC). Required for IPSec. 288 289config CRYPTO_CHACHA20POLY1305 290 tristate "ChaCha20-Poly1305 AEAD support" 291 select CRYPTO_CHACHA20 292 select CRYPTO_POLY1305 293 select CRYPTO_AEAD 294 select CRYPTO_MANAGER 295 help 296 ChaCha20-Poly1305 AEAD support, RFC7539. 297 298 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 299 with the Poly1305 authenticator. It is defined in RFC7539 for use in 300 IETF protocols. 301 302config CRYPTO_AEGIS128 303 tristate "AEGIS-128 AEAD algorithm" 304 select CRYPTO_AEAD 305 select CRYPTO_AES # for AES S-box tables 306 help 307 Support for the AEGIS-128 dedicated AEAD algorithm. 308 309config CRYPTO_AEGIS128_SIMD 310 bool "Support SIMD acceleration for AEGIS-128" 311 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 312 default y 313 314config CRYPTO_AEGIS128_AESNI_SSE2 315 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 316 depends on X86 && 64BIT 317 select CRYPTO_AEAD 318 select CRYPTO_SIMD 319 help 320 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 321 322config CRYPTO_SEQIV 323 tristate "Sequence Number IV Generator" 324 select CRYPTO_AEAD 325 select CRYPTO_BLKCIPHER 326 select CRYPTO_NULL 327 select CRYPTO_RNG_DEFAULT 328 select CRYPTO_MANAGER 329 help 330 This IV generator generates an IV based on a sequence number by 331 xoring it with a salt. This algorithm is mainly useful for CTR 332 333config CRYPTO_ECHAINIV 334 tristate "Encrypted Chain IV Generator" 335 select CRYPTO_AEAD 336 select CRYPTO_NULL 337 select CRYPTO_RNG_DEFAULT 338 select CRYPTO_MANAGER 339 help 340 This IV generator generates an IV based on the encryption of 341 a sequence number xored with a salt. This is the default 342 algorithm for CBC. 343 344comment "Block modes" 345 346config CRYPTO_CBC 347 tristate "CBC support" 348 select CRYPTO_BLKCIPHER 349 select CRYPTO_MANAGER 350 help 351 CBC: Cipher Block Chaining mode 352 This block cipher algorithm is required for IPSec. 353 354config CRYPTO_CFB 355 tristate "CFB support" 356 select CRYPTO_BLKCIPHER 357 select CRYPTO_MANAGER 358 help 359 CFB: Cipher FeedBack mode 360 This block cipher algorithm is required for TPM2 Cryptography. 361 362config CRYPTO_CTR 363 tristate "CTR support" 364 select CRYPTO_BLKCIPHER 365 select CRYPTO_SEQIV 366 select CRYPTO_MANAGER 367 help 368 CTR: Counter mode 369 This block cipher algorithm is required for IPSec. 370 371config CRYPTO_CTS 372 tristate "CTS support" 373 select CRYPTO_BLKCIPHER 374 select CRYPTO_MANAGER 375 help 376 CTS: Cipher Text Stealing 377 This is the Cipher Text Stealing mode as described by 378 Section 8 of rfc2040 and referenced by rfc3962 379 (rfc3962 includes errata information in its Appendix A) or 380 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 381 This mode is required for Kerberos gss mechanism support 382 for AES encryption. 383 384 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 385 386config CRYPTO_ECB 387 tristate "ECB support" 388 select CRYPTO_BLKCIPHER 389 select CRYPTO_MANAGER 390 help 391 ECB: Electronic CodeBook mode 392 This is the simplest block cipher algorithm. It simply encrypts 393 the input block by block. 394 395config CRYPTO_LRW 396 tristate "LRW support" 397 select CRYPTO_BLKCIPHER 398 select CRYPTO_MANAGER 399 select CRYPTO_GF128MUL 400 help 401 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 402 narrow block cipher mode for dm-crypt. Use it with cipher 403 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 404 The first 128, 192 or 256 bits in the key are used for AES and the 405 rest is used to tie each cipher block to its logical position. 406 407config CRYPTO_OFB 408 tristate "OFB support" 409 select CRYPTO_BLKCIPHER 410 select CRYPTO_MANAGER 411 help 412 OFB: the Output Feedback mode makes a block cipher into a synchronous 413 stream cipher. It generates keystream blocks, which are then XORed 414 with the plaintext blocks to get the ciphertext. Flipping a bit in the 415 ciphertext produces a flipped bit in the plaintext at the same 416 location. This property allows many error correcting codes to function 417 normally even when applied before encryption. 418 419config CRYPTO_PCBC 420 tristate "PCBC support" 421 select CRYPTO_BLKCIPHER 422 select CRYPTO_MANAGER 423 help 424 PCBC: Propagating Cipher Block Chaining mode 425 This block cipher algorithm is required for RxRPC. 426 427config CRYPTO_XTS 428 tristate "XTS support" 429 select CRYPTO_BLKCIPHER 430 select CRYPTO_MANAGER 431 select CRYPTO_ECB 432 help 433 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 434 key size 256, 384 or 512 bits. This implementation currently 435 can't handle a sectorsize which is not a multiple of 16 bytes. 436 437config CRYPTO_KEYWRAP 438 tristate "Key wrapping support" 439 select CRYPTO_BLKCIPHER 440 select CRYPTO_MANAGER 441 help 442 Support for key wrapping (NIST SP800-38F / RFC3394) without 443 padding. 444 445config CRYPTO_NHPOLY1305 446 tristate 447 select CRYPTO_HASH 448 select CRYPTO_POLY1305 449 450config CRYPTO_NHPOLY1305_SSE2 451 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 452 depends on X86 && 64BIT 453 select CRYPTO_NHPOLY1305 454 help 455 SSE2 optimized implementation of the hash function used by the 456 Adiantum encryption mode. 457 458config CRYPTO_NHPOLY1305_AVX2 459 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 460 depends on X86 && 64BIT 461 select CRYPTO_NHPOLY1305 462 help 463 AVX2 optimized implementation of the hash function used by the 464 Adiantum encryption mode. 465 466config CRYPTO_ADIANTUM 467 tristate "Adiantum support" 468 select CRYPTO_CHACHA20 469 select CRYPTO_POLY1305 470 select CRYPTO_NHPOLY1305 471 select CRYPTO_MANAGER 472 help 473 Adiantum is a tweakable, length-preserving encryption mode 474 designed for fast and secure disk encryption, especially on 475 CPUs without dedicated crypto instructions. It encrypts 476 each sector using the XChaCha12 stream cipher, two passes of 477 an ε-almost-∆-universal hash function, and an invocation of 478 the AES-256 block cipher on a single 16-byte block. On CPUs 479 without AES instructions, Adiantum is much faster than 480 AES-XTS. 481 482 Adiantum's security is provably reducible to that of its 483 underlying stream and block ciphers, subject to a security 484 bound. Unlike XTS, Adiantum is a true wide-block encryption 485 mode, so it actually provides an even stronger notion of 486 security than XTS, subject to the security bound. 487 488 If unsure, say N. 489 490comment "Hash modes" 491 492config CRYPTO_CMAC 493 tristate "CMAC support" 494 select CRYPTO_HASH 495 select CRYPTO_MANAGER 496 help 497 Cipher-based Message Authentication Code (CMAC) specified by 498 The National Institute of Standards and Technology (NIST). 499 500 https://tools.ietf.org/html/rfc4493 501 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 502 503config CRYPTO_HMAC 504 tristate "HMAC support" 505 select CRYPTO_HASH 506 select CRYPTO_MANAGER 507 help 508 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 509 This is required for IPSec. 510 511config CRYPTO_XCBC 512 tristate "XCBC support" 513 select CRYPTO_HASH 514 select CRYPTO_MANAGER 515 help 516 XCBC: Keyed-Hashing with encryption algorithm 517 http://www.ietf.org/rfc/rfc3566.txt 518 http://csrc.nist.gov/encryption/modes/proposedmodes/ 519 xcbc-mac/xcbc-mac-spec.pdf 520 521config CRYPTO_VMAC 522 tristate "VMAC support" 523 select CRYPTO_HASH 524 select CRYPTO_MANAGER 525 help 526 VMAC is a message authentication algorithm designed for 527 very high speed on 64-bit architectures. 528 529 See also: 530 <http://fastcrypto.org/vmac> 531 532comment "Digest" 533 534config CRYPTO_CRC32C 535 tristate "CRC32c CRC algorithm" 536 select CRYPTO_HASH 537 select CRC32 538 help 539 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 540 by iSCSI for header and data digests and by others. 541 See Castagnoli93. Module will be crc32c. 542 543config CRYPTO_CRC32C_INTEL 544 tristate "CRC32c INTEL hardware acceleration" 545 depends on X86 546 select CRYPTO_HASH 547 help 548 In Intel processor with SSE4.2 supported, the processor will 549 support CRC32C implementation using hardware accelerated CRC32 550 instruction. This option will create 'crc32c-intel' module, 551 which will enable any routine to use the CRC32 instruction to 552 gain performance compared with software implementation. 553 Module will be crc32c-intel. 554 555config CRYPTO_CRC32C_VPMSUM 556 tristate "CRC32c CRC algorithm (powerpc64)" 557 depends on PPC64 && ALTIVEC 558 select CRYPTO_HASH 559 select CRC32 560 help 561 CRC32c algorithm implemented using vector polynomial multiply-sum 562 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 563 and newer processors for improved performance. 564 565 566config CRYPTO_CRC32C_SPARC64 567 tristate "CRC32c CRC algorithm (SPARC64)" 568 depends on SPARC64 569 select CRYPTO_HASH 570 select CRC32 571 help 572 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 573 when available. 574 575config CRYPTO_CRC32 576 tristate "CRC32 CRC algorithm" 577 select CRYPTO_HASH 578 select CRC32 579 help 580 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 581 Shash crypto api wrappers to crc32_le function. 582 583config CRYPTO_CRC32_PCLMUL 584 tristate "CRC32 PCLMULQDQ hardware acceleration" 585 depends on X86 586 select CRYPTO_HASH 587 select CRC32 588 help 589 From Intel Westmere and AMD Bulldozer processor with SSE4.2 590 and PCLMULQDQ supported, the processor will support 591 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 592 instruction. This option will create 'crc32-pclmul' module, 593 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 594 and gain better performance as compared with the table implementation. 595 596config CRYPTO_CRC32_MIPS 597 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 598 depends on MIPS_CRC_SUPPORT 599 select CRYPTO_HASH 600 help 601 CRC32c and CRC32 CRC algorithms implemented using mips crypto 602 instructions, when available. 603 604 605config CRYPTO_XXHASH 606 tristate "xxHash hash algorithm" 607 select CRYPTO_HASH 608 select XXHASH 609 help 610 xxHash non-cryptographic hash algorithm. Extremely fast, working at 611 speeds close to RAM limits. 612 613config CRYPTO_CRCT10DIF 614 tristate "CRCT10DIF algorithm" 615 select CRYPTO_HASH 616 help 617 CRC T10 Data Integrity Field computation is being cast as 618 a crypto transform. This allows for faster crc t10 diff 619 transforms to be used if they are available. 620 621config CRYPTO_CRCT10DIF_PCLMUL 622 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 623 depends on X86 && 64BIT && CRC_T10DIF 624 select CRYPTO_HASH 625 help 626 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 627 CRC T10 DIF PCLMULQDQ computation can be hardware 628 accelerated PCLMULQDQ instruction. This option will create 629 'crct10dif-pclmul' module, which is faster when computing the 630 crct10dif checksum as compared with the generic table implementation. 631 632config CRYPTO_CRCT10DIF_VPMSUM 633 tristate "CRC32T10DIF powerpc64 hardware acceleration" 634 depends on PPC64 && ALTIVEC && CRC_T10DIF 635 select CRYPTO_HASH 636 help 637 CRC10T10DIF algorithm implemented using vector polynomial 638 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 639 POWER8 and newer processors for improved performance. 640 641config CRYPTO_VPMSUM_TESTER 642 tristate "Powerpc64 vpmsum hardware acceleration tester" 643 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 644 help 645 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 646 POWER8 vpmsum instructions. 647 Unless you are testing these algorithms, you don't need this. 648 649config CRYPTO_GHASH 650 tristate "GHASH hash function" 651 select CRYPTO_GF128MUL 652 select CRYPTO_HASH 653 help 654 GHASH is the hash function used in GCM (Galois/Counter Mode). 655 It is not a general-purpose cryptographic hash function. 656 657config CRYPTO_POLY1305 658 tristate "Poly1305 authenticator algorithm" 659 select CRYPTO_HASH 660 help 661 Poly1305 authenticator algorithm, RFC7539. 662 663 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 664 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 665 in IETF protocols. This is the portable C implementation of Poly1305. 666 667config CRYPTO_POLY1305_X86_64 668 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 669 depends on X86 && 64BIT 670 select CRYPTO_POLY1305 671 help 672 Poly1305 authenticator algorithm, RFC7539. 673 674 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 675 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 676 in IETF protocols. This is the x86_64 assembler implementation using SIMD 677 instructions. 678 679config CRYPTO_MD4 680 tristate "MD4 digest algorithm" 681 select CRYPTO_HASH 682 help 683 MD4 message digest algorithm (RFC1320). 684 685config CRYPTO_MD5 686 tristate "MD5 digest algorithm" 687 select CRYPTO_HASH 688 help 689 MD5 message digest algorithm (RFC1321). 690 691config CRYPTO_MD5_OCTEON 692 tristate "MD5 digest algorithm (OCTEON)" 693 depends on CPU_CAVIUM_OCTEON 694 select CRYPTO_MD5 695 select CRYPTO_HASH 696 help 697 MD5 message digest algorithm (RFC1321) implemented 698 using OCTEON crypto instructions, when available. 699 700config CRYPTO_MD5_PPC 701 tristate "MD5 digest algorithm (PPC)" 702 depends on PPC 703 select CRYPTO_HASH 704 help 705 MD5 message digest algorithm (RFC1321) implemented 706 in PPC assembler. 707 708config CRYPTO_MD5_SPARC64 709 tristate "MD5 digest algorithm (SPARC64)" 710 depends on SPARC64 711 select CRYPTO_MD5 712 select CRYPTO_HASH 713 help 714 MD5 message digest algorithm (RFC1321) implemented 715 using sparc64 crypto instructions, when available. 716 717config CRYPTO_MICHAEL_MIC 718 tristate "Michael MIC keyed digest algorithm" 719 select CRYPTO_HASH 720 help 721 Michael MIC is used for message integrity protection in TKIP 722 (IEEE 802.11i). This algorithm is required for TKIP, but it 723 should not be used for other purposes because of the weakness 724 of the algorithm. 725 726config CRYPTO_RMD128 727 tristate "RIPEMD-128 digest algorithm" 728 select CRYPTO_HASH 729 help 730 RIPEMD-128 (ISO/IEC 10118-3:2004). 731 732 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 733 be used as a secure replacement for RIPEMD. For other use cases, 734 RIPEMD-160 should be used. 735 736 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 737 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 738 739config CRYPTO_RMD160 740 tristate "RIPEMD-160 digest algorithm" 741 select CRYPTO_HASH 742 help 743 RIPEMD-160 (ISO/IEC 10118-3:2004). 744 745 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 746 to be used as a secure replacement for the 128-bit hash functions 747 MD4, MD5 and it's predecessor RIPEMD 748 (not to be confused with RIPEMD-128). 749 750 It's speed is comparable to SHA1 and there are no known attacks 751 against RIPEMD-160. 752 753 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 754 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 755 756config CRYPTO_RMD256 757 tristate "RIPEMD-256 digest algorithm" 758 select CRYPTO_HASH 759 help 760 RIPEMD-256 is an optional extension of RIPEMD-128 with a 761 256 bit hash. It is intended for applications that require 762 longer hash-results, without needing a larger security level 763 (than RIPEMD-128). 764 765 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 766 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 767 768config CRYPTO_RMD320 769 tristate "RIPEMD-320 digest algorithm" 770 select CRYPTO_HASH 771 help 772 RIPEMD-320 is an optional extension of RIPEMD-160 with a 773 320 bit hash. It is intended for applications that require 774 longer hash-results, without needing a larger security level 775 (than RIPEMD-160). 776 777 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 778 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 779 780config CRYPTO_SHA1 781 tristate "SHA1 digest algorithm" 782 select CRYPTO_HASH 783 help 784 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 785 786config CRYPTO_SHA1_SSSE3 787 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 788 depends on X86 && 64BIT 789 select CRYPTO_SHA1 790 select CRYPTO_HASH 791 help 792 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 793 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 794 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 795 when available. 796 797config CRYPTO_SHA256_SSSE3 798 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 799 depends on X86 && 64BIT 800 select CRYPTO_SHA256 801 select CRYPTO_HASH 802 help 803 SHA-256 secure hash standard (DFIPS 180-2) implemented 804 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 805 Extensions version 1 (AVX1), or Advanced Vector Extensions 806 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 807 Instructions) when available. 808 809config CRYPTO_SHA512_SSSE3 810 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 811 depends on X86 && 64BIT 812 select CRYPTO_SHA512 813 select CRYPTO_HASH 814 help 815 SHA-512 secure hash standard (DFIPS 180-2) implemented 816 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 817 Extensions version 1 (AVX1), or Advanced Vector Extensions 818 version 2 (AVX2) instructions, when available. 819 820config CRYPTO_SHA1_OCTEON 821 tristate "SHA1 digest algorithm (OCTEON)" 822 depends on CPU_CAVIUM_OCTEON 823 select CRYPTO_SHA1 824 select CRYPTO_HASH 825 help 826 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 827 using OCTEON crypto instructions, when available. 828 829config CRYPTO_SHA1_SPARC64 830 tristate "SHA1 digest algorithm (SPARC64)" 831 depends on SPARC64 832 select CRYPTO_SHA1 833 select CRYPTO_HASH 834 help 835 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 836 using sparc64 crypto instructions, when available. 837 838config CRYPTO_SHA1_PPC 839 tristate "SHA1 digest algorithm (powerpc)" 840 depends on PPC 841 help 842 This is the powerpc hardware accelerated implementation of the 843 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 844 845config CRYPTO_SHA1_PPC_SPE 846 tristate "SHA1 digest algorithm (PPC SPE)" 847 depends on PPC && SPE 848 help 849 SHA-1 secure hash standard (DFIPS 180-4) implemented 850 using powerpc SPE SIMD instruction set. 851 852config CRYPTO_LIB_SHA256 853 tristate 854 855config CRYPTO_SHA256 856 tristate "SHA224 and SHA256 digest algorithm" 857 select CRYPTO_HASH 858 select CRYPTO_LIB_SHA256 859 help 860 SHA256 secure hash standard (DFIPS 180-2). 861 862 This version of SHA implements a 256 bit hash with 128 bits of 863 security against collision attacks. 864 865 This code also includes SHA-224, a 224 bit hash with 112 bits 866 of security against collision attacks. 867 868config CRYPTO_SHA256_PPC_SPE 869 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 870 depends on PPC && SPE 871 select CRYPTO_SHA256 872 select CRYPTO_HASH 873 help 874 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 875 implemented using powerpc SPE SIMD instruction set. 876 877config CRYPTO_SHA256_OCTEON 878 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 879 depends on CPU_CAVIUM_OCTEON 880 select CRYPTO_SHA256 881 select CRYPTO_HASH 882 help 883 SHA-256 secure hash standard (DFIPS 180-2) implemented 884 using OCTEON crypto instructions, when available. 885 886config CRYPTO_SHA256_SPARC64 887 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 888 depends on SPARC64 889 select CRYPTO_SHA256 890 select CRYPTO_HASH 891 help 892 SHA-256 secure hash standard (DFIPS 180-2) implemented 893 using sparc64 crypto instructions, when available. 894 895config CRYPTO_SHA512 896 tristate "SHA384 and SHA512 digest algorithms" 897 select CRYPTO_HASH 898 help 899 SHA512 secure hash standard (DFIPS 180-2). 900 901 This version of SHA implements a 512 bit hash with 256 bits of 902 security against collision attacks. 903 904 This code also includes SHA-384, a 384 bit hash with 192 bits 905 of security against collision attacks. 906 907config CRYPTO_SHA512_OCTEON 908 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 909 depends on CPU_CAVIUM_OCTEON 910 select CRYPTO_SHA512 911 select CRYPTO_HASH 912 help 913 SHA-512 secure hash standard (DFIPS 180-2) implemented 914 using OCTEON crypto instructions, when available. 915 916config CRYPTO_SHA512_SPARC64 917 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 918 depends on SPARC64 919 select CRYPTO_SHA512 920 select CRYPTO_HASH 921 help 922 SHA-512 secure hash standard (DFIPS 180-2) implemented 923 using sparc64 crypto instructions, when available. 924 925config CRYPTO_SHA3 926 tristate "SHA3 digest algorithm" 927 select CRYPTO_HASH 928 help 929 SHA-3 secure hash standard (DFIPS 202). It's based on 930 cryptographic sponge function family called Keccak. 931 932 References: 933 http://keccak.noekeon.org/ 934 935config CRYPTO_SM3 936 tristate "SM3 digest algorithm" 937 select CRYPTO_HASH 938 help 939 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 940 It is part of the Chinese Commercial Cryptography suite. 941 942 References: 943 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 944 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 945 946config CRYPTO_STREEBOG 947 tristate "Streebog Hash Function" 948 select CRYPTO_HASH 949 help 950 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 951 cryptographic standard algorithms (called GOST algorithms). 952 This setting enables two hash algorithms with 256 and 512 bits output. 953 954 References: 955 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 956 https://tools.ietf.org/html/rfc6986 957 958config CRYPTO_TGR192 959 tristate "Tiger digest algorithms" 960 select CRYPTO_HASH 961 help 962 Tiger hash algorithm 192, 160 and 128-bit hashes 963 964 Tiger is a hash function optimized for 64-bit processors while 965 still having decent performance on 32-bit processors. 966 Tiger was developed by Ross Anderson and Eli Biham. 967 968 See also: 969 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 970 971config CRYPTO_WP512 972 tristate "Whirlpool digest algorithms" 973 select CRYPTO_HASH 974 help 975 Whirlpool hash algorithm 512, 384 and 256-bit hashes 976 977 Whirlpool-512 is part of the NESSIE cryptographic primitives. 978 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 979 980 See also: 981 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 982 983config CRYPTO_GHASH_CLMUL_NI_INTEL 984 tristate "GHASH hash function (CLMUL-NI accelerated)" 985 depends on X86 && 64BIT 986 select CRYPTO_CRYPTD 987 help 988 This is the x86_64 CLMUL-NI accelerated implementation of 989 GHASH, the hash function used in GCM (Galois/Counter mode). 990 991comment "Ciphers" 992 993config CRYPTO_LIB_AES 994 tristate 995 996config CRYPTO_AES 997 tristate "AES cipher algorithms" 998 select CRYPTO_ALGAPI 999 select CRYPTO_LIB_AES 1000 help 1001 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1002 algorithm. 1003 1004 Rijndael appears to be consistently a very good performer in 1005 both hardware and software across a wide range of computing 1006 environments regardless of its use in feedback or non-feedback 1007 modes. Its key setup time is excellent, and its key agility is 1008 good. Rijndael's very low memory requirements make it very well 1009 suited for restricted-space environments, in which it also 1010 demonstrates excellent performance. Rijndael's operations are 1011 among the easiest to defend against power and timing attacks. 1012 1013 The AES specifies three key sizes: 128, 192 and 256 bits 1014 1015 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1016 1017config CRYPTO_AES_TI 1018 tristate "Fixed time AES cipher" 1019 select CRYPTO_ALGAPI 1020 select CRYPTO_LIB_AES 1021 help 1022 This is a generic implementation of AES that attempts to eliminate 1023 data dependent latencies as much as possible without affecting 1024 performance too much. It is intended for use by the generic CCM 1025 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1026 solely on encryption (although decryption is supported as well, but 1027 with a more dramatic performance hit) 1028 1029 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1030 8 for decryption), this implementation only uses just two S-boxes of 1031 256 bytes each, and attempts to eliminate data dependent latencies by 1032 prefetching the entire table into the cache at the start of each 1033 block. Interrupts are also disabled to avoid races where cachelines 1034 are evicted when the CPU is interrupted to do something else. 1035 1036config CRYPTO_AES_NI_INTEL 1037 tristate "AES cipher algorithms (AES-NI)" 1038 depends on X86 1039 select CRYPTO_AEAD 1040 select CRYPTO_LIB_AES 1041 select CRYPTO_ALGAPI 1042 select CRYPTO_BLKCIPHER 1043 select CRYPTO_GLUE_HELPER_X86 if 64BIT 1044 select CRYPTO_SIMD 1045 help 1046 Use Intel AES-NI instructions for AES algorithm. 1047 1048 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1049 algorithm. 1050 1051 Rijndael appears to be consistently a very good performer in 1052 both hardware and software across a wide range of computing 1053 environments regardless of its use in feedback or non-feedback 1054 modes. Its key setup time is excellent, and its key agility is 1055 good. Rijndael's very low memory requirements make it very well 1056 suited for restricted-space environments, in which it also 1057 demonstrates excellent performance. Rijndael's operations are 1058 among the easiest to defend against power and timing attacks. 1059 1060 The AES specifies three key sizes: 128, 192 and 256 bits 1061 1062 See <http://csrc.nist.gov/encryption/aes/> for more information. 1063 1064 In addition to AES cipher algorithm support, the acceleration 1065 for some popular block cipher mode is supported too, including 1066 ECB, CBC, LRW, XTS. The 64 bit version has additional 1067 acceleration for CTR. 1068 1069config CRYPTO_AES_SPARC64 1070 tristate "AES cipher algorithms (SPARC64)" 1071 depends on SPARC64 1072 select CRYPTO_CRYPTD 1073 select CRYPTO_ALGAPI 1074 help 1075 Use SPARC64 crypto opcodes for AES algorithm. 1076 1077 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1078 algorithm. 1079 1080 Rijndael appears to be consistently a very good performer in 1081 both hardware and software across a wide range of computing 1082 environments regardless of its use in feedback or non-feedback 1083 modes. Its key setup time is excellent, and its key agility is 1084 good. Rijndael's very low memory requirements make it very well 1085 suited for restricted-space environments, in which it also 1086 demonstrates excellent performance. Rijndael's operations are 1087 among the easiest to defend against power and timing attacks. 1088 1089 The AES specifies three key sizes: 128, 192 and 256 bits 1090 1091 See <http://csrc.nist.gov/encryption/aes/> for more information. 1092 1093 In addition to AES cipher algorithm support, the acceleration 1094 for some popular block cipher mode is supported too, including 1095 ECB and CBC. 1096 1097config CRYPTO_AES_PPC_SPE 1098 tristate "AES cipher algorithms (PPC SPE)" 1099 depends on PPC && SPE 1100 help 1101 AES cipher algorithms (FIPS-197). Additionally the acceleration 1102 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1103 This module should only be used for low power (router) devices 1104 without hardware AES acceleration (e.g. caam crypto). It reduces the 1105 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1106 timining attacks. Nevertheless it might be not as secure as other 1107 architecture specific assembler implementations that work on 1KB 1108 tables or 256 bytes S-boxes. 1109 1110config CRYPTO_ANUBIS 1111 tristate "Anubis cipher algorithm" 1112 select CRYPTO_ALGAPI 1113 help 1114 Anubis cipher algorithm. 1115 1116 Anubis is a variable key length cipher which can use keys from 1117 128 bits to 320 bits in length. It was evaluated as a entrant 1118 in the NESSIE competition. 1119 1120 See also: 1121 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1122 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1123 1124config CRYPTO_LIB_ARC4 1125 tristate 1126 1127config CRYPTO_ARC4 1128 tristate "ARC4 cipher algorithm" 1129 select CRYPTO_BLKCIPHER 1130 select CRYPTO_LIB_ARC4 1131 help 1132 ARC4 cipher algorithm. 1133 1134 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1135 bits in length. This algorithm is required for driver-based 1136 WEP, but it should not be for other purposes because of the 1137 weakness of the algorithm. 1138 1139config CRYPTO_BLOWFISH 1140 tristate "Blowfish cipher algorithm" 1141 select CRYPTO_ALGAPI 1142 select CRYPTO_BLOWFISH_COMMON 1143 help 1144 Blowfish cipher algorithm, by Bruce Schneier. 1145 1146 This is a variable key length cipher which can use keys from 32 1147 bits to 448 bits in length. It's fast, simple and specifically 1148 designed for use on "large microprocessors". 1149 1150 See also: 1151 <http://www.schneier.com/blowfish.html> 1152 1153config CRYPTO_BLOWFISH_COMMON 1154 tristate 1155 help 1156 Common parts of the Blowfish cipher algorithm shared by the 1157 generic c and the assembler implementations. 1158 1159 See also: 1160 <http://www.schneier.com/blowfish.html> 1161 1162config CRYPTO_BLOWFISH_X86_64 1163 tristate "Blowfish cipher algorithm (x86_64)" 1164 depends on X86 && 64BIT 1165 select CRYPTO_BLKCIPHER 1166 select CRYPTO_BLOWFISH_COMMON 1167 help 1168 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1169 1170 This is a variable key length cipher which can use keys from 32 1171 bits to 448 bits in length. It's fast, simple and specifically 1172 designed for use on "large microprocessors". 1173 1174 See also: 1175 <http://www.schneier.com/blowfish.html> 1176 1177config CRYPTO_CAMELLIA 1178 tristate "Camellia cipher algorithms" 1179 depends on CRYPTO 1180 select CRYPTO_ALGAPI 1181 help 1182 Camellia cipher algorithms module. 1183 1184 Camellia is a symmetric key block cipher developed jointly 1185 at NTT and Mitsubishi Electric Corporation. 1186 1187 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1188 1189 See also: 1190 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1191 1192config CRYPTO_CAMELLIA_X86_64 1193 tristate "Camellia cipher algorithm (x86_64)" 1194 depends on X86 && 64BIT 1195 depends on CRYPTO 1196 select CRYPTO_BLKCIPHER 1197 select CRYPTO_GLUE_HELPER_X86 1198 help 1199 Camellia cipher algorithm module (x86_64). 1200 1201 Camellia is a symmetric key block cipher developed jointly 1202 at NTT and Mitsubishi Electric Corporation. 1203 1204 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1205 1206 See also: 1207 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1208 1209config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1210 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1211 depends on X86 && 64BIT 1212 depends on CRYPTO 1213 select CRYPTO_BLKCIPHER 1214 select CRYPTO_CAMELLIA_X86_64 1215 select CRYPTO_GLUE_HELPER_X86 1216 select CRYPTO_SIMD 1217 select CRYPTO_XTS 1218 help 1219 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1220 1221 Camellia is a symmetric key block cipher developed jointly 1222 at NTT and Mitsubishi Electric Corporation. 1223 1224 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1225 1226 See also: 1227 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1228 1229config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1230 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1231 depends on X86 && 64BIT 1232 depends on CRYPTO 1233 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1234 help 1235 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1236 1237 Camellia is a symmetric key block cipher developed jointly 1238 at NTT and Mitsubishi Electric Corporation. 1239 1240 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1241 1242 See also: 1243 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1244 1245config CRYPTO_CAMELLIA_SPARC64 1246 tristate "Camellia cipher algorithm (SPARC64)" 1247 depends on SPARC64 1248 depends on CRYPTO 1249 select CRYPTO_ALGAPI 1250 help 1251 Camellia cipher algorithm module (SPARC64). 1252 1253 Camellia is a symmetric key block cipher developed jointly 1254 at NTT and Mitsubishi Electric Corporation. 1255 1256 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1257 1258 See also: 1259 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1260 1261config CRYPTO_CAST_COMMON 1262 tristate 1263 help 1264 Common parts of the CAST cipher algorithms shared by the 1265 generic c and the assembler implementations. 1266 1267config CRYPTO_CAST5 1268 tristate "CAST5 (CAST-128) cipher algorithm" 1269 select CRYPTO_ALGAPI 1270 select CRYPTO_CAST_COMMON 1271 help 1272 The CAST5 encryption algorithm (synonymous with CAST-128) is 1273 described in RFC2144. 1274 1275config CRYPTO_CAST5_AVX_X86_64 1276 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1277 depends on X86 && 64BIT 1278 select CRYPTO_BLKCIPHER 1279 select CRYPTO_CAST5 1280 select CRYPTO_CAST_COMMON 1281 select CRYPTO_SIMD 1282 help 1283 The CAST5 encryption algorithm (synonymous with CAST-128) is 1284 described in RFC2144. 1285 1286 This module provides the Cast5 cipher algorithm that processes 1287 sixteen blocks parallel using the AVX instruction set. 1288 1289config CRYPTO_CAST6 1290 tristate "CAST6 (CAST-256) cipher algorithm" 1291 select CRYPTO_ALGAPI 1292 select CRYPTO_CAST_COMMON 1293 help 1294 The CAST6 encryption algorithm (synonymous with CAST-256) is 1295 described in RFC2612. 1296 1297config CRYPTO_CAST6_AVX_X86_64 1298 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1299 depends on X86 && 64BIT 1300 select CRYPTO_BLKCIPHER 1301 select CRYPTO_CAST6 1302 select CRYPTO_CAST_COMMON 1303 select CRYPTO_GLUE_HELPER_X86 1304 select CRYPTO_SIMD 1305 select CRYPTO_XTS 1306 help 1307 The CAST6 encryption algorithm (synonymous with CAST-256) is 1308 described in RFC2612. 1309 1310 This module provides the Cast6 cipher algorithm that processes 1311 eight blocks parallel using the AVX instruction set. 1312 1313config CRYPTO_LIB_DES 1314 tristate 1315 1316config CRYPTO_DES 1317 tristate "DES and Triple DES EDE cipher algorithms" 1318 select CRYPTO_ALGAPI 1319 select CRYPTO_LIB_DES 1320 help 1321 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1322 1323config CRYPTO_DES_SPARC64 1324 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1325 depends on SPARC64 1326 select CRYPTO_ALGAPI 1327 select CRYPTO_LIB_DES 1328 help 1329 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1330 optimized using SPARC64 crypto opcodes. 1331 1332config CRYPTO_DES3_EDE_X86_64 1333 tristate "Triple DES EDE cipher algorithm (x86-64)" 1334 depends on X86 && 64BIT 1335 select CRYPTO_BLKCIPHER 1336 select CRYPTO_LIB_DES 1337 help 1338 Triple DES EDE (FIPS 46-3) algorithm. 1339 1340 This module provides implementation of the Triple DES EDE cipher 1341 algorithm that is optimized for x86-64 processors. Two versions of 1342 algorithm are provided; regular processing one input block and 1343 one that processes three blocks parallel. 1344 1345config CRYPTO_FCRYPT 1346 tristate "FCrypt cipher algorithm" 1347 select CRYPTO_ALGAPI 1348 select CRYPTO_BLKCIPHER 1349 help 1350 FCrypt algorithm used by RxRPC. 1351 1352config CRYPTO_KHAZAD 1353 tristate "Khazad cipher algorithm" 1354 select CRYPTO_ALGAPI 1355 help 1356 Khazad cipher algorithm. 1357 1358 Khazad was a finalist in the initial NESSIE competition. It is 1359 an algorithm optimized for 64-bit processors with good performance 1360 on 32-bit processors. Khazad uses an 128 bit key size. 1361 1362 See also: 1363 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1364 1365config CRYPTO_SALSA20 1366 tristate "Salsa20 stream cipher algorithm" 1367 select CRYPTO_BLKCIPHER 1368 help 1369 Salsa20 stream cipher algorithm. 1370 1371 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1372 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1373 1374 The Salsa20 stream cipher algorithm is designed by Daniel J. 1375 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1376 1377config CRYPTO_CHACHA20 1378 tristate "ChaCha stream cipher algorithms" 1379 select CRYPTO_BLKCIPHER 1380 help 1381 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1382 1383 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1384 Bernstein and further specified in RFC7539 for use in IETF protocols. 1385 This is the portable C implementation of ChaCha20. See also: 1386 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1387 1388 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1389 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1390 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1391 while provably retaining ChaCha20's security. See also: 1392 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1393 1394 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1395 reduced security margin but increased performance. It can be needed 1396 in some performance-sensitive scenarios. 1397 1398config CRYPTO_CHACHA20_X86_64 1399 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1400 depends on X86 && 64BIT 1401 select CRYPTO_BLKCIPHER 1402 select CRYPTO_CHACHA20 1403 help 1404 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1405 XChaCha20, and XChaCha12 stream ciphers. 1406 1407config CRYPTO_SEED 1408 tristate "SEED cipher algorithm" 1409 select CRYPTO_ALGAPI 1410 help 1411 SEED cipher algorithm (RFC4269). 1412 1413 SEED is a 128-bit symmetric key block cipher that has been 1414 developed by KISA (Korea Information Security Agency) as a 1415 national standard encryption algorithm of the Republic of Korea. 1416 It is a 16 round block cipher with the key size of 128 bit. 1417 1418 See also: 1419 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1420 1421config CRYPTO_SERPENT 1422 tristate "Serpent cipher algorithm" 1423 select CRYPTO_ALGAPI 1424 help 1425 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1426 1427 Keys are allowed to be from 0 to 256 bits in length, in steps 1428 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1429 variant of Serpent for compatibility with old kerneli.org code. 1430 1431 See also: 1432 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1433 1434config CRYPTO_SERPENT_SSE2_X86_64 1435 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1436 depends on X86 && 64BIT 1437 select CRYPTO_BLKCIPHER 1438 select CRYPTO_GLUE_HELPER_X86 1439 select CRYPTO_SERPENT 1440 select CRYPTO_SIMD 1441 help 1442 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1443 1444 Keys are allowed to be from 0 to 256 bits in length, in steps 1445 of 8 bits. 1446 1447 This module provides Serpent cipher algorithm that processes eight 1448 blocks parallel using SSE2 instruction set. 1449 1450 See also: 1451 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1452 1453config CRYPTO_SERPENT_SSE2_586 1454 tristate "Serpent cipher algorithm (i586/SSE2)" 1455 depends on X86 && !64BIT 1456 select CRYPTO_BLKCIPHER 1457 select CRYPTO_GLUE_HELPER_X86 1458 select CRYPTO_SERPENT 1459 select CRYPTO_SIMD 1460 help 1461 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1462 1463 Keys are allowed to be from 0 to 256 bits in length, in steps 1464 of 8 bits. 1465 1466 This module provides Serpent cipher algorithm that processes four 1467 blocks parallel using SSE2 instruction set. 1468 1469 See also: 1470 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1471 1472config CRYPTO_SERPENT_AVX_X86_64 1473 tristate "Serpent cipher algorithm (x86_64/AVX)" 1474 depends on X86 && 64BIT 1475 select CRYPTO_BLKCIPHER 1476 select CRYPTO_GLUE_HELPER_X86 1477 select CRYPTO_SERPENT 1478 select CRYPTO_SIMD 1479 select CRYPTO_XTS 1480 help 1481 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1482 1483 Keys are allowed to be from 0 to 256 bits in length, in steps 1484 of 8 bits. 1485 1486 This module provides the Serpent cipher algorithm that processes 1487 eight blocks parallel using the AVX instruction set. 1488 1489 See also: 1490 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1491 1492config CRYPTO_SERPENT_AVX2_X86_64 1493 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1494 depends on X86 && 64BIT 1495 select CRYPTO_SERPENT_AVX_X86_64 1496 help 1497 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1498 1499 Keys are allowed to be from 0 to 256 bits in length, in steps 1500 of 8 bits. 1501 1502 This module provides Serpent cipher algorithm that processes 16 1503 blocks parallel using AVX2 instruction set. 1504 1505 See also: 1506 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1507 1508config CRYPTO_SM4 1509 tristate "SM4 cipher algorithm" 1510 select CRYPTO_ALGAPI 1511 help 1512 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1513 1514 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1515 Organization of State Commercial Administration of China (OSCCA) 1516 as an authorized cryptographic algorithms for the use within China. 1517 1518 SMS4 was originally created for use in protecting wireless 1519 networks, and is mandated in the Chinese National Standard for 1520 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1521 (GB.15629.11-2003). 1522 1523 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1524 standardized through TC 260 of the Standardization Administration 1525 of the People's Republic of China (SAC). 1526 1527 The input, output, and key of SMS4 are each 128 bits. 1528 1529 See also: <https://eprint.iacr.org/2008/329.pdf> 1530 1531 If unsure, say N. 1532 1533config CRYPTO_TEA 1534 tristate "TEA, XTEA and XETA cipher algorithms" 1535 select CRYPTO_ALGAPI 1536 help 1537 TEA cipher algorithm. 1538 1539 Tiny Encryption Algorithm is a simple cipher that uses 1540 many rounds for security. It is very fast and uses 1541 little memory. 1542 1543 Xtendend Tiny Encryption Algorithm is a modification to 1544 the TEA algorithm to address a potential key weakness 1545 in the TEA algorithm. 1546 1547 Xtendend Encryption Tiny Algorithm is a mis-implementation 1548 of the XTEA algorithm for compatibility purposes. 1549 1550config CRYPTO_TWOFISH 1551 tristate "Twofish cipher algorithm" 1552 select CRYPTO_ALGAPI 1553 select CRYPTO_TWOFISH_COMMON 1554 help 1555 Twofish cipher algorithm. 1556 1557 Twofish was submitted as an AES (Advanced Encryption Standard) 1558 candidate cipher by researchers at CounterPane Systems. It is a 1559 16 round block cipher supporting key sizes of 128, 192, and 256 1560 bits. 1561 1562 See also: 1563 <http://www.schneier.com/twofish.html> 1564 1565config CRYPTO_TWOFISH_COMMON 1566 tristate 1567 help 1568 Common parts of the Twofish cipher algorithm shared by the 1569 generic c and the assembler implementations. 1570 1571config CRYPTO_TWOFISH_586 1572 tristate "Twofish cipher algorithms (i586)" 1573 depends on (X86 || UML_X86) && !64BIT 1574 select CRYPTO_ALGAPI 1575 select CRYPTO_TWOFISH_COMMON 1576 help 1577 Twofish cipher algorithm. 1578 1579 Twofish was submitted as an AES (Advanced Encryption Standard) 1580 candidate cipher by researchers at CounterPane Systems. It is a 1581 16 round block cipher supporting key sizes of 128, 192, and 256 1582 bits. 1583 1584 See also: 1585 <http://www.schneier.com/twofish.html> 1586 1587config CRYPTO_TWOFISH_X86_64 1588 tristate "Twofish cipher algorithm (x86_64)" 1589 depends on (X86 || UML_X86) && 64BIT 1590 select CRYPTO_ALGAPI 1591 select CRYPTO_TWOFISH_COMMON 1592 help 1593 Twofish cipher algorithm (x86_64). 1594 1595 Twofish was submitted as an AES (Advanced Encryption Standard) 1596 candidate cipher by researchers at CounterPane Systems. It is a 1597 16 round block cipher supporting key sizes of 128, 192, and 256 1598 bits. 1599 1600 See also: 1601 <http://www.schneier.com/twofish.html> 1602 1603config CRYPTO_TWOFISH_X86_64_3WAY 1604 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1605 depends on X86 && 64BIT 1606 select CRYPTO_BLKCIPHER 1607 select CRYPTO_TWOFISH_COMMON 1608 select CRYPTO_TWOFISH_X86_64 1609 select CRYPTO_GLUE_HELPER_X86 1610 help 1611 Twofish cipher algorithm (x86_64, 3-way parallel). 1612 1613 Twofish was submitted as an AES (Advanced Encryption Standard) 1614 candidate cipher by researchers at CounterPane Systems. It is a 1615 16 round block cipher supporting key sizes of 128, 192, and 256 1616 bits. 1617 1618 This module provides Twofish cipher algorithm that processes three 1619 blocks parallel, utilizing resources of out-of-order CPUs better. 1620 1621 See also: 1622 <http://www.schneier.com/twofish.html> 1623 1624config CRYPTO_TWOFISH_AVX_X86_64 1625 tristate "Twofish cipher algorithm (x86_64/AVX)" 1626 depends on X86 && 64BIT 1627 select CRYPTO_BLKCIPHER 1628 select CRYPTO_GLUE_HELPER_X86 1629 select CRYPTO_SIMD 1630 select CRYPTO_TWOFISH_COMMON 1631 select CRYPTO_TWOFISH_X86_64 1632 select CRYPTO_TWOFISH_X86_64_3WAY 1633 help 1634 Twofish cipher algorithm (x86_64/AVX). 1635 1636 Twofish was submitted as an AES (Advanced Encryption Standard) 1637 candidate cipher by researchers at CounterPane Systems. It is a 1638 16 round block cipher supporting key sizes of 128, 192, and 256 1639 bits. 1640 1641 This module provides the Twofish cipher algorithm that processes 1642 eight blocks parallel using the AVX Instruction Set. 1643 1644 See also: 1645 <http://www.schneier.com/twofish.html> 1646 1647comment "Compression" 1648 1649config CRYPTO_DEFLATE 1650 tristate "Deflate compression algorithm" 1651 select CRYPTO_ALGAPI 1652 select CRYPTO_ACOMP2 1653 select ZLIB_INFLATE 1654 select ZLIB_DEFLATE 1655 help 1656 This is the Deflate algorithm (RFC1951), specified for use in 1657 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1658 1659 You will most probably want this if using IPSec. 1660 1661config CRYPTO_LZO 1662 tristate "LZO compression algorithm" 1663 select CRYPTO_ALGAPI 1664 select CRYPTO_ACOMP2 1665 select LZO_COMPRESS 1666 select LZO_DECOMPRESS 1667 help 1668 This is the LZO algorithm. 1669 1670config CRYPTO_842 1671 tristate "842 compression algorithm" 1672 select CRYPTO_ALGAPI 1673 select CRYPTO_ACOMP2 1674 select 842_COMPRESS 1675 select 842_DECOMPRESS 1676 help 1677 This is the 842 algorithm. 1678 1679config CRYPTO_LZ4 1680 tristate "LZ4 compression algorithm" 1681 select CRYPTO_ALGAPI 1682 select CRYPTO_ACOMP2 1683 select LZ4_COMPRESS 1684 select LZ4_DECOMPRESS 1685 help 1686 This is the LZ4 algorithm. 1687 1688config CRYPTO_LZ4HC 1689 tristate "LZ4HC compression algorithm" 1690 select CRYPTO_ALGAPI 1691 select CRYPTO_ACOMP2 1692 select LZ4HC_COMPRESS 1693 select LZ4_DECOMPRESS 1694 help 1695 This is the LZ4 high compression mode algorithm. 1696 1697config CRYPTO_ZSTD 1698 tristate "Zstd compression algorithm" 1699 select CRYPTO_ALGAPI 1700 select CRYPTO_ACOMP2 1701 select ZSTD_COMPRESS 1702 select ZSTD_DECOMPRESS 1703 help 1704 This is the zstd algorithm. 1705 1706comment "Random Number Generation" 1707 1708config CRYPTO_ANSI_CPRNG 1709 tristate "Pseudo Random Number Generation for Cryptographic modules" 1710 select CRYPTO_AES 1711 select CRYPTO_RNG 1712 help 1713 This option enables the generic pseudo random number generator 1714 for cryptographic modules. Uses the Algorithm specified in 1715 ANSI X9.31 A.2.4. Note that this option must be enabled if 1716 CRYPTO_FIPS is selected 1717 1718menuconfig CRYPTO_DRBG_MENU 1719 tristate "NIST SP800-90A DRBG" 1720 help 1721 NIST SP800-90A compliant DRBG. In the following submenu, one or 1722 more of the DRBG types must be selected. 1723 1724if CRYPTO_DRBG_MENU 1725 1726config CRYPTO_DRBG_HMAC 1727 bool 1728 default y 1729 select CRYPTO_HMAC 1730 select CRYPTO_SHA256 1731 1732config CRYPTO_DRBG_HASH 1733 bool "Enable Hash DRBG" 1734 select CRYPTO_SHA256 1735 help 1736 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1737 1738config CRYPTO_DRBG_CTR 1739 bool "Enable CTR DRBG" 1740 select CRYPTO_AES 1741 depends on CRYPTO_CTR 1742 help 1743 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1744 1745config CRYPTO_DRBG 1746 tristate 1747 default CRYPTO_DRBG_MENU 1748 select CRYPTO_RNG 1749 select CRYPTO_JITTERENTROPY 1750 1751endif # if CRYPTO_DRBG_MENU 1752 1753config CRYPTO_JITTERENTROPY 1754 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1755 select CRYPTO_RNG 1756 help 1757 The Jitterentropy RNG is a noise that is intended 1758 to provide seed to another RNG. The RNG does not 1759 perform any cryptographic whitening of the generated 1760 random numbers. This Jitterentropy RNG registers with 1761 the kernel crypto API and can be used by any caller. 1762 1763config CRYPTO_USER_API 1764 tristate 1765 1766config CRYPTO_USER_API_HASH 1767 tristate "User-space interface for hash algorithms" 1768 depends on NET 1769 select CRYPTO_HASH 1770 select CRYPTO_USER_API 1771 help 1772 This option enables the user-spaces interface for hash 1773 algorithms. 1774 1775config CRYPTO_USER_API_SKCIPHER 1776 tristate "User-space interface for symmetric key cipher algorithms" 1777 depends on NET 1778 select CRYPTO_BLKCIPHER 1779 select CRYPTO_USER_API 1780 help 1781 This option enables the user-spaces interface for symmetric 1782 key cipher algorithms. 1783 1784config CRYPTO_USER_API_RNG 1785 tristate "User-space interface for random number generator algorithms" 1786 depends on NET 1787 select CRYPTO_RNG 1788 select CRYPTO_USER_API 1789 help 1790 This option enables the user-spaces interface for random 1791 number generator algorithms. 1792 1793config CRYPTO_USER_API_AEAD 1794 tristate "User-space interface for AEAD cipher algorithms" 1795 depends on NET 1796 select CRYPTO_AEAD 1797 select CRYPTO_BLKCIPHER 1798 select CRYPTO_NULL 1799 select CRYPTO_USER_API 1800 help 1801 This option enables the user-spaces interface for AEAD 1802 cipher algorithms. 1803 1804config CRYPTO_STATS 1805 bool "Crypto usage statistics for User-space" 1806 depends on CRYPTO_USER 1807 help 1808 This option enables the gathering of crypto stats. 1809 This will collect: 1810 - encrypt/decrypt size and numbers of symmeric operations 1811 - compress/decompress size and numbers of compress operations 1812 - size and numbers of hash operations 1813 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1814 - generate/seed numbers for rng operations 1815 1816config CRYPTO_HASH_INFO 1817 bool 1818 1819source "drivers/crypto/Kconfig" 1820source "crypto/asymmetric_keys/Kconfig" 1821source "certs/Kconfig" 1822 1823endif # if CRYPTO 1824